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Abstract
This paper proposes a simple method based on a novel use of elitism to increase the population size of artificial creatures 
while minimizing evaluation cost. This can contribute to preventing premature convergence of the population. We propose 
the “Excessive Elitism (EE)” method by modifying elitism in HyperNEAT (Hypercube-based NeuroEvolution of Aug-
menting Topologies), which is an evolutionary algorithm commonly used to evolve genotype [i.e., Compositional Pattern 
Producing Network (CPPN)] of artificial creatures. In EE, the evaluated fitness of best-fit individuals will be succeeded and 
reused instead of being re-evaluated during subsequent fitness evaluations, thereby reducing the evaluation cost if the elite 
size is excessive. Notably, EE also disables speciation and fitness sharing, serving to simplify the population structure and 
reduce complexity. In a 3D multi-agent environment, we evolved the morphology and behavior of artificial creatures with a 
simple target approach task. We assumed a baseline case (EE (2, 20)) in which a small population size was used due to the 
strong limitation of the evaluation cost and adopted a normal small elite size. This often led to premature convergence of the 
population to suboptimal individuals who could not reach the target. However, with the application of EE, the population 
was capable of evolving to reach the target, maintaining an evaluation cost comparable to EE (2, 20). We demonstrate that 
EE method serves as a simpler alternative to speciation for diversity preservation, capable of enhancing both the average 
and optimal fitness of a population, thus preventing premature convergence at a minimal evaluation cost. Further research 
in complex environments is required to fully uncover the potential and limitations of this method.
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1  Introduction

An approach to evolving artificial creatures has gained 
significant interest in scientific (e.g., evo-devo [1, 2]) and 
engineering research (e.g., design of soft robots [1–3]). In 
particular, this approach has proven useful for understand-
ing the interactions between ecological, developmental, and 
evolutionary processes known as eco-evo-devo. Further-
more, it has provided clarity on the principles that govern 

the relationship between environmental complexity and the 
evolution of morphological and behavioral traits. We aim to 
discuss the evolution of development and niche construction 
within a 3D multi-agent environment. To achieve this, we 
will utilize the framework by Chiba et al. [3] which enables 
the evolution of creatures' behaviors toward environmental 
modification.

However, incorporating various factors related to the 
above topics into the model has significantly increased the 
evaluation cost for the physical simulation. As a result, evo-
lutionary experimentation grown in complexity and compu-
tational expense. This is largely due to the substantial cost 
associated with fitness evaluation, which relies on a physi-
cal simulation of complex creatures' behaviors, complexity 
that emerges from the interactions among the creatures. This 
has been a significant challenge in the evolution of artificial 
creatures, thoroughly explored in several previous studies [4, 
5]. Consequently, a small population size is often used as an 
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ad hoc way to resolve the problem, although it may lead to 
the premature convergence of the population to local optima.

To overcome the problem, a number of studies have 
expressed confidence that the implementation of elitism 
can lead to performance improvements. For example, in the 
field of soft robot evolution, La Cava and Moore proposed 
search driver algorithms aimed at finding optimal solutions 
[6]. Elitism, a methodology that involves either preserving 
the individual with the best fitness for the next generation or 
replacing the least fit individual with a previous high-fitness 
individual, was implemented in some of these algorithms. 
The study's comparative analysis of the algorithms demon-
strated that simulations introducing some form of elitism 
significantly contributed to the discovery of locomoting soft 
robot morphologies.

Methenitis et al. [7] also suggested that implementing the 
fitness-elitism technique using NeuroEvolution of Augment-
ing Topologies (NEAT) [8], which is a popular evolutionary 
algorithm for evolving complex artificial neural networks, 
improved the performance in evolving soft robots. The study 
began by experimenting with two exclusive methods. First, it 
involved a novelty-search method, which promotes diversity 
by rewarding novel individuals regardless of their fitness. 
Second, it implemented fitness elitism, where the best indi-
viduals are selected based on their fitness, thereby ensuring 
the most optimal genetic material is passed from one gen-
eration to the next. The study later revealed that by integrat-
ing both methods, the fit and unique individual was carried 
over to subsequent generations, potentially resulting in the 
production of offspring that are both novel and fit. Their 
findings emphasized that the combination of methodolo-
gies played a critical part in advancing the evolution of soft 
robots. Moreover, these findings suggests that the presence 
of elitism significantly enhances the evolution performance 
of artificial creatures. Beyond simply improving fitness 
through elitism, it is also crucial to consider the potential 
benefits it provides in reducing evaluation costs linked to 
complex components inherent in evolutionary simulations 
of creatures.

