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Abstract
We are developing pencil-drawing-style image conversion software suitable for high-level synthesis, HLS, technology that 
automatically converts software into hardware. The pencil-drawing-style image conversion consists of the former and latter 
processes. The former generates the images expressing edge strengths and their directions. The latter process convolves the 
line segment corresponding to the edge strength with its direction. As hardware-oriented software description, the medium 
data across the former and latter processes are optimized. In addition, the former and latter processes are overlapped between 
the FIFO buffer passing the medium data. The obtained image is still a gray-scaled image. To make it support the color 
image, this paper inserts a process compositing the original color image with the grayed pencil-drawing-style image to not 
intervene in the pipelined data path behavior. As a result, an HLS tool used is expected to generate a hardware module with 
the ideal pipelined data path by one output data/one clock. The experimental results show that the colorization hardware had 
no significant performance degradation issues for circuit size, run time, or power efficiency compared to the pencil drawing 
hardware with grayscale. Compared with the software execution, our hardware supporting color image can achieve 4.2 times 
the performance improvement and 130 times power efficiency.

Keywords High-level synthesis · Non-photorealistic rendering · FPGA · Colorization

1 Introduction

Further development in image processing technology will 
accelerate the growth of virtual space systems. We aim to 
realize battery-driven smart glasses that can run long-term 
and realize virtual spaces without PCs or GPUs. One of the 
heavy-load image processing performed on smart glasses 
is non-photorealistic rendering (NPR) [1], which is the 

composition, processing, and transformation of authentic 
images in the field of view. We are developing hardware for 
high performance and low-power consumption for pencil 
drawing-style image conversion [2], which is one of the NPR 
methods. The development uses high-level synthesis (HLS), 
automatically converting software (SW) into hardware 
(HW). Although HLS techniques have been used to develop 
HW modules for several software applications, we cannot 
find an example adapted to pencil-drawing-style image con-
version of NPRs [3–5]. Using HLS allows for quick and 
flexible changes and improvements to the algorithm, thus 
significantly reducing the burden of HW design [6–9]. How-
ever, when using HLS, large, slow HW may be generated 
if the software program is not HW oriented. Therefore, to 
use HLS effectively, it is necessary to create HW-oriented 
software programs. Thus, we are improving algorithms and 
SW programs for HLS to develop better HW.

As an initial step in developing pencil-drawing-style 
image conversion HW, we divided the entire process into 
former and latter sub-processes to reduce the target size and 
develop SW for each HLS [10, 11]. Then by overlapping the 
execution of the generated former and latter HLS modules, 
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the data path was pipelined to achieve the ideal performance 
of one processing/one clock [12].

This paper attempts to insert a light-weight colorizing 
hardware to the data path of gray-scaled version previously 
we have developed, without performance degradation and 
huge expanding hardware resources. Thus, we propose the 
simple colorizing algorithm based on the alpha blending, 
mixing the grayed pencil like image and the original color 
image. Since this algorithm is relatively simple using only 
stream input/output data, it is expected not to impair the 
flow of the existing pipeline. The experiments will show the 
performance effects of colorization of pencil-style images in 
terms of circuit size, execution time, and power efficiency.

We organize this paper as follows. Section 2 briefly 
describes the overall process flow of the pencil-drawing-
style image conversion process with gray scale, and Sect. 3 
describes the proposed method for colorization. In Sect. 4, 
we present the verification results and a discussion. Finally, 
Sect. 5 describes the conclusion of this paper.

2  Pencil‑drawing‑style image conversion 
with gray scale

The pencil-drawing-style image conversion in this study is 
an algorithm that imitates the characteristic of pencil sketch-
ing, in which multiple line segments are overlapped along 
an outline in the same direction. The algorithm considers 
the edge of the input image as the outline and convolves the 
line segments along the edge direction to obtain the desired 
atmosphere. Figure 1 shows an overview of the conventional 
process.

The overall processing flow consists of former process-
ing and latter processing. In the former processing, an edge 
strength image of the input image is obtained. The color 

input image is gray scaled, and a Sobel filter is applied to 
extract edges. When the Sobel filter is applied, the edge 
strength is given in the x- and y-directions and the vector 
direction is the edge. This is separated into eight directions 
of 22.5 degrees each to obtain an edge strength image. The 
line segments corresponding to the edge strength images 
obtained from the former processing are convolved in the 
later processing. The output images are combined, and the 
brightness is inverted to produce a pencil-drawing-style 
image.

3  Proposal method

This paper proposes a method to add colorization process-
ing to the existing grayscale pencil-drawing-style image 
conversion algorithm without performance loss. In 3.1, we 
show the improved processing flow for colorization and 
describe the specific algorithm in 3.2. We then propose a 
method of inserting the data path without disturbing the 
flow of the existing pipelined data path in 3.3. Finally, we 
describe an overview of the operation of the proposed HW 
based on an overview of the existing HW operation in 3.4.

