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Abstract Eco-innovation plays a crucial role in reducing carbon emissions.

Exploiting the consolidated IPAT/STIRPAT framework, this paper studies whether

a relationship exists between green technological change (measured as stock of

green patent) and both CO2 emissions and emission efficiency (CO2/VA). To

investigate this relation, a rich panel covering 95 Italian provinces from 1990 to

2010 is exploited. The main regression results suggest that green technology has not

yet played a significant role in promoting environmental protection, although it

improved significantly environmental productivity. Notably, this result is not driven

by regional differences, and the main evidence is consistent among different areas

of the country.

Keywords CO2 emission � Technological change � Green patents � IPAT �
Environmental performance

JEL Classification Q 53 � Q 55

1 Introduction

Carbon dioxide emissions and the improvement of environmental efficiency in

relation to global warming have become urgent issues throughout the world. Over

the last two decades, economic growth has been associated with a 44 % increase in
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CO2 levels, and only a small number of countries have managed to decrease their

emissions during this period.

The advancements in science and technology are considered to be key concerns

in addressing environmental issues and confronting climate change (Abbott 2012),

but there are several unanswered questions. For instance: ‘‘How exactly do

technology and innovation affect carbon dioxide emissions?’’, ‘‘Does technology

innovation, especially environmental innovation, positively affect the reduction of

emissions?’’, and ‘‘How can the government act with respect to the policy on

relevant innovations?’’ These are only some examples of questions raised by

scholars and policymakers in the last decade.

Most of the literature has relied on firm-level data to test environmental

innovation drivers. Among recent contribution, for example, in Berrone et al.

(2013), the authors investigate if both institutional pressures and factors internal to

the firm’s organisation as well as their interaction, have a positive effect on firm’s

propensity to engage in environmental innovation. Based on a sample of 326 firms

in the US, they found that institutional pressures can actually enhance eco-

innovation adoption in firms, especially when they show higher rates of pollution

with respect to the other firms in the sector. Secondly, the authors found that firm’s

internal organization matters in terms of assets specificity and resource availability.

Similarly, Cai and Zhou (2014) investigated the factors that influence the adoption

of eco-innovation in Chinese firms. Their findings highlight that in this country

environmental innovation is mainly triggered by pressures external to firms such as

customer’s green demand and competitors in the sector. This branch of literature is

very extensive, and a survey can be found in Del Rı́o (2009) and Cecere et al.

(2014).

Another branch of the environmental innovation literature focused on a sector-

level viewpoint. This is a key perspective for two main reasons: first, while

innovation occurs within the firm, technological change takes place only at the

sector level (Dopfer 2012). Secondly, the sectorial level allows a more rigorous

evaluation of the overall policy implications. Goulder and Schneider (1999)

investigates the role of induced technological change on CO2 abatement

expenditure at a sectorial level. The authors found that even if technological

change can lower the cost of achieving a certain environmental target, it implies an

higher gross cost of a given carbon tax. Del Rı́o et al. (2011), investigated the

drivers of environmental innovation on a panel of Spanish industries and concluded

that technology investments are positively and strongly related to human and

physical capital intensity and R&D and negatively related to the export intensity of

sectors. In addition, they found that policy stringency played a relevant role in

shaping the investment choices in environmental technologies. The empirical

results of Carrión-Flores and Innes (2010), revealed a negative and significant

bidirectional linkage between toxic air pollution and environmental innovation, by

the estimation of a panel of 127 manufacturing industries over a 16-year period

(1989–2004).

A third wave of research on environmental innovation and its effects on the

actual reduction of polluting emissions goes beyond the economic agent perspective

and considers a geographical viewpoint to discuss issues such as agglomerative

248 Environ Econ Policy Stud (2016) 18:247–263

123



effects and spatial features. Costantini et al. (2013) used NAMEA data to investigate

the heterogeneous distribution of emissions across Italy. Considering differences in

local factors affecting environmental innovation, they found an agglomeration

effect that seems to influence environmental performance at a regional level.

Moreover, they found that technological and environmental spillovers are relevant

for sectorial environmental efficiency and that these factors can drive environmental

efficiency more than internal innovation.