Elitism, as mentioned, has exhibited significant potential 
in enhancing the performance of artificial creatures' evolu-
tion. In coherence with this, an interesting aspect to con-
sider is the role speciation plays in evolution when using 
NEAT. Speciation based on the affinity of phenotypes and 
fitness sharing among conspecific individuals serve as key 
mechanisms for NEAT to maintain the diversity of individu-
als within a small population. However, the implementation 
of speciation requires a metric to measure the phenotypic 
distance between individuals. Consequently, the population 
structure may become complicated, subsequently making 
the population dynamics more complex compared to the 
case with a single species. While the effective combination 
of methods and maintaining diversity in species presents 

complexities, it makes the evolutionary process an intriguing 
field to explore further.

Given these complexities, this paper introduces a novel 
approach called “Excessive Elitism (EE)” derived from the 
evolutionary algorithm Hypercube-based NeuroEvolution 
of Augmenting Topologies (HyperNEAT) [9], frequently 
used to evolve the genotype (i.e., Compositional Pattern 
Producing Network (CPPN) [10]) of artificial creatures. 
The principal mechanism of EE is that the evaluated fitness 
of best-fit individuals will be succeeded and reused instead 
of being re-evaluated during subsequent fitness evaluation. 
This contributes to a reduced evaluation cost within a large 
population, particularly when applying an excessively large 
elite size. Consequently, the EE method presents a straight-
forward alternative to speciation and fitness sharing to pre-
vent premature convergence [11, 12] of the population. This 
enables an increase in the population size while maintaining 
relatively low evaluation costs.

In this study, our focus is on evolution of the genotypes 
of a rigid-bodied creatures in a 3D-multi-agent environment, 
a situation typically resulted in the occurrence of prema-
ture convergence to local optima. We conducted experi-
ments using varying population sizes whilst maintaining a 
consistent number of evaluated individuals. The outcome 
of our experiments revealed that employing EE in a large, 
single population proved more effective than in smaller 
populations, even when maintaining an equivalent number 
of evaluated individuals for each generation. Moreover, the 
findings pointed towards a potential optimal configuration 
for population size. Notably, EE showcased a morphological 
diversity comparable to standard NEAT-evolved populations 
that involved speciation. This suggests that EE is capable of 
evolving a population with an adaptability level similar to 
those evolved by NEAT, while concurrently preserving a 
less complex population structure.

2 � Model

We use a framework for evolving artificial creatures where 
the morphology of individuals develops within a 3D-multi-
agent environment. This is based on the Python module-
based physics engine, PyBullet, employed to analyze 
eco-evo-devo in evolving artificial creatures (Fig. 1). The 
HyperNEAT (Hypercube-based NeuroEvolution of Aug-
menting Topologies) is adopted as the evolutionary algo-
rithm to evolve the genotype (i.e., the Compositional Pattern 
Producing Network or CPPN) of artificial creatures. Hyper-
NEAT is an evolutionary algorithm used for evolving com-
plex neural networks, represented by the CPPN in the model 
[10]. We utilize this algorithm to evolve the CPPN as the 
genotype of each artificial creature, used in their morpho-
logical development and behavioral generation during the 
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evolutionary process. We assume that a single large CPPN 
determined by the genotype of a creature represents both 
CPPNs as its sub-networks. Accordingly, the genotype of a 
creature generates two neural networks: one for determining 

the morphological development and another for determining 
the behavioral generation process. These components are 
depicted in Fig. 3 and will be discussed in greater detail in 
the sections that follow.

2.1 � Morphological development

Figure 1 illustrates the lifetime of a creature within a popula-
tion. Each rigid-bodied creature is comprised of rectangular 
blocks interconnected via hinges (Fig. 2(ii)–(iii)). The initial 
body, composed of a single block, is positioned at the ori-
gin of the substrate space—the space where developmental 
events occur (Fig. 2(i)–(iii)). The creature’s morphology 
develops through the addition of new blocks to pre-exist-
ing body blocks, in several fixed time steps throughout its 
lifetime.

