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Abstract
With the implementation of intelligent unmanned aerial vehicles (UAVs) in power equipment inspection, managing the 
obtained inspection results through information technology is increasingly crucial. This paper collected insulator images, 
including images of standard and self-exploding insulators, during the inspection process using intelligent UAVs. Then, an 
optimized you only look once version 5 (YOLOv5) model was developed by incorporating the convolutional block attention 
module and utilizing the efficient intersection-over-union loss function. The detection performance of the designed algorithm 
was analyzed. It was found that among different models, the YOLOv5s model exhibited the smallest size and the highest 
detection speed. Moreover, the optimized YOLOv5 model showed a significant improvement in speed and accuracy for 
insulator detection, surpassing other methods with a mean average precision of 93.81% and 145.64 frames per second. These 
results demonstrate the reliability of the improved YOLOv5 model and its practical applicability.
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1 Introduction

As the economy develops, the scale of the power sector 
is expanding, providing stable support for national 
livelihoods. However, this expansion also presents new 
challenges for power system management. Due to the 
increasing number of power equipment in the system, the 
traditional manual inspection method has increasingly 
revealed more shortcomings, such as low inspection 
speed, numerous blind spots, low efficiency, certain 
risks involved, and delayed information processing 
[1]. Technological advancements have offered new 
inspection methods, with intelligent unmanned aerial 
vehicles (UAVs) being one of them. UAVs can closely 
observe power equipment, enabling comprehensive 
coverage of all equipment and the safe and efficient 
completion of inspection tasks. They can collect and 
provide feedback relevant data through functions, such 

as infrared temperature measurement, image acquisition, 
and wireless communication to realize informatization 
management. Liu et  al. [2] proposed using intelligent 
hangars as connecting points to achieve fully automated 
UAV inspections for steel pylons. Through simulation, 
it was found that this method can effectively solve the 
existing problem of inspection. Chang et al. [3] developed 
a UAV trajectory planning algorithm for autonomous 
optimization of flight paths during power grid inspections 
while tracking f light points at ground calibration 
position. Nusantika et al. [4] used UAVs to detect ice-
covering on overhead power lines, designed a Canny 
method improved by hybrid technology, and validated its 
accuracy through simulation experiments. Based on the 
uploaded images of key fittings on power transmission 
lines obtained through drone inspection and survey, 
Zai et al. [5] detected and identified hidden dangers in 
complex backgrounds by analyzing the processed images 
in the cloud. Experimental results demonstrated that this 
approach possessed the benefits of superior precision and 
rapidity. This paper collected insulator images during 
power equipment inspections using intelligent UAVs. 
Then, an insulator detection method based on the you only 
look once version 5 (YOLOv5) algorithm was investigated 
to realize the intelligent management of power equipment. 
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An improved YOLOv5 model was designed, and its 
effectiveness was verified through experimental analysis. 
This article provides a new and reliable method for the 
better application of intelligent UAVs in power equipment 
inspection.

2  Intelligent UAV‑based power equipment 
inspection

2.1  Intelligent UAV inspection

This paper focuses solely on insulators as power equipment 
has diverse types and complex content. Insulators play 
a vital role in ensuring the safety of the power system, 
and their operating conditions directly impact system 
reliability. Insulators are susceptible to failures, and one 
such failure is insulator self-explosion, which refers to 
the rupture of insulators during operation. If not promptly 
addressed, it can significantly impact the operation of the 
entire system. Traditional manual inspection methods for 
insulators involve high altitude and live operation, which 
has low efficiency and poses significant risks. These 
methods are only suitable for short-term, high-intensity 
inspections. Therefore, the utilization of intelligent UAV 
inspections can be a viable alternative.