3.1  Restructured processing flow for color image

To realize a colorized pencil-drawing-style image conver-
sion, we propose a processing flow shown in Fig. 2. There-
fore, we develop a relatively simple algorithm that can 
tailor the degree of transparency based on alpha blending. 
This idea is motivated by seeing the color source image 
through its grayscale pencil drawing image. This see-
through method is explained in 3.2.

Fig. 1  Conventional pencil drawing style conversion Fig. 2  Colored pencil drawing style image conversion
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3.2  Colorization algorithm

By overlapping the pencil image onto the input color 
image, colorization is realized. The transparency in over-
lapping is calculated from the pixel values of the pencil 
image, and the overlap of the input color image is adjusted 
according to the transparency. Figure 3 shows the method 
of calculating transparency.

The overlap of images is adjusted by varying the thresh-
olds (TH, TH1, TH2). The TH is a primary threshold to 
emphasize the pencil drawing. The larger TH, the stronger 
pencil strokes are left. The TH1 and TH2 represent the 
strength of the transparency about the part with less pencil 
stroke. The looser the slope of the line, the blurrier see-
though image is. The x-axis direction indicates the pixel 
value of the pencil drawing, where 0 is black and 255 is 
white. When the pixel value is less than TH, the transpar-
ency is always set to 0, and the pencil image is output 
as it appears. The y-axis direction indicates the degree 
of transparency. Transparency ‘0’ indicates that the input 
color image is blocked, while transparency ‘255’ indicates 
that the input color image is output as it is.

Therefore, the output pixel value “final_img”, overlap-
ping the pencil image “pen_gray_img” and the input color 
image “org_col_img”, can be given by the following equa-
tion. The transparency, y, is still normalized from 0 to 255. 
However, since the transparency is inherently rate [%], 
Eq. (3) divides the parts about y with 256 to make their 
ranges to be [0:1.0].

A pseudo code representing these equations is shown 
in Fig. 4.

(1)a =
TH2−TH1

255−TH
,

(2)y =

(

pengrayimg
− TH

)

∗ a + TH1.

(3)finalimg =
orgcolimg

∗y+pengrayimg
∗(256−y)

256
.

The Transmittance function in Fig. 4 corresponds to 
Eqs. (1) to (2). As explained above, the transparency is 
calculated from the pixel values of the pencil drawing. 
The inside of Transmittance has been converted from the 
floating-point calculation to the fixed-point calculation. 
This is because HLS is not good at handling floating-point 
numbers. When floating-point numbers are included, the 
calculators used makes the amount of HW very large. To 
prevent this, when multiplication is performed in a func-
tion, the value is once shifted to the left to make it larger. 
This way, the calculation result becomes an integer and 
does not adversely affect the HLS. When calculating the 
transparency “y,” the desired value can be obtained by 
right shifting the value again.

The coloring function shown in the bottom of Fig. 4 
realizes Eq. (3). It is assumed that the color pixel consists 
of B, G, and R each of them is 8-bit data. Therefore, the 
final RGB blending the original RGB by the transparency 
are calculated individually. To calculate the final RGB (fb, 
fg, and fr), original RGB is extracted from the color pixel 
by shifting and masking. The dividing with 256 is realized 
by right shifting of 8-bit to eliminate the divider, making 
the amount of HW large. Finally, the obtained RGB are 
concatenated to new single pixel, and this pixel is stored 
to the output image.

Fig. 3  From gray to transparency

Fig. 4  Transmitting function and coloring
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3.3  Restructure of existing data path for coloring

As shown in Fig. 2, the blending process using the pencil 
drawing image and the original color image must be added. 
Intuitively, the execution time of the whole process becomes 
larger by the added processes. To avoid this performance 
degradation, we propose the HW organization shown in 
Fig. 5. Figure 5a is the conventional HW organization [13] 
and Fig. 5b is that of the proposed one.

The existing data path is shown in Fig. 5a. The input 
image is read from external memory, and the edge strength 
image obtained through former processing is written to a 
FIFO, first-in-first-out, buffer. The FIFO buffer allows the 
received data to be passed directly to subsequent processing. 
The PF, pixel feeder, is a HW module compensating for the 
lack of pixels. The intermediate image across each stage 
is shaved by the inherent algorithm, making the memory 
access stream style for efficient HW generation. The role 
of PF expands the image shaved back to the original size of 
the image. In former processing and later processing, the 
position of the output image after processing is shifted to 
the lower right corner, so the PF must restore it. The role of 
MemStore is to output the image compensated continuously 
into the external memory. The SW description following this 
HW organization has been converted to the ideal pipelined 
HW module with one output per one clock.

In this study, we propose a method of insertion into 
the data path that does not affect the flow of the existing 

pipeline. The proposed data path is shown in Fig. 5b. Fig-
ure 5b is represented in the program as shown in Fig. 6. In 
the HW configuration, the input image for pencil drawing 
and the input image for colorization are read from different 
physical ports [14]. Pencil pixels “ pen_gray_img ” obtained 
from src1 and “ org_col_img ” (scr2) are overlapped by the 
Coloring function shown in Fig. 4. On the scr1 side, the 
processes are executed starting with the first process. There 
is a FIFO buffer between processes, and this buffer is set by 
pragma. Comparing with Fig. 5a, we can see that similar 
data path is realized. 