Fig. 1   The lifetime of a creature illustrated through a repeating pro-
cess that involves two key steps: (1) the generation of behavior 
through connection weight settings (a), and (2) morphological devel-
opment that takes place via new block additions (b), with four occur-
rence events

Fig. 2   The morphological 
development of an artificial 
creature, which proceeds from 
(i) the initial morphology, to 
(ii) the growth of a new block 
and results in (iii) the result-
ant morphology showcasing a 
fully developed new block, all 
occurring within a single devel-
opmental event in a substrate 
space

Fig. 3   The neural network architecture of the genotype of an artificial 
creature, as represented by the Compositional Pattern Producing Net-
work (CPPN). (Left) the CPPN is utilized for morphological develop-

ment via the addition of a new block. (Right) the CPPN is employed 
to calculate connection weights for nodes in the three-layer behavioral 
generation network in substrate space
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Each developmental event involves the addition of a new 
block to each candidate position (yellow circle) on the exist-
ing body blocks. Every block has three candidate positions. 
The genotype, CPPN (Fig. 3b left), receives three inputs: 
the elapsed time from the birth, the central coordinate of 
the focal block on the substrate space, and the coordinate 
of a candidate position of the focal block. This generates 
four outputs: determining if a new block is added or not, the 
length of the long sides of the new block, hinge direction, 
and deciding between a fixed hinge and flexible joint. The 
size of each new block incrementally increases from 0 to a 
specified length, up until the end of the developmental event. 
This process is spread over a total of 500-time steps.

An example illustrated in Fig. 2(i)–(iii) demonstrates how 
the process begins with a single block serving as the ini-
tial morphology (i). Subsequently, a new block grows at a 
right-candidate position (ii), creating candidate positions for 
additional blocks to grow during subsequent developmental 
events (iii).

2.2 � Behavioral generation

After the completion of each morphological developmental 
event, the behavioral generation network (Fig. 3 (right)) is 
constructed by the genotype or updated in accordance with 
the creature’s morphology changes. This network structure 
comprises three layers: input, intermediate, and output. Each 
block has a centrally located radar sensor (Fig. 4) shown in 
purple, and a corresponding radar node that receive the sen-
sory information from the substrate space (Fig. 3 (middle)). 
The radar sensor calculates the distance from the creature's 
focal block to the target, utilizing the block's angle and ori-
entation relative to the target object in the evaluation field as 
depicted in Fig. 4. Consequently, the radar node receives the 
distance to the target in that specific direction and provides the 

input to the behavioral generation network, allowing the neural 
network to attempt to minimize this distance by manipulating 
the flexible hinges of the creature. Each hinge between blocks 
has a corresponding hinge node (red), and there are several 
intermediate nodes scattered around the creature on the sub-
strate space (Fig. 2iii).

We assume that the radar, intermediate, and hinge nodes 
are located on the input, intermediate, and output layers of 
the behavioral generation network, respectively. For instance, 
in the network depicted in Fig. 3 (middle), there are 2 radar 
sensor nodes (input layer), 7 intermediate nodes (intermedi-
ate layer), and 1 hinge node (output layer). Connection exists 
among the nodes between the input-intermediate, intermedi-
ate-output, and input–output layers. Each linkage possesses 
its own connection weight, which is determined by the CPPN 
receiving the coordinates of the source and destination nodes 
pair on the substrate space. Each node within the output layer 
conveys the angle of the corresponding hinge, adjusting the 
actual angle of the physical hinge to match this output value. 
Consequently, the behavioral generation network can produce 
diverse behavioral patterns in the creature, according to the 
sensory input received from the radars.

2.3 � Task

Figure 5 illustrates a field for fitness evaluation. We conducted 
experiments involving a locomotion task to examine the impli-
cations of excessive elitism on evolution. The artificial crea-
tures were positioned in a circular manner, surrounding a cen-
tral target (cube) placed on a flat surface. Fitness was defined 
as the distance traveled by creatures from the initial position 
towards the target.

Specifically, each creature’s fitness is calculated using the 
equation provided in Eq. (1)

In this equation, d
i
 denotes the initial distance between the 

creature and the target, a value constant in all experiments, 

(1)Fitness =
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i
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i
)
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> d
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Fig. 4   Illustration of the radar sensor method. Here, we consider the 
longer side of the rectangular block as the 'front side'. The angle of 
rotation derived from line (a) illustrates the current orientation of the 
block

Fig. 5   Fitness evaluation field. A presents a top-down perspective, 
featuring the initial placement of creatures, who are arranged in a cir-
cular pattern, with an initial distance of 60 separating them from the 
target. B provides a lateral view of the evaluation field
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which is 60. d
io

 is the current distance between the crea-
ture and the target object. From Eq. (1), we assume that if 
the distance between the creature and the target reaches or 
falls below 60, indicating the creature is either stationary or 
approaching the target, the fitness corresponds to the dis-
tance covered. However, if the creature moves away from 
its initial position, resulting in a negative total distance, the 
fitness is considered zero.

2.4 � Evolution by HyperNEAT

In this section, we delve into how the evolution of the arti-
ficial creatures in this study was conducted using Hyper-
NEAT (Hypercube-based NeuroEvolution of Augmenting 
Topologies) [9], an evolutionary algorithm frequently used 
to evolve the genotype of artificial creatures, namely the 
Compositional Pattern Producing Network (CPPN) [14]. 
HyperNEAT evolves the genome, a connective CPPN that 
generates a substrate by computing connection weights to 
solve a problem.

