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Abstract
In vehicles with active suspensions, if handling stability is improved strongly by using a LQ controller for a road surface 
such as large bumps, ride comfort may deteriorate even for a road surface such as not so large bumps. Recently, to avoid the 
problem, a nonlinear active suspension control scheme has been proposed. However, in the proposed nonlinear controller, 
it is required that vehicle mass does not vary. In practice, vehicle mass varies greatly. If vehicle mass varies, the controller 
has to be redesigned. In this paper, to address the problem, based on the proposed nonlinear control scheme, we develop a 
new robust active suspension control scheme.

Keywords Active suspension system · Handling stability · Ride comfort

1 Introduction

Recently, aiming to improve safety, efficiency, mobility and 
so on, many researchers have proposed lane following con-
trol schemes (for example [1–3]). In the case when the ver-
tical force between wheels and a road surface becomes too 
small, handling stability becomes worse and good lane fol-
lowing performance cannot be expected. On the other hand, 
we have to also consider a method to improve ride comfort 
of autonomous vehicles. To improve both of handling stabil-
ity and ride comfort of vehicles, based on a quarter vehicle 
model, various active suspension control schemes [4–14] 
have been provided. Control schemes [15–17] have been also 
developed based on a half vehicle model. Based on a full 
vehicle model, the authors of the reference papers [18–20] 
have provided controllers.

It is assumed that vehicles run on a highway. If design 
parameters are set in the controlled vehicles proposed in 
[4–20] so as to further improve handling stability for a road 
surface such as large bumps, ride comfort may deteriorate 
even for a road surface such as that with not so large bumps. 
Very recently, to address the problem, a nonlinear active sus-
pension control scheme [21] has been proposed. As shown 
in numerical simulation results of the reference paper [21], 
even if the relative tire load exceeds a dangerous value in a 

passive vehicle, both ride comfort and steering stability can 
be significantly improved in the controlled vehicle. However, 
in the nonlinear control scheme, the authors do not consider 
varying vehicle mass. In the practical case, vehicle mass var-
ies greatly. Using the proposed control scheme [21], we have 
to redesign a controller every time vehicle mass varies. Until 
now, many robust active suspension controllers have been 
proposed (For example [22–24]). As far as authors know, 
there is no robust control scheme in which both ride comfort 
and steering stability can be significantly improved.

In the paper, we propose a new robust active suspen-
sion control scheme based on a control scheme [21]. In the 
robust control scheme, even if vehicle mass varies, rede-
sign of a controller is not required. To achieve this, at first, 
we propose a design method for an ideal vehicle model. In 
the ideal vehicle model, even if vehicle mass varies, good 
ride comfort and good handling stability can be achieved by 
setting only one design parameter. After that, to make the 
real vehicle track the designed ideal vehicle model, we will 
develop a robust tracking controller.

2  Dynamic equation

Figure 1 shows a quarter vehicle model. Table 1 shows 
the explanation of the parameters used in the figure 
and equations below. The new states are defined by 
xb(t) = zs(t) − zr(t) , xt(t) = zu(t) − zr(t) , 𝜉(t) = z̈s(t) . Then, 
we have [21]
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where � is a positive design parameter. The signal �(t) is 
the control input to be designed below, and the real control 
input u(t) is generated by the solution of the second equa-
tion of (1).

In this paper, the control objective is to develop a robust 
active suspension controller against varying sprung mass 
that satisfies the following conditions [21]. 

C1  Passenger resonance frequency exists in the neighbor-
hood of 1–2 [Hz]. To improve the ride comfort of pas-
sengers, the magnitude of the vertical acceleration of 
the vehicle body ms must be reduced to as small as 
possible with respect to the road surface displacement 
frequency neighborhood of 1–2 [Hz].