From a country perspective, many authors highlighted differences in pollution

emissions trends across countries or group of countries. For example, Kim and Kim

(2012) studied the CO2 emission trend in both OECD and non-OECD countries and

found that, notwithstanding some variation within the two groups of countries,

emissions are decreasing in OECD-countries such as European member states and

the US, but they are increasing in countries such as India and China, which are

experiencing a great economic growth.

Nevertheless, literature on the effect of technological changes, particularly those

aiming to improve environmental conditions, is still rather scarce, particularly

concerning regional and local points of view. This paper attempts to fill this research

gap by taking a ‘local perspective’ through empirically testing the data of 95

provinces in Italy over the years 1990–2010. In particular, referring to the IPAT/

STIRPAT framework we shed a light on the role played by green technological

change on climate change mitigation. In particular we constructed a green patent

stock and used it as proxy of technological change and we adopted two different

measures of environmental performances, i.e. total CO2 emission and environmental

productivity. The intuition here is that the development of green technologies at

provincial level can induce firms to adopt greener production processes which have

become less expensive, and this can lead to an overall increase in environmental

performances. As a consequence we expect a strong connection between environ-

mental productivity and the stock of green knowledge, the latter being strongly

related to productivity. On the contrary we do not have a priori expectation on the

effect of technological change on total CO2 production, given that other factors, like

an increase in the scale of the economy or changes in consumption patterns can

offset the positive effect of technological change.

The preliminary evidence (at the regional level) presented in Figs. 1 and 2

confirms previous expectations on North–South disparities, with several exceptions.

Emissions tend to be more concentrated in more industrialised Northern provinces,

while the South tends to produce, on average, less CO2. Puglia is a relevant

exception, being the third highest polluter; similarly, Trentino-Alto Adige, a

Northern region, is among the cleanest in the country. In particular, concerning CO2

emissions, Piemonte, Lombardia and Puglia are the three regions associated with a

higher level of total CO2 production, whereas in the other areas, total emissions are

on a homogeneous level. Notably, the regional ranking in regard to emission

efficiency (Fig. 2) is fairly similar to that of total emission, but it shows a

completely different trend over time. On the one hand, the total CO2 emission

generally increases from 1990 to 2010 (with the exception of year 2010 in full

economic crises); on the other hand, emission intensity is significantly decreasing,

highlighting an overall gain in environmental efficiencies across Italian regions.
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Finally, Fig. 3 suggests that the overall increasing trend in green knowledge can be

partially correlated to the gain in environmental efficiency, which is constantly

increasing over time. Moreover, it should be noted that in the case of green patents,

the North–South divide is very evident; patents are more prevalent in Northern
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Fig. 1 The CO2 emission of 20 regions in Italy for five selected years (Unit: Mg)
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Fig. 2 Emission intensity (CO2/VA) across 20 regions in Italy for five selected years (Unit: Mg/VA)
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regions such as Lombardia, Piemonte, Veneto and Emilia-Romagna. These

considerations hold also if we scale patent data for provincial Value Added in

order to account for differences in the size of Italian provinces (see Fig. 4).
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Fig. 3 Green patent stock for 20 Italian regions in the five selected years
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Fig. 4 Number of patents per unit of value added, 20 Italian regions in the five selected years
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Several reasons justify the choice to conduct a territorial analysis of environ-

mental topics. First, regional frameworks allow for focusing the investigation on

structural and idiosyncratic features compared to national averages; second, a

disaggregated approach provides useful insights on specific environmental and

economic development dynamics, which might be useful for regional policymakers;

third, this analysis has political economy implications, which can be differentiated

across different regions and territories. This is especially relevant in a country like

Italy, which is characterised by high disparities, such as the famous North–South

divide. Moreover, it should be noted that this infra-country heterogeneity involves

not only economic aspects but also environmental performances, which are highly

heterogeneous within the country and tend to favour Northern industrial regions, as

confirmed by previous studies based on the national accounting matrix for

environmental accounts, known as NAMEA (see Mazzanti and Montini 2010).