The selection method employed in HyperNEAT is derived 
from its underlying evolutionary algorithm, NEAT. Accord-
ing to NEAT, a solution to a problem evolves through the 
fitness function, which computes a singular number indica-
tive of the quality of each individual genome (60); a higher 
score signifies enhanced ability. The algorithm proceeds 
through a pre-determined number of generations (400), each 
of which is generated through the reproduction and muta-
tion of the fittest individuals from the preceding generation. 
The processes of reproduction and mutation may introduce 
additional nodes and/or connections to the genomes.

The variation operators in HyperNEAT play a crucial 
role in introducing genetic diversity into the population 
of genomes, which represents ANNs, during the evolution 

process. The two primary variation operators employed in 
HyperNEAT are crossover and mutation.

As the algorithm progresses, genomes and the neural net-
works they generate may increase in complexity. The discov-
ery of symmetries and regularities begins, though they do 
not always pertain fundamentally to the task. For instance, 
in earlier generations, the substrate generated by CPPN 
produces an output that results in poor creature behavior, 
inhibiting movements towards the target. However, as the 
evolutionary process continues, it uncovers the essential 
regularity necessary for genomes to achieve optimum fit-
ness for the task.

2.5 � Excessive elitism method

In the evolutionary process in NEAT, various mechanisms 
have been incorporated to strike a balance between fitness 
and population diversity. These mechanisms include gene 
tracking, speciation, and incremental complexification of the 
network. NEAT defines two levels of elitism: species elitism 
and reproduction elitism. Our focus is on modifying the lat-
ter, which proposes that the most-fit individuals in each spe-
cies will be preserved as-is from one generation to the next.

As seen in Fig. 6, we modified the standard elitism in 
NEAT, originally defined as the process where the best-fit 
M individuals in each species are preserved as-is from one 
generation to the next (Fig. 6 left). In the case of excessive 
elitism, the best-fit M individuals become elite regardless 
of their species within the whole population of N (Fig. 6 
right), under the assumption of an excessive elitism, M. 
Their genotypes are carried forward to the succeeding gen-
eration, with the evaluated fitness values also passed on 
and used as their fitness value instead of re-evaluating the 
best-fit individuals in subsequent generations. As such, only 
the non-elite individuals (N-M) generated through selection 

• •

•

• •

••

Fig. 6   A comparative analysis between the excessive elitism (EE) method and the standard elitism in NEAT
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and genetic operations require evaluation at each generation. 
In the EE method, concepts of speciation and fitness shar-
ing are turned off, thereby eliminating the species concept 
during evolution. We implement a roulette wheel selection 
method to stochastically select parents for reproduction, with 
being proportional to the fitness within the population. This 
approach offers a simpler alternative that leads to a simple 
population structure. More specifically, the excessive elitism 
(EE) method could affect the algorithm by giving priority 
to preserving the best-fit individuals within a large portion 
of the population for the purpose of exploration. The large 
population capacity (N) in EE enhances the diversity, sig-
nificantly improving the population’s fitness. Additionally, 
replacing only a few individuals with offspring in each gen-
eration contributes to lower computational costs.

This substantially reduces evaluation costs for each gen-
eration, especially if the number of elite individuals (M) 
is large. Furthermore, we anticipate that maintaining high 
diversity in a large population can prevent the population 
from being stuck in local optima, though the rate of evolu-
tion may decelerate due to fewer individuals evolving (N-M). 
We adopted the following process: All N individuals were 
placed in a 3D simulation field; however, only the non-elite 
individuals (N-M) underwent development and movement 
through their lifetime for fitness evaluation. In contrast, the 
elite individuals (M) remained static, undergoing no devel-
opment or movement. Each individual was evaluated in the 
initial generation. Related codes for the model can be found 
in the supplementary materials.

3 � Experiments and results

We conducted the evolutionary experiments of artificial 
creatures by implementing HyperNEAT algorithm, utilizing 
the PUREPLES pure python library. Several key parameters 
from the default configuration were modified to improve our 
model’s efficiency in evolving the artificial creatures adapted 
to our specific evolutionary model. The contributing param-
eters are presented in Table 1.

We have set the fitness criterion to not exceed a maximum 
threshold of 10,000. This precaution ensures that the evolu-
tionary process does not terminate before completing a gen-
eration's time step. It also serves to maintain the continuity 
of evolution, irrespective of whether certain individuals have 
already attained the fitness of 60. The ‘reset on extinction’ is 
set to false to avoid creating a completely random population 
should total extinction occur. The number of species that 
will be protected from stagnation is set to 1 (species elitism) 
to prevent total extinction. For more details see reference [8].