(1)

ẋ(t) = Ax(t) +
1

ms

b𝜇(t) − dz̈r(t)

𝜇(t) = u̇(t) + 𝛼u(t), x(t) = [xb(t)
T xt(t)

T ]T

xb(t) = [xb(t) ẋb(t) 𝜉(t)]
T , xt(t) = [xt(t) ẋt(t)]

T

⎫
⎪⎪⎬⎪⎪⎭

,

(2)

A =

�
Ab Abt

Atb At

�
, Ab = Ωb + bba

T
1b
, Abt = bba

T
1t

Ωb = cbd
T
b
+ dbb

T
b
, cb = [1 0 0]T , db = [0 1 0]T

bb = [0 0 1]T , b = [bT
b
0 0]T , d = [dT

b
bT
t
]T

a1b = −[�kss kss + �css css(1 + msu) + �]T

a1t = [�kss − cssktu kss + �css]
T , bt = [0 1]T

css =
cs

ms

, kss =
ks

ms

, msu =
ms

mu

, ktu =
kt

mu

Atb = −msubtb
T
b
, At = ctb

T
t
− ktubtc

T
t
, ct = [1 0]T

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

C2  To achieve good handing stability, the vehicle 
must be controlled so that the relative tire load 
Rt(t) = ktxt(t)∕(ms + mu)g can satisfy |Rt(t)| ≤ rtu < 1, 
where rtu is a design parameter.

To develop a robust active suspension controller that can 
achieve the above conditions, the following assumptions are 
made for the vehicle (1). 

A1  The elements of the state x(t) can be measured.

A2  The der ivatives of the road displacement 
zr(t)

(i), i = 0⋯ 2 are unknown but bounded.

A3  Parameters mu , ks and cs do not vary and are known.

A4  The nominal value kt is known, but kt is unknown, 
and there exist known constants msU and msL such that 
msU ≥ ms ≥ msL > 0 . Sprung mass ms can be meas-
ured, but there exist measurement errors.

3  Development of ideal vehicle model

To meet the design objective, we introduce an ideal vehicle 
model. Since the design scheme of the ideal vehicle model is 
very complex, we will explain the design scheme briefly. At 
first, we design two vehicle models xi(t), i = U, L given by

where At is a matrix in which ktu in At is replaced by 

ktu = kt∕mu , a1bi and a1ti are vectors in which the param-
eters ktu and ms of cs∕ms , ks∕ms and ms∕mu in a1b and a1t 

are replaced by ktu and msi . The parameters a1b and a1t are 
defend in the fourth and fifth equations of (2). The param-
eters msi, i = U, L are defined in the assumption A4 . Using 
ẍb(t) = 𝜉(t) − z̈r(t) in (3), we have

(3)

xi(t) = x0i(t) + dẋb(t), x0i(0) = x(0) − dẋb(0)

ẋ0i(t) = Aixi(t) + b
1

msi

𝜇i(t) − d𝜉(t), i = U, L

𝜇i(t) = 𝜇ci(t) + 𝜇ti(t)

⎫
⎪⎪⎬⎪⎪⎭

,

(4)Ai =

[
Ωb + bba

T
1bi

bba
T
1ti

−msiubtb
T
b

At

]
, msiu =

msi

mu

, i = U, L,

(5)ẋi(t) = Aixi(t) + b
1

msi

𝜇i(t) − dz̈r(t), xi(0) = x(0).

Fig. 1  Quarter vehicle model

Table 1  Meaning of symbols

ms , mu Sprung mass and unsprung mass
ks , cs Spring stiffness and damping coefficient
kt Tire spring stiffness
u Control force produced by active suspension
zs , zu Displacement of ms and mu

zr Road displacement



328 Artificial Life and Robotics (2024) 29:326–333

In the vehicle model xU(t) , the situation is considered 
where the sprung mass ms becomes maximum mU and in 
the vehicle model xL(t) , the situation is considered where the 
sprung mass ms becomes minimum mL . The model inputs 
�i(t), i = U, L are designed by using the same scheme pro-
posed in [21]. After the two vehicle models are designed, 
to design an ideal vehicle model for varying sprung mass 
values, the two vehicle models are linearly combined.