However, although several works at the national level based on hybrid environ-

mental accounts are well established in the literature (De Haan 2004; Mazzanti and

Montini 2010), analysis based on the sub-national/regional level is much rarer.

This paper investigates the role of innovation aimed at reducing carbon dioxide

emission as a factor that compensates for economic growth and population growth

effects. We test the effect of technology on carbon emissions within a STIRPAT

framework, using Italian provincial data covering all 95 provinces over the period

1990–2010. Data are collected every 5 years during this period.

We first conduct the empirical analysis on the entire Italian territory, which is

subsequently divided in two sub-samples that characterise the Northern Italian

regions and the Southern Italian regions; the aim is to determine the different effects

of the environmental innovation adoption on CO2 emissions taking into account the

Italian North–South divide.

Our main finding is that the stock of green patents did not exert a significant

effect on CO2 reduction; on the contrary, it had a significant and positive effect on

environmental productivity (CO2/VA). Notably, this effect seems stronger in the

Southern regions, suggesting that some technological effect is also emerging in that

part of the country.

The remainder of the paper is organised as follows: Sect. 2 presents emissions’

main driving forces; Sect. 3 describes the empirical approach; Sect. 4 discusses the

main results; and Sect. 5 concludes.

2 Driving forces

Contributions to literature in this field have discussed the main forces that drive CO2

emissions in specific countries, such as in Great Britain (Kwon 2005), China (Chong

et al. 2012; Feng et al. 2012; Liu et al. 2012), OECD countries (Kerr and Mellon

2012), ASEAN countries (Borhan et al. 2012), and the former Soviet Union (Brizga

et al. 2013). Some of these empirical analyses have applied the IPAT framework to

build a model for polluting emissions (e.g.: Kwon 2005; MacKellar et al. 1995).

Results have shown that many factors affect CO2 emissions, such as economic
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scale, population, industrial structure, energy consumption structure and the level of

technology and management (Kaya 1990).

The following paragraphs will explain the most relevant factors in depth.

2.1 Population

Population has been found to play a significant role in determining emission levels;

in a paper by Dietz and Rosa (1997), who developed a stochastic version of the

IPAT model, they concluded that there are diseconomies of scale for the most

populated nations that are not consistent with the assumption of direct

proportionality (log-linear effects) common to most previous researches. Shi

(2003), in a cross country analysis covering 93 different states, has shown that the

effect of income on carbon dioxide emission varies across country groups, and that

lower income countries have greater elasticity on population. A similar result is

obtained by Cole and Neumayer (2004). Dietz and Rosa (1997) and York et al.

(2003) found that the elasticity of a population with respect to income is less than

1, in the context of the IPAT model. Finally, researchers working with micro-level

data have shown that activities such as transport and residential energy

consumption vary according to age structure and household size (e.g., O’Neill

and Chen 2002; Liddle 2004; Prskawetz et al. 2004; Zagheni 2011). Recently,

studies using cross-country, macro-level data have shown a similar relationship

(e.g., Liddle and Lung 2010).

2.2 Affluence

According to York et al. (2003), affluence can be defined as either per capita

production or per capita consumption. Dietz and Rosa (1997) predicted that

population and economic growth would exacerbate the problem of greenhouse gas

(GHG) emission and estimated that the effects of affluence on CO2 emissions would

reach a maximum at approximately $10,000 measured in per capita GDP and would

decline at higher levels of affluence. Fan et al. (2006) found that the effect of GDP

per capita on total CO2 emissions is greater for low income countries and found that

the effect of energy intensity is strong in upper middle income countries by

estimating the same model from different income levels.

The role of affluence, as an indicator of economic growth has been first

introduced with Environmental Kuznets Curve (EKC), a model which considers the

connection between environmental degradation and economic growth (Grossman

and Krueger 1995). EKC shows that, the relation between economic growth and

environmental degradation has an inverted U shape. This strand of literature

highlight as there are three different driving forces behind this relationship:

technology, composition and scale of the economy. The adoption of green

technologies, increasing the environmental productivity of firms, tend to promote

the emergence of a turning point in the relationship between economic growth and

environmental degradation, similarly the shift towards a service society could also

be able to foster a process of transition towards a greener society. On the contrary,
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an increase in the scale of the economy could slow down this process. For a recent

review of this topic see Carson (2010).