We conducted four evolutionary experiments, each 
with distinct yet comparable parameters. We applied the 

Excessive Elite method in the cases of EE (2, 20), EE (82, 
100), and EE (18, 20). Case NEAT (2, 20) was conducted 
to demonstrate the evolutionary process using the existing 
NEAT selection method.

Table 2 presents the parameters of population (N), elite 
size (M), and the number of evaluating individuals (N-M) 
in each specific case. For each case, we conducted 20 trials 
to obtain the most precise average results for fitness and 
block numbers. As indicated in Table 2, to compare the 
advantages of EE and NEAT, we executed NEAT (2, 20) 
with speciation and fitness sharing enabled as in Fig. 6. 
We assumed EE (2, 20) as a baseline case of EE which 
featured a smaller population size (N = 20) and smaller 
elite size (M = 2). This configuration is typically used in 
evolutionary experiments when evaluation costs need to 
be minimized, and it resulted in average fitness to reach 
local optima (explained later). To overcome the problem, 
we increased the population size to N = 100 and added an 
excessive elite size of M = 82 in the case of EE (82, 100), 
keeping the number of evaluating individuals consistent at 
N − M = 18. We expect that there might be an improvement 
in the fitness increase. Finally, we conducted EE (18, 20) 
to demonstrate the use of excessive elitism, where M = 18, 
while maintaining the smaller population size as in EE (2, 
20) case. We expected that this case would also lead to an 
increased average fitness.

We conducted each experiment over 400 generations to 
standardize our findings and utilize them for further com-
parisons in the subsequent sections. We ran the simulation 
using AMD Ryzen 9 5950X 16-Core Processor and 128 
GB memory PC.

Table 1   Modified parameters in 
NEAT’s configuration

Configuration Parameters

Fitness criterion Max
Fitness threshold 10,000
Reset on extinction False
Species elitism 1
Elitism (default) 2

Table 2   Configuration of N and M for NEAT (2, 20), EE (2, 20), EE 
(82, 100), and EE (18, 20)

Case Population 
size, (N)

Elite size, (M) Evaluating 
individuals, 
(N − M)

NEAT (2, 20) 20 2 20
EE (2, 20) 20 2 18
EE (82, 100) 100 82 18
EE (18, 20) 20 18 2
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3.1 � Overall results

The overall results are summarized in Fig. 7. The graphs in 
Fig. 7(i) showed the evolution of the average fitness for each 
trial (gray), and their average (blue) and best (orange) for 
each case. Figure 7(ii) represents the corresponding evolu-
tion of the number of blocks within individuals at the end 
of their lifetime. The standard deviation was obtained as the 
objective measure for the diversity of morphology in the 
population (Fig. 7(ii)). For each trial, we determined the 
standard deviation in block numbers among the individuals 
within the population. We then computed and plotted the 
average of these standard deviations across 20 trials. Fig-
ure 7(iii) shows the trajectory of evaluated individuals in the 
last generation of the best trial. For a balanced comparison 
of fitness increase among the cases, we adjusted the x-axis 
scale based on the evaluation cost, calculated as computation 
time per generation.

The data presented demonstrate a significant increase in 
fitness when EE was implemented, almost reaching the max-
imum value and successfully reaching the target ((EE (82, 
100) and EE (18, 20)). Conversely, fitness tended to con-
verge towards an intermediate value in cases with a smaller 
elite size such as EE (2, 20). The total number of blocks 
showed a tendency to first increase more than around 10 
before evolving to smaller values. In the following sections, 
we will conduct a comprehensive comparison of these cases.

3.1.1 � Evolution of artificial creatures with the original NEAT 
algorithm (NEAT (2, 20))

We implemented the NEAT algorithm with speciation and 
fitness sharing enabled in the case of NEAT (2,20) by set-
ting the minimum species size to 2 and the compatibility 
threshold to 0.03.