The signal �ci(t), i = U, L are input signals mainly to keep 
good ride comfort in each vehicle model, and are given by

where rci > 0 and Qci > 0, i = U, L are design parameters 
and set by using a trial and error method so that the sprung 
mass acceleration |�i(t)| = |[0 0 1 0 0]xi(t)| can becomes 
small in each vehicle model and the condition C1 can be 
achieved.

Only in case of |Rti(t)| ≥ ru where Rti(t) = ktc
T
t
xti(t) 

∕(msi + mu)∕g and ru is a design parameter such that 
1 > rtu > ru > 0 ( rtu is design parameter defined in condition 
C2.), the input signals �ti(t), i = U, L work so as to keep the 
relative tire loads in the range |Rti(t)| ≤ rtu , and are given by

(6)
�ci(t) = −

msi

rci
bTPcixi(t)

AT
i
Pci + PciAi −

1

rci
Pcibb

TPci = −Qci

⎫
⎪⎬⎪⎭
,

(7)

𝜇ti(t)

= −msi𝛽if𝜀(Rti)b
TPti�i(t)

+ msif𝜔(Rti)
�
�𝜔𝜀0i(t) + 𝜔𝜀i(t)

�
AT
ci
Pti + PtiAci = −Qti, Qti > 0

Aci = Ai −
1

rci
bbTPci

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(8)

�i(t) = xi(t) − xri(t), 𝜔𝜀i(t) = −bTAcixri(t)

xri(t) = −
�msi + mu

msi

𝜂(t)
msi + mu

msi

�̇�(t)
mu

msi

�w(t) 0 0
�T

�𝜔𝜀0i(t) = L
−1
� s

Tts + 1
L[bTxri(t)]

�

⎫
⎪⎪⎬⎪⎪⎭

,

(9)

�w(t) = �̈�(t),

𝜂(t) = L
−1

�
1

s2 + 2𝜁r𝜔rs + 𝜔2
r

1

Trs + 1

×
�
L[𝜉(t)] − sL[ẋb(t)]

��

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

where Tr , �r , �r , Tt > 0 , 𝛽i > 0 and Qti > 0, i = U, L are 
design parameters. In (9), ŵ(t) denotes the estimate of 
w(t) = z̈r(t) [21]. The design parameters are determined 
by using a trial and error method so that the state norms 
‖�i(t)‖, i = U, L defined in (8) can be reduced. If the state 
norms ‖�i(t)‖ including the estimate ŵ(t) of the load dis-
turbance w(t) = z̈r(t) can be reduced, the tire deflections 
|xti(t)| = |[0 0 0 1 0]xi(t)|, i = U, L can be reduced and the 
relative tire loads |Rti(t)| can be also reduced as shown in the 
reference paper [21].

To develop an ideal vehicle model xd(t) adaptable for 
any ms , we will integrate the two vehicle models as

where m̂s is the measured value of ms and �m is a parameter 
determined by

Lemma 1 The ideal vehicle model is given by

where a1b and a1t are vectors in which the parameters ktu and 
ms of cs∕ms , ks∕ms and ms∕mu in a1b and a1t are replaced 
by ktu and m̂s . The parameters a1b and a1t are defend in the 
fourth and fifth equations of (2).

Proof From (5), (11) and (12), we can derive (13) and (14) 
very easily.   ◻

(10)
f𝜀(Rti) =

�
0 if �Rti(t)� < ru
�Rti(t) − sgn(Rti)ru� if �Rti(t)� ≥ ru

f𝜔(Rti) =

�
0 if �Rti(t)� < ru
1 if �Rti(t)� ≥ ru

⎫
⎪⎪⎬⎪⎪⎭

,

(11)

xd(t) = [xbd(t)
T xtd(t)

T ]T = TUxU(t) + TLxL(t)

TU = �mdiag

�
msU

m̂s

msU

m̂s

msU

m̂s

1 1

�

TL = (1 − �m)diag

�
msL

m̂s

msL

m̂s

msL

m̂s

1 1

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(12)�mmsU + (1 − �m)msL = m̂s, 1 ≥ �m ≥ 0.