Differently from this representation, the IPAT framework does not impose any

shape on the relation between economic growth and environmental impacts.

2.3 Technology

Green technology is meant to play a central role in reducing the environmental

effect of CO2 emissions and of other pollutants and to simultaneously enhance

economic growth. However, although the economic effects of environmental

innovations can be related to the economic effects of a more general type of

innovation, there remains a lack of evidence on the effects that green technologies

can exert on CO2 emissions. Recently, Wang et al. (2012), who investigated the

relationship between innovation in the energy technology sector (proxied by the

stock of patents) and CO2 emission in China, found that innovations that are

oriented toward carbon-free technologies can significantly help lower CO2 level in

China. In Gilli et al. (2014), where the complementarity between environmental

innovations and general innovation is investigated, results shows that at least in the

European manufacturing sector, the joint adoption of eco-innovation and product

innovation can considerably affect environmental performance.

A frequent problem researchers face is the measurement of technology stock;

several indexes have been developed and used since 1990, which include research

expenditure, the amount of the research staff and patent data. Finally, some

contributions have measured eco-innovation or other types of innovation through

questionnaire surveys (e.g., Anton et al. 2004; Christmann 2000). Among these

measures, patent applications are particularly appealing for researchers for many

reasons.

First, patent data are easily available in terms of both time and country coverage,

and second, they can be easily and efficiently related to technological fields. Each

patent is, in fact, classified through an International Patent Classification (IPC) code,

developed by the World Intellectual Property Organisation. This tree-like classi-

fication allows for creating technological fields at different levels of detail. For

example, Section ‘‘D’’ contains all patents related to ‘‘textiles; papers’’, and the

subcategory ‘‘D 21’’ refers more specifically to ‘‘paper making and production of

cellulose’’, ‘‘D 21 F’’ refers to ‘‘Paper making machines; methods of producing

paper thereon’’, and, at the maximum level of detail, ‘‘D 21 F 11/06’’ refers to the

hyper-specific field of patents related to ‘‘Processes for making continuous lengths

of paper, or of cardboard, or of wet web for fibreboard production, on paper-making

machines of the cylinder type’’.

This coding allows for the creation of specific technological subcategories to

identify specific fields of interest. For these reasons, patent data have long been

considered a useful indicator of innovation for economic research (Griliches 1990).

Moreover, as Dernis and Kahn (2004) suggested, in general, all the relevant

inventions in economic terms are patented, and for this reason, patents may be used

as a valuable indicator of innovative activities by firms, sectors or countries.
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Nevertheless, patents also suffer from well-known criticalities. First, it is

difficult to discern the value of different patents. An indicator created as the

sum of patent counts per year by country certainly includes patents with a

high commercial and/or technological effect and a patent with a lower value.

Second, patent regimes and patent attitudes may be different across countries.

This phenomenon may be partly due to legislative differences across countries

and partly due to a different general propensity toward patenting (i.e., in some

countries, firms might be more likely to patent new inventions than in

others).1

3 Empirical settings

The IPAT model initially originated from a controversy regarding environmental

degradation’s driving factors between Commoner (1971) and Ehrlich and Holdren

(1971), which included the three indicators of population (P), Affluence (A) and

Technology (T) in the context of analysis to form the formula of. The result was a

model that integrated the mutual effect that these three factors exert on

environmental pollution I (Impact). Dietz and Rosa (1994) developed a stochastic

framework to allow for inferences in the IPAT model. This stochastic model

(STIRPAT), which is adopted in the present analysis, also allows for other

influential factors to be added to analyse their influence on environmental

performance.