This paper used a DJI Phantom 4 Pro UAV for 
inspection of power equipment (Fig. 1). Insulator images 
were captured under various conditions, including sunny 
and cloudy days, to construct the dataset. All images were 
in JPG format and consisted of samples of standard and 
self-exploding insulators. However, due to the limited 
number of self-exploding insulator samples, data were 
collected from multiple inspection routes. In total, 5000 
insulator images were gathered, with 3000 representing 
ordinary insulators and 2000 representing self-exploding 
insulators (Fig. 1).

2.2  Insulator recognition model based 
on the improved YOLOv5

2.2.1  YOLOv5 model

Utilizing intelligent UAVs for power equipment 
inspection, many images of the equipment can be 
obtained. By processing and analyzing these images, it 
is possible to achieve information-based management for 
power equipment inspection. Analyzing these images to 
determine whether there are any faults in the equipment 
can be considered a target detection task. Traditional 
target detection methods are mostly based on image 
processing techniques, which require data augmentation, 
contour extraction, and image segmentation to eliminate 
the background and obtain the targets. However, these 
methods perform poorly in complex backgrounds with 
multiple targets. Deep learning algorithms like the region-
based convolutional neural network (R-CNN) and YOLO 
series can greatly improve target detection accuracy. 
Deep learning-based object detection enables automatic 
extraction and classification of objects in images, thereby 
improving detection accuracy. At present, commonly 
used methods include the R-CNN series and YOLO series 
[6]. The YOLO series, which belongs to the end-to-end 
approach, offers higher computational speed. In order to 
integrate with UAVs, there is a higher requirement for 
the detection speed of algorithms. Compared to previous 
versions of YOLO algorithms, YOLOv5 has achieved 
a better balance between detection speed and accuracy, 
especially in detecting small targets. It is currently the 
most widely used algorithm in the field of object detection. 
Therefore, this paper studied the YOLOv5 model among 
the YOLO series [7].

YOLOv5 consists of four variants: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s is the 
smallest and fastest among these variants, while the other 
three models are expanded and deepened versions of 
YOLOv5s. Therefore, this paper selects the base model 
YOLOv5s. The structure of YOLOv5s is presented in 
Fig. 2.

1. According to Fig. 2, YOLOv5 consists of four main 
components, and their descriptions are as follows:

2. Input: Mosaic data augmentation is performed on the 
input data to enhance the diversity of the dataset.

3. Backbone: It is responsible for extracting features 
from the input image. It includes several key elements: 
① standard convolutional layer CBS: it consists of a 
convolutional module (Conv), batch normalization 
module (BN), and the Silu activation function; ② feature 
extraction layer C3: it comprises three convolutional Fig. 1  The UAV inspection process (left) and the self-exploding 

insulator photographed by a UAV (right)
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layers; ③ pyramid pooling module—spatial pyramid 
pooling-fast (SPPF): Maximum pooling is used to 
concat feature maps at different scales, and then they 
are fused using the convolutional layer.

4. Neck: It is a feature fusion module that adopts a pixel 
aggregation network-feature pyramid network (PAN-
FPN) structure. The PAN component transmits locator 
data upwards by downsampling, and the FPN component 
fuses the deep and shallow features by upsampling. The 
interaction between PAN and FPN enhances feature 
fusion.

5. Head: It is a target detection module. Each prediction 
head generates an output at a different scale. The 
boundary regression loss function used is complete 
intersection over union (CIoU). The final output is 
the probability distribution of the target category. The 
Sigmoid function is utilized.

2.2.2  Improved YOLOv5 model

To enhance the accuracy and speed of YOLOv5 in power 
equipment detection, this paper designs an improved 
YOLOv5 model [(YOLOv5s + convolutional block attention 
module (CBAM) + efficient intersection over union (EIoU)]. 
Firstly, to enhance the accuracy of insulator detection, the 
CBAM attention module [8] is added. The CBAM is a 
commonly used lightweight attention module, which can 
effectively improve model performance when added to 
different models and has been applied in many scenarios 
[9]. Introducing the CBAM module in YOLOv5 allows the 

model to pay more attention to important information related 
to insulator detection and suppress irrelevant features, 
thereby improving detection accuracy. The CBAM module 
contains the following two elements:

1. Channel attention module (CAM)

The CAM treats the feature map with a pooling operation 
and then feeds it into the multi-layer perceptron (MLP) 
neural network for computation to obtain a new feature map 
based on the Sigmoid activation function:

2. Spatial attention module (SAM).
The SAM treats the feature map obtained from the CAM 

with a pooling operation again and then calculates the 
weight using the activation function to obtain the attention-
weighted feature map:

where f 7×7 is a convolution operation with a filter size of 
7 × 7.

Then, as to the marginal regression loss function, CIoU 
has the drawbacks of slow convergence and not being able 
to describe the regression objective effectively. On the basis 
of CIoU, EIoU improves convergence speed and optimizes 
object detection by penalizing the differences in width 
and height between the predicted box and true box [10]. 
Therefore, in this paper, EIoU is used instead of CIoU, and 
the formula is written as:

where IoU represents the intersection over union of 
predicted and actual frames, �(bpr, bgt) is the distance 
between the centers of the two frames, c is the diagonal 
distance of the minimum outer rectangle between the two 
frames, �(wpr,wgt) is the difference between two frame 
widths, �(hpr, hgt) is the difference in height between the 
two frames, and wc and hc are the width and height of the 
minimum outer rectangle between the two frames.

3  Results and analysis

3.1  Experimental environment and data 
pre‑processing

The experiment was conducted in a Windows 11 
environment. The YOLOv5 model was implemented using 
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Fig. 2  The structure of the YOLOv5 model
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PyTorch 1.7.1 and accelerated using CUDA 11.1. The 
parameters of the YOLOv5 model are presented in Table 1.

The images were uniformly scaled to a resolution of 
1200 × 800 pixels using the Python Imaging Library (PIL). 
Moreover, normalization and denoising were performed. 
The captured images were manually labeled using the 
LabelImg tool [11]. The format was then converted to the 
TXT format used by YOLOv5 using Python. The data was 
divided into three sets, namely training, validation, and test 
sets in the ratio of 8:1:1. The performance of the algorithm 
was evaluated based on precision (P), recall rate (R), mean 
average precision (mAP), and frames per second (FPS).

3.2  Analysis of results

First, different YOLOv5 models were compared to determine 
the correctness of selecting YOLOv5s. Table 2 presents the 
volume, mAP, and FPS of the different models with the same 
parameter settings.

According to Table 2, the size of the YOLOv5 models 
decreased progressively from YOLOv5x to YOLOv5s. The 
YOLOv5s model had the smallest size, with a volume of 
27.12 MB, which was approximately 32% of YOLOv5m 
and only about 8% of YOLOv5x. All the models maintained 
a mAP of over 90%. The YOLOv5x model achieved the 
highest accuracy (96.34%), followed by the YOLOv5l and 
YOLOv5m models. The YOLOv5s model had the lowest 
mAP of 92.37%, 3.75% lower than the YOLOv5m model. 
Regarding detection speed, the YOLOv5x model had 19.26 
FPS although its volume and precision were the highest. In 
contrast, the YOLOv5s model achieved a detection speed of 
121.33 FPS, which was approximately six times faster than 
the YOLOv5x model.

In summary, the high accuracy of x, l, and m was based 
on the sacrifice of detection speed, and the algorithm was 
also large in volume, which is not suitable for the inspection 
of power equipment. However, the YOLOv5s model had 
a small size, high detection speed, and moderate detection 
accuracy, and the detection accuracy can be improved 
by adjusting the model. Therefore, the YOLOv5s model 
is suitable as the base model. The detection results are 
presented in Fig. 3.

Then, the performance of the optimized YOLOv5 model 
was analyzed (Table 3).