(13)

ẋd(t) = Axd(t) +
1

�ms

b𝜇d(t) − dz̈r(t), xd(0) = x(0)

𝜇d(t) = 𝛽ma
T
𝜇U

xU(t) + (1 − 𝛽m)a
T
𝜇L
xL(t)

+ 𝛽m𝜇U(t) + (1 − 𝛽m)𝜇L(t)

a𝜇i =
�
msi(a1bi − a1b)

T (msia1ti − �msa1t)
T
�T

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(14)A =

[
Ab bba

T

1t

−msubtb
T
b

At

]
,
Ab = Ωb + bba

T

1b

msu =
m̂s

mu

}
,
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It is expected that good ride comfort can be maintained in 
the ideal vehicle model for any sprung mass m̂s . This fact will 
be ascertained by using numerical simulation results. As for 
Rtd(t) = kt∕(m̂s + mu)∕g ×cT

t
xtd(t) , the relation |Rtd(t)| ≤ rru 

holds for any sprung mass m̂s . Since model controllers (7)-(10) 
are designed so that the relations |Rti(t)| ≤ rtu, i = U, L can 
hold, for the relative tire load Rtd(t) , we have

4  Development of controller

To force the real vehicle to track the ideal vehicle model, 
consider the tracking errors x̃b(t) = xb(t) − xbd(t) and 
x̃t(t) = xt(t) − xtd(t) . Then, we have

where ẽb is bounded unknown vector, ẽbd(t) and ẽtd(t) are 
bonded signals. The vector ẽb and the signals ẽbd(t) , ẽtd(t) 
becomes zero if k̃tu = 0 and m̃s = 0.

To develop a robust active suspension controller, consider 
the state given by

where �tc ≥ 1 is a design parameter. Then, we have

(15)
|Rtd(t)| =

||||
�m(msU + mu)

m̂s + mu

RtU(t)

+
(1 − �m)(msL + mu)

m̂s + mu

RtL(t)
|||| ≤ rtu.

(16)

�̇xb(t)

= Ab�xb(t) +
1

ms

bb
(
𝜇(t) − 𝜇d(t) + �msa

T

1t
�xt(t)

)

+ bb
(
�e
T

b
�x(t) +�ebd(t)

)
, �xb(0) = [0 0 0]T ,

(17)�̇xt = At�xt(t) − msubtb
T
b
�xb(t) − bt�etd(t), �xt(0) = [0 0]T ,

(18)

ẽb = ã1 +

�
0 0 0

m̃s

ms

a
T

1t

�T
, a1 = [aT

1b
aT
1t
]T

ẽbd(t) = −
m̃s

msm̂s

�d(t) + ã
T

1
xd(t), ã1 = a1 − a1

a1 = [a
T

1b
a
T

1t
]T , m̃s = ms − m̂s, k̃tu = ktu − ktu

ẽtd = k̃tuc
T
t
xtd(t) +

m̃s

mu

bT
b
xbd(t)

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(19)

�b(t) = x̃b(t) − xc(t), �b(0) = [0 0 0]T

xc(t) =
�tc

msu

�
∫

t

0

cT
t
x̃t(�)d�

cT
t
x̃t(t) bT

t
x̃t(t)

�T
,

⎫⎪⎪⎬⎪⎪⎭

Although the system matrix At is not a stable matrix, the 
system matrix Atc becomes an asymptotically stable matrix 
due to introduction of the signal �b(t) including the signal 
xc(t) . If the signal �b(t) becomes stable and small, then the 
state x̃t(t) becomes also stable because the signal ẽtd(t) is 
bounded.

Based on the tracking error systems (20) and (21), a 
robust controller is developed as

where �c and Q are design parameters. For 𝛼 > 0 , since the 
matrix Ab becomes a Hurwitz matrix, Lyapunov equation 
has a positive definite matrix P > 0.

For the controlled vehicle system (20), (21) and (23), 
we have the following theorem.

Theorem 1 In case of m̃s = 0 and k̃t = kt − kt = 0 , we obtain 
‖x̃(t)‖ = 0, where m̃s is defined in the third equation of (18). 