Starting from these premises, in the present work, we estimate the following

equation:

CO2 or
CO2

VA
¼ ai þ si þ b1 populationit þ b2 value addedit þ b3 greenK stockit þ eit

ð1Þ

where ait and sit are, respectively, provincial and year fixed effect, and eit is the error
term. The two-way fixed-effect model is estimated trough an ordinary least square

estimator.2 Dependent variables are CO2it and CO2/VAit which, according to the

IPAT/STIRPAT framework, represent environmental effects and environmental

productivity respectively, for province i in year t. CO2 in particular, reflects the total

environmental effects of economic activities, and CO2/VA accounts for the size of

the economy and it is a widely used indicator of environmental productivity (see,

among others, Repetto 1990; Gilli et al. 2014). We believe that considering both

dependent variables may provide interesting new insights to the literature,

1 An example of study dealing with the value of patent rights can be found in Harhoff et al. (1999), while

Co (2004) presents an interesting analysis on the role of patent rights in international trade. For more

information on the use of patents in economic analysis see OECD (2009).
2 We included year and provincial fixed effect to control for unobserved heterogeneity. Standard

Hausman test (see Table 2 below) rejects the null hypothesis of consistency of the random effect model,

motivating the choice of the fixed effect estimator. Moreover, all the dummies being jointly significant

(see F test in Table 2) we prefer the fixed effects model over a pooled OLS model.
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disentangling the effect that green technological change has in both relative and

absolute terms.

The control variables, Populationit and Value Addedit are denoted by the terms

P and A in the IPAT framework, i.e., the size of human population of the chosen

economy (P) and its level of consumption (A), respectively.

Finally, Green K stockit and K Stockit represent the indicator of green

technological change and general technological change, computed using data on

patent applications3 filed at the European patent office (EPO).4 Because EPO

applications are more expensive, Italian inventors typically first file a patent

application in their home country and later apply to the EPO if they desire

protection in multiple European countries. As a consequence, EPO patents are

generally considered to be higher-quality than the national documents and tend to be

more homogeneous in value. We believe that this choice partially mitigates the

difficulty in disentangling the value of different patents in the stock. The above

indicators are derived according to OECD classification.5 Table 1 summarises the

variables used and presents basic descriptive statistics.

Some final caveats on the empirical strategies are important. First, the empirical

analysis is based on a balanced panel dataset of 475 observations. The dataset is

built by merging the data sources of all 95 Italian provinces over the years

1990–2010, each wave of data covering a 5 year period (e.g., waves were

available in 1990, in 1995, in 2000, and so on). It is important to note that the

country changed its administrative configuration several times during the

considered period; consequently, in 2010, there were 12 more provinces than in

1990. To ensure comparability, we refer in the paper to the 1990 configuration,

harmonising data when needed.6 Second, regressions are run first on the entire

Italian territory and only secondly, the sample is split into two subsamples, i.e.,

Northern regions and Southern regions. The Northern regions include all

Northwest and Northeast regions, and the Southern area includes Central and

Southern regions and Islands. The purpose of this second set of regressions is to

analyse the different patterns of the effect of green patents on CO2 emission

intensity. Third, we did not include the flow of patent applications, but following

Popp et al. (2011) we considered the stock of past knowledge. In fact, on the one

hand, the effect of new technology on environmental performance is not

instantaneous, and on the other hand, the effect of older technology is meant to

3 An extensive discussion of the use of patents as an indicator of innovative activity is provided in

Sect. 2.
4 Applicants may choose to apply at the European Patent Office (EPO), rather than applying to individual

patent offices, and designate as many of the EPO member states for protection as desired. The application

is examined by the EPO. If granted, the patent is transferred to the individual national patent offices

designated for protection. Since 1997, the designation of any additional member states is free after the

first seven. Since 2004, all EPO states are automatically designated.
5 See, for reference, OECD (2011) and other works by the OECD environmental directorate.
6 In all instances, new provinces are the result of the division in two new administrative entities of an old

province. For this reason, we always reconstructed the 1990 data merging the new provinces into the old

one.