EE(2, 20)

Cost = 117 s/gen

EE(82, 100)

Cost = 121 s/gen

EE(18, 20)

Cost = 68 s/gen

NEAT(2, 20)

Cost = 82 s/gen

Fig. 7   Comparative results for NEAT (2, 20), EE (2, 20), EE (82, 
100), and EE (18, 20). Sub-figure (i) portrays the evolution of fitness 
across 20 trials (with gray indicating the best fitness in each trial, 
blue signifying the average of average fitness in each trial, and orange 
representing the average of best fitness in each trial). Sub-figure (ii) 

presents the number of blocks (blue for average, green for best). Sub-
figure (iii) illustrates the trajectory of individuals in the last genera-
tion of the best trial. Sub-figure (iv) highlights the speciation process 
during evolution with NEAT, with each color symbolic of a unique 
species within a population
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As shown in Fig. 7 (NEAT (2, 20)-i), most trials showed 
successful evolution of the population and most creatures 
were able to reach the target. The increase in fitness was 
comparable to the evolution with EE (82, 100) depicted in 
(Fig. 7 (EE (82, 100)—i)). Both cases demonstrated high 
morphological diversity, as can be seen in Fig. 7 (NEAT (2, 
20)—ii) and Fig. 7 (EE (82, 100)—ii), with the best mor-
phology adapting to approximately 3–5 blocks. The evalua-
tion costs for EE (82, 100) and NEAT (2, 20) were compa-
rable, at 121 s/gen and 82 s/gen respectively.

We can conclude that NEAT enabled the population to 
keep diversity with enabling speciation and fitness sharing, 
which is expected to contribute to the performance. While 
EE method had realized equivalent diversity in a simple sin-
gle population.

3.1.2 � Effects of the excessive elite size in increased 
population size (EE (2, 20) and EE (82, 100))

We conducted a comparative analysis between EE (2, 20) 
with EE (82, 100). In this comparison, EE (2, 20) served as 
the baseline experiment of EE, which had previously served 
as the solution to reduce the evaluation cost by proposing a 
smaller population size (N), yet this approach caused prema-
ture convergence. To overcome this limitation, we increased 
the population size to N = 100 and applied an excessive elite 
size of M = 82 into EE (82, 100). In this case, we maintained 
the same evaluating individual size (N − M = 18), allowing 
us to compare the changes in the performance of the evolved 
population.

As depicted in (Fig. 7 (EE (2, 20)—i), numerous trials 
showed that the fitness faced premature convergence and 

stuck in the local optima of around 20. The evaluation cost 
was 117 s/gen. In contrast, EE (82, 100) showed an increase 
in fitness (Fig. 7 (EE—i)), with fitness reaching the maxi-
mum value (60) in many cases. The evaluation cost was 
comparable at 121 s/gen with that in EE (2, 20). This slight 
difference in evaluation cost between 121 s/gen and 117 s/
gen might be due to the computational cost for simulating 
the whole physical field regardless of the number of evaluat-
ing individuals.

Despite the size of the evaluating individuals being the 
same for both cases (N − M = 18), as seen in Fig. 7 (EE (82, 
100)—ii), case EE (82, 100) led to increased morphologi-
cal diversity as demonstrated by the standard deviation. The 
increased diversity significantly contributed to a greater 
increase in the average fitness. It further affected the course 
of morphological evolution, resulting in creatures in EE (2, 
20) that tended to obtain around 10–15 blocks, as opposed 
to the fewer average of 3–5 blocks found in creatures in 
EE (82, 100), as highlighted in Fig. 7 (EE (2, 20)—ii) and 
(EE)—ii). Hence, the larger diversity seen in EE (82, 100) 
facilitated better morphological and behavioral evolution in 
the creatures, encouraging them to travel towards the target. 
Conversely, the lower diversity in EE (2, 20) led to a poor 
morphological development, hindering creatures from gen-
erating forward movements as shown in (Fig. 8 (EE (2, 20))) 
and (Fig. 8 (EE (82, 100))).

3.1.3 � Effects of the excessive elite size in the small 
population (EE (2, 20) and EE (18, 20))

We conduct a comparison between EE (2, 20) and EE (18, 
20) to assess the positive impact of the proposed elitism 

Fig. 8   Illustration of the lifetime of successful individuals during the 
final (400th) generation, featuring examples of morphology through-
out each of four recurring events. These examples highlight the mor-

phological development and behavioral cycles in NEAT (2, 20), EE 
(2, 20), EE (82, 100), and EE (18, 20)
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when the population size was relatively small (N = 20). The 
elite size was increased from M = 2 in EE (2, 20) to M = 18 
in EE (18, 20). As depicted in Fig. 7 (EE (18, 20)—(i)), 
the average fitness in EE (18, 20) witnessed a substantial 
improvement (around 30), which were slightly better than 
in EE (2, 20) (around 20). Many trials in EE (18, 20) are 
able to reach maximum fitness, successfully approaching the 
target object. In addition to that, due to the small number of 
evaluating individuals (N-M = 2) in EE (18, 20), the average 
evaluation cost was significantly reduced to 68 s/gen.