In case of m̃s ≠ 0 or k̃t ≠ 0 , the tracking error x̃(t) becomes 
stable. In addition to the fact, there exists a constant value 
�� ≥ 0 independent of the design parameter �c such that 
‖�b(t)‖2 ≤ ��∕�c.

Proof At first, we will show ‖x̃(t)‖ = 0 in case of m̃s = 0 
and k̃t = 0 . Since ‖ẽ�‖ = 0 and ẽ�d(t) = 0 , the derivative of 
the positive definite function V(t) = �b(t)

TP�b(t) is given by

(20)

�̇b(t)

= Ab�b(t) +
1

ms

bb
(
𝜇(t) − 𝜇d(t)

+ �msa
T

1b
xc(t) + a

T

𝜀
�x(t)

)

+ bb

(
�e𝜀d(t) +�e

T

𝜀
�x(t) +

�ms

ms

a
T

1b
xc(t)

)
,

(21)�̇xt(t) = Atc�xt(t) − msubtb
T
b
�b(t) − bt�etd(t),

(22)

a� = m̂s[0 0 0 a
T

1t
]T + �tc[m̂sb

T
b
muktuc

T
t
]T

ẽ�d(t) = ẽbd(t) +
�tc

msu

ẽtd(t), Atc = At −
�tcms

m̂s

btb
T
t

ẽ� = ẽb

+ �tc

�
m̃s(ms + m̂s)

msm̂s

bT
b

1

msu

�
k̃tu +

m̃sktu

ms

�
cT
t

�T

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

(23)

u̇(t) = −𝛼u(t) + 𝜇(t)

𝜇(t) = 𝜇d(t) − �msa
T

1b
xc(t) − a

T

𝜀
�x(t)

− �ms𝛽c
�
𝛽c + ‖�x(t)‖2 + ‖xc(t)‖2

�
bT
b
P�b(t)

A
T

b
P + PAb = −Q, 𝛽c ≥ 1, Q > 0

⎫
⎪⎪⎬⎪⎪⎭

,
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From (24) and ‖�b(0)‖ = 0 , we can obtain ‖�b(t)‖ = 0 . 
In (21), the matrix Atc includes uncertainties but asymp-
totically stable. In addition to the fact, since ẽtd(t) = 0 and 
‖x̃t(0)‖ = 0 , we can conclude that ‖x̃(t)‖ = 0.

Next, in case of m̃s ≠ 0 or k̃t ≠ 0 , we will show that x̃(t) 
becomes stable. The derivative of V(t) is given by

Since ẽ�d(t) , ‖ẽ�‖ , m̃s∕ms‖a1b‖ are bounded and �c ≥ 1 , there 
exists a constant ��1 independent of design parameter �c such 
that the second and third terms of the right side of (25) are 
less than and equal to ��1∕�c . Using the fact in (25), we can 
obtain

From (26), �b(t) is stable and we can have ‖�b(t)‖2 ≤ ��∕�c , 
�� = ��1∕(���min[P]) . From (21), we can obtain that the 
tracking error x̃t(t) is also stable, and then, we have from 
(19) that bT

b
x̃b(t) and dT

b
x̃b(t) are stable.

Multiplying [0 0 0 bT
t
] in the first equation of (13) from 

left and integrating, we have

From assumption A2 and (27), ∫ t

0
cT
t
xtd(�)d� is bounded, and 

then, we can have that ∫ t

0
ẽtd(�)d� is also bounded. Using the 

facts in the relation obtained by multiplying bT
t
 in (17) from 

left and integrating, we have that ∫ t

0
cT
t
x̃t(�)d� is bounded, 

and then, we can conclude that x̃(t) is stable.   ◻

From theorem 1, in case of m̃s = 0 and k̃t = 0 , good 
performance can be assured without redesign of the con-
troller even if vehicle mass varies greatly. In case of m̃s ≠ 0 
or k̃t ≠ 0 , if |̃etd(t)| is small, it can be expected that as the 
design parameter �c becomes large, ‖x̃t(t)‖ and |bT

b
x̃b(t)| 

become small. The control performance in case of m̃s ≠ 0 
or k̃t ≠ 0 are shown in the next section. When measure-
ments errors exist in practical applications, there is a 

(24)
V̇(t) = − �b(t)

TQ�b(t) − 2
�ms

ms

𝛽c
�
𝛽c + ‖�x(t)‖2

+ ‖�xc(t)‖2
�
�b(t)

TPbbb
T
b
P�b(t).