256 Environ Econ Policy Stud (2016) 18:247–263

123



decrease over time. Therefore, we need to discount the number of both total and

green patents according to the following formula:

K Stocki;t ¼
X1

s¼0

e�b1ðsÞ 1� e�b2ðsþ1Þ
� �

PATi;j;t�s ð2Þ

According to the previous literature (Popp 2002), the rate of knowledge

obsolescence is set equal to 0.1 (b1 = 0.1) and the rate of knowledge diffusion to

0.25 (b2 = 0.25). The resulting knowledge stock varies by province and technol-

ogy. According to Popp et al. (2011), year fixed effects have been included in all

specifications to account for the tendency of knowledge stock to grow over time.

4 Results

Table 2 below presents regression results obtained from the estimation of the model

in Eq. 2, using two different dependent variables (CO2 and CO2/VA, respectively)

and applying five different specifications. In Specification I, in particular, we use the

Green Knowledge Stock to account for technological change dynamics, whereas in

Specification II, we employ the stock of total knowledge to test for the effect of

overall patenting on our dependent variable. This approach enriches the first

specification and provide complementary results. If the effect of green technologies

Table 1 Descriptive statistics. Data available for years 1990–1995–2000–2005–2010

Acronym Description Obs Mean SD Min Max Source

CO2 Provincial CO2

emissions
475 6153986 1.50e ? 07 273827.9 1.56e ? 08 ISTAT

CO2/VA Provincial
environmental
performance
(provincial CO2

divided by provincial
value added)

475 402.4777 909.0944 15.31121 12453.51

Population Number of inhabitants 475 662751.3 717902.4 88789 5616384 ISTAT

Value
added

Provincial value added
per capita (€2000)

475 16885.65 6898.745 4126.183 34211.29 ISTAT

Total
patent

Total patent application
by priority year

475 22.80369 73.91732 0 1025.178 OECD

Green
patent

Total green patent
application by
priority year

475 0.4678992 1.567439 0 32 OECD

K stock Total patent stock
according to Popp
(2002, 2011)

475 153.3781 475.7808 0 5906.982 OECD

Green K
stock

Total green patent
stock according to
Popp (2002, 2011)

475 3.124856 8.321245 0 102.1265 OECD
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on climate change mitigation is expected to be positive, we do not have a priori

expectations of the total knowledge stock. Several countervailing forces play a role

in this case: from the one hand an increase in total knowledge can be

environmentally exacerbating, given that it could be connected with an intensified

economic activity and thus an increase in CO2 emission, while on the other hand it

can also be beneficial for the environment if the adoption knowledge is driven by

the search for new processes/technologies which are good for the environment.

Specification III restricts the sample to only Northern provinces to determine

whether the results are driven by geographical disparities, whereas Specification IV

studies the behaviour of Southern provinces only. Given the significant correlations

among variables (see Fig. 5 and Table 3 in the appendix) a VIF is computed after

each regression, in order to detect severe multicollinearity. However, the indicator

do not highlight that collinearity as an issue in this analysis. Finally in Specification

V we propose an alternative way to estimate the difference in the effect of the green

knowledge stock in the two samples by interacting the stock variable with a dummy

equal to one for northern regions.

Specification I results show that technological change only exerts an effect on

environmental productivity and that any effects is found with respect to CO2. In

particular, column 2 shows a statistically significant and negative coefficient of

Green K Stock, which confirms the hypothesis that an increase in a country’s green

knowledge base, measured here by green patent stock, has a positive effect on

environmental productivity. However, there is no evidence of a positive techno-

logical effect with respect to total CO2 emissions. Regarding the other covariates,

population is not statistically significant in the Italian context, which is a reasonable

result in an industrialised country like Italy, characterised by slowly changing

demographic trends.7 On the contrary, VA shows a significant and positive

coefficient in column 2 but not in column 1. This latter result confirms the evidence

found in previous EKC studies, which found no absolute delinking between CO2 or

CO2/VA and economic indicators (Marin and Mazzanti 2010). Referring to the EKC

context, Column 2 shows the presence of a monotonically increasing relationship

(also known as relative delinking) between economic growth and CO2/VA. Overall,

these results suggest that, roughly speaking, although green technological change

has a positive effect on environmental productivity, it has not been able to shrink the

total level of emission. From a macro perspective, a negative scale effect (partially

confirmed by the significance of value added) seems to prevail on the positive

technological effect. Regarding the quantification of results, a one standard

deviation increase in the stock of green knowledge leads to a 0.39 standard

deviation decrease in CO2/VA, and an increase of the same size in value added

increases environmental productivity by a standard deviation of approximately 0.19.