In conclusion, EE demonstrated efficiency in evolution 
within both large population (EE (82, 100)) and small popu-
lation size (EE (18, 20)). However, its effectiveness is more 
prevalent in larger populations as has been discussed in the 
previous sections. This certainly signifies that EE represents 
a flexible evolutionary algorithm in the field of evolutionary 
computation.

3.2 � Analysis of evolved morphology

Figure 9 shows the morphological development of best 
individual, evolving from the first generation (on the left) 
to the final generation (on the right). The figures were col-
lected from snapshots of best individuals during the last 
generation in each case. The distinct forms of the creatures 
from each case demonstrated that varying parameters con-
ditions can induce evolutionary processes resulting in dif-
fering morphological developments, which leads to diverse 

behavioral patterns. Videos illustrating the behaviors and 
morphological developments of the creatures in each case 
during the final generation, as demonstrated in Fig. 8, are 
available in the supplementary materials.

In conclusion, the population tended to obtain lower 
performance when individuals were composed of a larger 
average number of blocks, which might have hindered the 
movements. Conversely, higher performance was achieved 
when individuals were comprised of fewer number of 
blocks, potentially encouraging better freedom of move-
ment to reach the target.

It should be noted that the average number of blocks 
once increased (around 10–15) in early generations across 
all cases. This is attributable to the NEAT algorithm, 
where the initial genes were randomly generated, creat-
ing a uniform population of simple networks. This likely 
resulted in a larger average number of blocks in these early 
generations. We expect that, at first, individuals with more 
blocks had dominated the population due to an evolution-
ary tendency. However, these large-sized individuals were 
too complicated to evolve further and obtain more adapt-
able morphological structures, leading to premature con-
vergence in cases with smaller elite size. On the other 
hand, excessive elite sizes maintained diversity within the 
population which enabled individuals with fewer blocks to 
survive. This also offered them an opportunity to evolve 
their morphology and behavior to become simpler and 
more adaptable.

Fig. 9   Observations of morphological transformations and behavioral patterns that the most successful individuals adopt throughout various 
generations in NEAT (2, 20), EE (2 20), EE (82, 100), and EE (18, 20)
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3.3 � Finding optimal values of elite size (M) 
and population size (N) to successfully facilitate 
the evolution

As deduced from the results of the cases conducted in 3.1, it 
has been determined that the evolution of creatures is most 
efficient in case EE (82, 100) for larger population sizes and 
EE (18, 20) for smaller population sizes. However, it is still 
uncertain what the optimal values for the elite size, M, and 
the population size, N, would be for the best adaptation to 
the current environment. Therefore, we proceeded to con-
duct experiments using various configurations of N and M, 
as shown in Table 3.

We maintained the value of evaluating individual (N-M) 
at 18 for all cases, based on the best case in 3.1 and 3.2 (EE 
(82, 100)). The values that changes were the population size 
(N) and elite size (M) to see how it affects the evolution of 
creatures. The experiments were carried out for 200 genera-
tions for all cases and repeated to 20 trials for each case. The 
results of average best fitness and average computational 
time were calculated from the average of 20 trials in each 
case. These were then plotted against the population size 
(N), as shown in Fig. 10. The error bars present on the aver-
age best fitness depict the maximum standard deviation of 
the average number of blocks in the population. This serves 
as a representation of the morphological diversity present in 
each case. This arrangement allows for a clearer observation 
of the optimal configurations that most effectively evolved 
the creatures.

Analyzing the results illustrated in Fig. 10, we observed 
that the average computational time ranged from 117 
to 125  s/gen when the evaluating individuals (N − M) 
remained consistently at 18. The average best fitness por-
trayed a slight improvement, from approximately 25 in (EE 
(2, 20)) to roughly 30 to 35 in (EE (22, 40)), and this value 
then remained constant for EE (42, 60). On the contrary, 
the average time experienced a slight increase from 117 s/
gen to approximately 118 s/gen in the case of EE (42,60). 
Starting from EE (42, 60), we observed a vague increase 
in the average time, between 120 and 125 s/gen in the case 

of EE (82, 100). However, a significant improvement was 
noticeable in the average best fitness in the EE (62,80) 
case, with a slight increase also seen for EE (82,100).

Referring to results in Fig. 10, larger population size 
cases often result in larger diversity of morphology as rep-
resented by the standard deviation on the average fitness in 
Fig. 10 (EE (82, 100)), where it shows the largest diversity 
obtained among other cases. We can see a slight decrease 
in diversity for smaller population case of EE (62, 80), fol-
lowed by EE (42, 60), EE (22, 40), and EE (2, 20). Hence, 
larger morphology diversity was achieved in cases with a 
larger population, N. However, surprisingly, morphologi-
cal diversity did not continue to improve for case EE (102, 
120), although this case has the largest population size 
among other cases. Due to this, the average fitness slightly 
decreases to around 40–50. We strongly expect that EE 
(102, 120) may have an extremely large ratio of elite to 
evaluating individual size (M:N), within the population 
which potentially leads to a decrease in diversity, thus 
causing premature convergence. This might be due to the 
evolution of only the lowest-fitness individuals, when the 
larger portion of the population (102:18) is exempted from 
evaluation. We believe that the evolution of this case is 
too slow to improve that it converges to the local solution.