(25)

V̇(t) = − �b(t)
TQ�b(t) − 2

�ms

ms

𝛽c
�
𝛽c + ‖�x(t)‖2 + ‖�xc(t)‖2

�

× �b(t)
TPbbb

T
b
P�b(t) + 2�b(t)

TPbb

×

�
�e𝜀d(t) +�e

T

𝜀
�x(t) +

�ms

ms

a
T

1b
xc(t)

�
.

(26)V̇(t) ≤ −𝛿𝜀V(t) +
𝜌𝜀1

𝛽c
, 𝛿𝜀 =

𝜆min[Q]

𝜆max[P]
.

(27)bT
t
�xtd(t) = −ktu ∫

t

0

cT
t
�xtd(𝜏)d𝜏 − msud

T
b
xbd(t) − żr(t).

possibility where large vibrations occur for a high feed-
back gain �c.

5  Numerical simulation results

The numerical simulations are carried out to confirm use-
fulness of the proposed robust active suspension control-
ler. The nominal vehicle parameter values are shown in 
Table 2 [21].

The design parameters of (9) and a controller (23) are 
set as Tr = 0.01 , �r = 2 , �r = 1 and � = 1 , Q = I . The road 
surface displacement zr(t) is given by

where hz is the amplitude and �z is the frequency of the 
uneven road surface.

The design parameters for an ideal vehicle model are set 
so that the conditions C1 and C2 can be achieved in the 
range of hz ∈ [9 13] [cm] and �z ∈ [0.5 3.5] [Hz].

In the designed models, the parameters rtu and ru are set as 
rtu = 0.6 and ru = 0.45.

In the matrixes Qi, i = U, L , to meet C1 in each vehi-
cle model (5), coefficients of qaqTa  are set to be a large 
value. However, when the coefficients of qaqTa  are only 
set to be large, vibrations appear in suspension stroke and 
tire deflection. To avoid the vibrations, coefficients cor-
responding to Qs and Qu are also set to be large values. To 
meet C2 , we mainly use high feedback gains �i, i = U, L 

(28)żr(t) = −
1

Tzr
zr(t) +

1

Tzr
wr(t), Tzr = 0.005

(29)wr(t) =

⎧⎪⎨⎪⎩

hz

2

�
sin

�
𝜔z −

𝜋

2

�
+ 1

�
if 0 ≤ t ≤ 2𝜋

𝜔zr

0 if
2𝜋

𝜔zr

< t
,
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T
a
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T
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T
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+ QuQ

T
u
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�
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�T
, Qu =

�
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�T
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⎫
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,

(31)

QL = QbQ
T
b
+ 103qaq

T
a
+ Qsdiag[10

5 10]QT
s

+ 6 × 106Qudiag[1 0.3]Qu

QtL = QtU , �L = ms10
7, msL = ms − 65

⎫⎪⎬⎪⎭
.
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in each vehicle model (5). The coefficients in Qti, i = U, L 
are set to be one.

We can set any values of msU and msL . When a nominal 
situation has two passengers in standard-size vehicles, it 
is considered that increase/decrease of the sprung mass 
may about 15 [%]. Under the notion, we set the values of 
msU and msL.