The regression results of Specification II basically confirms previous evidence,

and the magnitude of the coefficient is fairly similar (the standardised coefficient of

knowledge stock is equal to -0.34). This phenomenon also suggests that employing

7 The average population across Italian provinces was 597,663 in 1990 and 633,791 in 2010, showing

only a limited increase in population in the two decades. Moreover, we note that the within variation of

population in the panel is five times lower than the between variation, suggesting that the time dimension,

in this case, is not relevant.
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a broader concept of technical change does not alter previous evidence. This is not

an obvious result, considering that total knowledge stock also includes brown

patents, which might have a negative effect on emissions if they increase the value

added of pollution-intense sectors. (See Aghion et al. 2012, for a discussion of

brown and green patents and their effect on the environment.)

Specifications III and IV show that the aggregate results also hold when splitting

the full data set into the two subsamples of Northern and Southern regions of Italy.

In this case, the primary evidence does not change, but the magnitude of the effects

is much stronger in the South, where 1 standard deviation increase in the green

knowledge stock leads to an increase in the dependent variable equal to 1.9 standard

deviations, whereas the effect in the North is very similar to the national average.8

This latter result—particularly if compared to the descriptive statistics of Figs. 1, 2,

3 and 4, which highlighted how the South tends to have a lower patent propensity—

suggests that in these areas, even a small marginal increase in knowledge formation

can have a strong effect on environmental productivity. Finally, the main evidence

also holds in Specification V, where we interacted the Green K Stock with a north

dummy. Interestingly the result confirms that the effect is much stronger for

southern regions.

5 Conclusions

This paper has carefully examined primary main factors that may influence CO2

emissions according to the IPAT/STIRPAT framework exploiting an original

dataset that covers 95 Italian provinces over the years 1990–2010.

The primary evidence shows that the stock of green patents did not exert a

significant effect on CO2 reduction in Italy; instead, it improved overall environ-

mental productivity. On the contrary, the growth in the scale of the economy,

proxied here by Value Added, slowed environmental productivity by exerting more

pressure on the environment. Overall, this evidence suggests that technology has not

yet played a significant role in promoting environmental protection, although a scale

effect seems to prevail. Notably, however, green technological change is positively

correlated with environmental productivity, and this correlation is stronger in the

South, which suggests that some technological effects are emerging in the country.
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See Table 3 and Fig. 5.

8 An F test, not included for sake of brevity, rejects the null hypothesis that the two coefficients are

significant across the two samples.
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Del Rı́o P, Tarancón Morán MÁ, Albiñana FC (2011) Analysing the determinants of environmental

technology investments. A panel-data study of Spanish industrial sectors. J Clean Prod

19:1170–1179

Dernis H, Kahn M (2004) Triadic patent families methodology. OECD science, technology and industry

working papers, no. 2004/02 OECD Publishing

Dietz T, Rosa EA (1994) Rethinking the environmental impacts of population, affluence and

technology. Hum Ecol Rev 1(2):277–300

Dietz T, Rosa EA (1997) Effects of population and affluence on CO2 emissions. Proc Natl Acad Sci USA

94:175–179

Dopfer K (2012) The origins of meso economics. J Evol Econ 22:133–160

Ehrlich P, Holdren J (1971) Impact of population growth. Science 171:1212–1217

Fan Y, Liu LC, Wu G, Wei YM (2006) Analyzing impact factors of CO2 emissions using the STIRPAT

model. Environ Impact Asses 26:377–395

Feng K, Siu YL, Guan D (2012) Analyzing drivers of regional carbon dioxide emissions for China: a

structural decomposition analysis. J Ind Ecol 16:600–611

Gilli M, Mancinelli S, Mazzanti M (2014) Innovation complementarity and environmental productivity

effects: reality or delusion? Evidence from the EU. Ecol Econ 103:56–67

Goulder LH, Schneider SH (1999) Induced technological change and the attractiveness of CO2 abatement

policies. Resour Energy Econ 21(3–4):211–253

Griliches Z (1990) Patent statistics as economic indicators. NBER working paper no. 3301

Grossman GM, Krueger AB (1995) Economic growth and the environment. Q J Econ 110:353–377

Harhoff D, Narin F, Scherer FM, Vopel K (1999) Citation frequency and the value of patented inventions.