Therefore, we observed that the best average fitness of 
the evolved population, which was around 50 to 60, was 
obtained at EE (82, 100) as demonstrated in 3.1. Conse-
quently, the morphological development is as in Fig. 9 (EE 
(82, 100)), while the behavior of creatures during final 
generation resembles those in Fig. 8 (EE (82, 100)). A 
video showcasing the behavior of creature in EE (82, 100) 
is also available in the supplementary videos.

Table 3   Configuration of N and M for all cases

Cases EE (M, N) Popula-
tion size, 
N

Elite size, M Evaluating individuals, 
(N − M)

EE (2, 20) 20 2 18
EE (22, 40) 40 22
EE (42, 60) 60 42
EE (62, 80) 80 62
EE (82, 100) 100 82
EE (102, 120) 120 102 0

20

40

60

80

100

120

140

20 40 60 80 100 120

Population size, N

Average time, Average best-fitness, Elite size
(M), against Population size (N)

Elite size,
M

Average
time
(sec/gen)

Average
best-fitness

EE(2, 20) EE(22, 40) EE(42, 60) EE(62, 80) EE(82, 100) EE(102, 120)

Fig. 10   A depiction of the correlation between the average evaluation 
time, average best fitness, and elite size (M) with respect to popula-
tion size (N). The error bars present on the average best fitness are 
demonstrative of the standard deviation, representing the morphologi-
cal diversity in each case
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4 � Conclusions

We proposed the Excessive Elitism (EE) method, based 
on a novel use of elitism in NEAT. EE method served as 
a simpler alternative to speciation and fitness sharing in 
the existing NEAT algorithm, yielding equivalent mor-
phological diversity that prevents premature convergence. 
We evolved the morphology and behavior of artificial 
creatures in a 3D multi-agent environment, with a simple 
target-approaching task. In the proposed EE method, we 
assumed that the evaluated fitness of the best-fit individu-
als would be succeeded and reused, instead of being re-
evaluated during subsequent fitness evaluations. This in 
turn contributes to a lower evaluation cost.

As has been demonstrated, the excessive elite size sur-
prisingly improved the average fitness of the population in 
both small and large population cases. Moreover, the effect 
of excessive elitism in large population cases significantly 
reduced the evaluation cost due to the reduced number of 
individuals being evaluated. Nonetheless, there are limi-
tations on the ratio of elite to evaluating individuals that 
can be implemented in a population to obtain the optimum 
performance for our model, as proven in results in 3.3. 
We have demonstrated that the optimum size for elite and 
evaluating individuals would be similar to what has been 
shown in EE (82, 100).

Thus, by applying the EE method, we shall use the 
advantage of a large population size and enhanced diver-
sity to achieve optimum fitness whilst keeping the evalua-
tion cost minimal. Nevertheless, it is worth noting that cer-
tain non-adaptive individuals with initial conditions may 
accidentally achieve high fitness. These types of problems 
have been discussed in the evolutionary context [13] and 
in relation to evolutionary algorithms (EAs) at large [14]. 
Despite these challenges, the benefits of the EE method 
significantly outbalance such drawbacks. Additionally, EE 
method bears similarities to quality-diversity approaches 
like MAP-Elites, which captures diverse high-performing 
solutions by partitioning the search space [15]. In this 
study, the EE method demonstrates the simplest means 
of securing a niche and preserving diversity within the 
general framework of a simple genetic algorithm.

In future work, we intend to acknowledge whether the 
source of the shown performance, derived from the com-
plexity in the search space, is related with the asymmetry 
between morphology and control [16, 17]. Furthermore, 
it is crucial to explore to what extent would the excessive 
elitism method improves the evolution of artificial crea-
tures, while keeping the limitations minimal and main-
taining conditions that would facilitate the evolution of a 
more complex interactions between artificial creatures and 
their environment through the implementation of niche 

constructing behavior. We planned to incorporate various 
elements into the evolutionary process. Expectations lie 
in evolving each creature with an exemption from interac-
tions for simplicity, to exclusively analyze multiple levels 
of adaptive mechanisms—these include the developmental 
evolution of creatures, the effects of niche construction, 
and ecological inheritance.
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