Figure 2 a–f shows variations of maximum values of 
|Rt(t)| and |�(t)| of the passive vehicle ( u(t) = 0 ). Fig-
ure 2g–l shows variations of maximum values of |Rtd(t)| and 
|�d(t)| = |bTxd(t)| of the ideal vehicle model. In the passive 
vehicle, the values of vehicle parameters are nominal val-
ues except the sprung mass ms . In Fig. 2, x-axis denotes 
amplitude hz [cm] and y-axis denotes frequency �z [Hz] of 
road surface displacement zr(t) . In Fig. 2a,c,e, for clarity, the 
maximum relative tire loads are set as max |Rt(t)| = 0.8 in 
the case when max |Rt(t)| > rtu = 0.6.

As shown in Fig. 2 a,c,e in the passive vehicle, handling 
performance becomes very poor ( |Rt(t)| > rtu = 0.6 ) in some 
regions of hz and �z . Compared with the passive vehicle, the 
performance of the designed ideal vehicle model becomes 

much better. In addition to the fact, by setting the meas-
ured vehicle mass m̂s , we can easily obtain the ideal vehicle 
model with high performance compared with passive vehicle 
without redesigning.

In the case of ms = m̂s and kt = kt , as shown in Theorem 1, 
the behavior of the controlled vehicle and an ideal vehi-
cle model becomes the same. Therefore, consider the case 
where there exist uncertainties such as ms = m̂s(1 + Δm∕100) 
and kt = kt(1 + Δk∕100 ), where Δm and Δk denote measured 
error and parameter uncertainty. In case of m̂s = 320 [kg], 
�z = 2 [Hz], hz = 13 [cm] Δm = 5 [%] and Δk = −10 [%], 
Fig. 3 shows responses of the controlled vehicle for various 
�c . In Fig. 3 a,b, thick solid lines show responses of the ideal 
vehicle model. When Δk becomes larger than 10 [%], the 
maximum value of |Rt(t)| becomes larger and the maximum 
value of |�(t)| becomes smaller. If Δk becomes too large, the 
maximum value of |Rt(t)| exceeds rtu . When Δm becomes 
smaller than -10 [%], the maximum value of |Rt(t)| becomes 
larger and the maximum value of |�(t)| becomes larger. If Δm 

Fig. 2  Passive vehicle and ideal vehicle model

Fig. 3  Responses of controlled 
vehicle
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becomes too small, the maximum value of |�(t)| becomes 
very large.

As shown in Fig.  3 c, the maximum error of ‖�b(t)‖ 
becomes small as the design parameter �c becomes larger. 

When �c is 300, the maximum error of ‖�b(t)‖ becomes 
almost zero. As shown in Fig. 3 a,b, as the �c becomes larger, 
the error between the controlled vehicle and the ideal vehicle 
model becomes smaller.

To investigate the effects of uncertainties Δm and Δk on 
the controlled vehicle, in Fig. 4, we show variations of maxi-
mum values of |Rt(t)| and |�(t)| for various Δm and Δk . In the 
controlled vehicle, the design parameter is set as �c = 300 . 
In Fig. 4, x-axis denotes Δm and y-axis denotes Δk.

As shown in Fig. 4, even if there exist measured errors in 
m̂s , steering performance and ride comfort little vary, while, 
as shown in Fig. 4 a, as Δk becomes large, the maximum val-
ues of |Rt(t)| becomes large and close to rtu = 0.6 . However, 
as Δk becomes small, the maximum values of |Rt(t)| become 
small. The variations of |�(t)| against the variations of Δk 
become small as shown in Fig. 4 b,d,f.

From the facts stated above, we can conclude that in the 
case when |Δm| ≤ 5 [ % ] and |Δk| ≤ 10 [ % ], in the controlled 
vehicle, good handling performance and good ride comfort 
can be maintained even if vehicle masses vary greatly.

6  Conclusion

We proposed a design method of an ideal vehicle model in 
which good steering performance and good ride comfort 
can be maintained even if vehicle mass varies greatly. To 

achieve a good control performance, a robust tracking con-
troller is developed to force the actual vehicle follow the 
ideal vehicle model. Using numerical simulation results, it is 
shown that in the case for small uncertainties, good handling 
performance and good ride comfort can be maintained in the 
controlled vehicle even if vehicle mass varies greatly.
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