According to Table 3, after adding CBAM to improve 
the YOLOv5 model, the P value for insulator detection 
increased by 3.1% compared to the YOLOv5 model, 
reaching 95.26%. The R value increased by 2.54–87.11%, 
and the mAP increased by 1.11% to 93.48%. The FPS 
also improved by 6.62%, reaching 129.36. These results 
indicated that introducing CBAM effectively enhanced 
the model's ability to learn insulator features, improving 

Table 1  The parameter setting 
of the YOLOv5 model

Parameter Value

Learning rate 0.01
Batch size 32
Epoch 200
Score threshold 0.5
IoU threshold 0.45
Optimizer SGD

Table 2  Comparison of different YOLOv5 models

YOLOv5 Volume [MB] mAP [%] Detection 
speed [FPS]

x 338.64 96.34 19.26
l 185.26 96.25 48.61
m 84.22 96.12 77.94
s 27.12 92.37 121.33

Fig. 3  An example of the detected insulator

Table 3  The performance analysis of the improved YOLOv5 model

P [%] R [%] mAP [%] Detection 
speed 
[FPS]

YOLOv5 92.16 84.57 92.37 121.33
YOLOv5 + CBAM 95.26 87.11 93.48 129.36
YOLOv5 + CBAM + EIoU 96.87 89.71 93.81 145.64



Artificial Life and Robotics 

detection accuracy. Furthermore, when EIoU was used to 
improve the YOLOv5 model further, both the P and R 
values of the model showed additional increases. The mAP 
reached 93.81%, which was improved by 0.33% compared 
to the YOLOv5 + CBAM model. The FPS also improved 
significantly, with an improvement of 11.18% compared 
to the YOLOv5 + CBAM model, reaching 145.64. These 
outcomes demonstrated that replacing the original CIoU 
with EIoU not only further improved detection accuracy 
but also effectively enhanced the detection speed of 
the algorithm, thereby achieving better performance in 
the informatization management of power equipment 
inspection.

The optimized YOLOv5 model was compared with the 
other target detection methods (Table 4), including:

1. the Faster R-CNN algorithm [12],
2. the single shot multibox detector (SSD) algorithm [13],
3.  the YOLOv3 model [14].

According to Table 4, the Faster R-CNN algorithm 
exhibited a low P value in insulator detection, indicating 
many misdetected samples. It achieved a final mAP of 
86.03% and an FPS of 78.36. The SSD algorithm displayed 
a lower R value in insulator detection, indicating many 
missed detections. It achieved a final mAP of 84.33% and 
an FPS of 88.57. These results suggested that both methods 
performed poorly in insulator detection. In contrast, the 
YOLOv3 model achieved a mAP of 90.12%, which was 
higher than the Faster R-CNN algorithm, and the FPS was 
also improved to 118.94. However, the improved YOLOv5 
model had higher precision and speed in insulator 
detection. It achieved a mAP of 93.81%, indicating a 
3.69% increase compared to the YOLOv3 model, and an 
FPS of 145.64, indicating a 22.53% increase compared 
to the YOLOv3 model. These results demonstrated that 
the improved YOLOv5 model was reliable for insulator 
detection, with good accuracy and real-time performance. 
It could effectively meet the informatization management 
needs of power equipment inspection by intelligent UAVs.

4  Conclusion

This paper focuses on the informatization management 
of power equipment inspection by UAVs. An improved 
YOLOv5 model was designed to detect ordinary and 
self-exploding insulators by collecting insulator images 
by UAVs. It was found from experiments that the 
detection precision and speed of the YOLOv5 model 
were significantly improved after incorporating CBAM 
and EIoU. Compared with some other target detection 
methods, the improved YOLOv5 model had the highest 
mAP (93.81%) and the highest detection speed (145.64 
FPS). These findings validate the effectiveness of the 
proposed improvements made to the YOLOv5 model. The 
improved YOLOv5 model can be applied in real-world 
power equipment inspection scenarios.

Data availability The data used and analyzed in the paper are available 
from corresponding author upon reasonable requests.
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