Rev Econ Stat 81(3):511–515

Kaya Y (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed

scenarios. Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies

Working Group, Paris (mimeo)

Kerr D, Mellon H (2012) Population and the environment: exploring Canada’s record on CO2 emissions

and energy use relative to other OECD countries. Popul Environ 34:257–278

Kim K, Kim Y (2012) International comparison of industrial CO2 emission trends and the energy

efficiency paradox utilizing production-based decomposition. Energy Econ 34(5):1724–1741

Kwon TH (2005) Decomposition of factors determining the trend of CO2 emissions from car travel in

Great Britain (1970–2000). Ecol Econ 53:261–275

262 Environ Econ Policy Stud (2016) 18:247–263

123



Liddle B (2004) Demographic dynamics and per capita environmental impact: using panel regressions

and household decompositions to examine population and transport. Popul Environ 26:23–39

Liddle B, Lung S (2010) Age-structure, urbanization, and climate change in developed countries:

revisiting STIRPAT for disaggregated population and consumption-related environmental impacts.

Popul Environ 31(5):317–343

Liu Z, Liang S, Geng Y, Xue B, Xi F, Pan Y, Zhang T, Fujita T (2012) Features trajectories and driving

forces for energy-related GHG emissions from Chinese mega cites: the case of Beijing Tianjin

Shanghai and Chongqing. Energy 37:245–254

MacKellar LF, Lutz W, Prinz C, Goujon A (1995) Population, households, and CO2 emissions. Popul Dev

Rev 21(4):849–865

Marin G, Mazzanti M (2010) The evolution of environmental and labor productivity dynamics. J Evol

Econ 23(2):357–399

Mazzanti M, Montini A (2010) Embedding the drivers of emission efficiency at regional level—analyses

of NAMEA data. Ecol Econ 69:2457–2467

O’Neill BC, Chen BS (2002) Demographic determinants of household energy use in the United States.

Popul Dev Rev 28:53–88

OECD (2009) OECD Patent statistics manual. OECD Publishing, Paris

OECD (2011) Invention and transfer of environmental technologies. OECD Publishing, Paris

Popp D (2002) Induced innovation and energy prices. Am Econ Rev 92:160–180

Popp D, Hascic I, Medhi N (2011) Technology and the diffusion of renewable energy. Energy Econ

33(4):648–662

Prskawetz A, Leiwen J, O’Neill B (2004) Demographic composition and projections of car use in Austria.

Vienna Yearbook Popul Res 175–201

Repetto R (1990) Environmental productivity and why it is so important. Chall 33(5):33–38

Shi A (2003) The impact of population pressure on global carbon dioxide emissions 1975–1996: evidence

from pooled cross-country data. Ecol Econ 44:29–42

Wang Z, Yang Z, Zhang Y, Yin J (2012) Energy technology patents—CO2 emissions nexus: an empirical

analysis from China. Energ Policy 42:248–260

York R, Rosa EA, Dietz T (2003) STIRPAT IPAT and ImPACT: analytic tools for unpacking the driving

forces of environmental impacts. Ecol Econ 46:351–365

Zagheni E (2011) The leverage of demographic dynamics on carbon dioxide emissions: does age structure

matter? Demography 48:371–399

Environ Econ Policy Stud (2016) 18:247–263 263

123


	Green inventions and greenhouse gas emission dynamics: a close examination of provincial Italian data
	Abstract
	Introduction
	Driving forces
	Population
	Affluence
	Technology

	Empirical settings
	Results
	Conclusions
	Acknowledgments
	Appendix
	References