3.4  Execution snapshot of pipelined hardware

Figure 7 shows a snapshot of the execution of existing gray-
scale HW. As explained in Sect. 2 using Fig. 1, the former 
process with the Sobel filter and the latter process with the 
line convolution perform the window processing. Since the 
output of window-level processing is transferred to memory 
non-continuously, the HLS tool cannot infer burst transfers, 
causing a significant performance loss. To make this transfer 
continuous, a memory access streaming technique is applied 
[10]. Figure 7a shows this continuous processing. A virtual 
window is assumed and slides over the input image using 
the raster scan method. Here, the window size is assumed 
to be 3 × 3. Although the virtual window contains an invalid 
pixel placing at the outside of the input image, the memory 
streamer is generating the output pixel. In this area, the 
output image is invalid, that is to be partially shaved. The 
memory streamer starts to output correct output pixels after 
the whole of the virtual window enters the input image. This 
technique can make HLS generate a pipelined HW module 
with 1 output / 1 clock, but the image shaving remains as a 
side effect.

Fig. 5  Conventional data path and proposed data path Fig. 6  Top function realizing whole processing flow
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To prevent such image shaving, we have proposed 
the insertion of the pixel feeder between each process as 
shown in Fig. 5. The PF briefly copies the valid pixels to 
neighbor invalid pixels on its line buffer. The memory out-
put is performed continuously by storing the compensated 
pixels on the buffer sequentially into the memory. This is 
shown in Fig. 7b. So, the HLS can generate the straight 
pipeline data path from the memory input to the output 
without any pipeline stall.

Figure 8 shows an execution snapshot of the proposed 
HW with coloring. The coloring HW gets the sequential 
pencil pixels from the PF continuously. In parallel, the 
coloring HW can get the original color pixel from the 
individual physical port accessing the input image on the 
memory. The transmitted final pixel goes to the memory 
continuously. This pipelined operation indicates that 
although our HW expansion inserts the coloring process, 
the HLS may realize an ideal pipelined data path with 1 
output/1 clock. 

4  Experiments and discussion

We used a high-level synthesis tool of Xilinx Vitis HLS 
2022.2. The SW program was converted into a HW behavior 
in VHLD of HW description language (HDL). The gener-
ated HW behavior was converted into circuit data for writ-
ing to an FPGA by Xilinx Vivado 2022.2. The FPGA was 
a Xilinx Zynq-7000, and the FPGA board ZYBO Z7 from 
DIGILENT was used to perform demonstration experiments 
on an actual machine. The CPU of the PC is Intel Core i5. A 
display was connected to the HDMI port on the FPGA board 
for visual confirmation.

The images used in the experiment are shown in Fig. 9. 
The image size is 1280 width × 720 height. In this study, the 
window size of the Sobel filter and the line segment is 3 × 3.

Fig. 7  Execution snapshot of conventional hardware

Fig. 8  Execution snapshot of proposed hardware
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4.1  Output image

In this paper, we propose an additional method of coloriza-
tion processing without performance loss, but the output 
image should also be examined to confirm the effectiveness 
of this processing. The colorization process in this study can 
change the atmosphere of the output image by changing the 
threshold shown in Fig. 3 in the range of 0 to 255. The base 
threshold value is TH = 100, TH1 = 100, and TH2 = 150, and 
each threshold value is changed. The output images obtained 
by varying thresholds are shown in Fig. 10.

The more significant the TH is, the more clearly the out-
line of the pencil image is drawn. However, if TH is too 
large, even the near-white areas of the pencil pixels are out-
put, making the output image appear rough. If TH1 is close 
to 0, the output image becomes paler; if TH2 is close to 255, 
the output image becomes more distinct.

4.2  Circuit size

The circuit size was measured using reports generated by 
Vitis HLS. Figure 11 shows this experimental result. Here, 
the numbers of LUTs, D flip-flops, and the FPGA embed-
ded memories, BRAMs are shown.

From Fig. 11, the number of LUTs and FFs increases 
for the proposed HW compared to the conventional HW. 
This is because the Color function contains many multi-
plications. The number of BRAMs is almost equal. This 
is because there is no difference in the number of FIFO 
buffers used in the data path among the conventional HW 
and the proposed one, as shown in Fig. 5.Fig. 9  Input image (W1280 × H720)

Fig. 10  Output image

Fig. 11  Circuit size
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4.3  Execution time

HW execution time is measured by running on an FPGA. The 
SW execution time is also measured on a PC to be compared 
with the HW execution time. The following equation gives the 
execution time. The clock frequency of the CPU on the PC is 
3.7 GHz, and that of the FPGA is 100 MHz

The measured execution time is shown in Fig. 12. As shown 
in Fig. 9, the total number of pixels in the image used in this 
study is 921,600. Therefore, the ideal HW execution time with 
1 output data/1 clock is 9.216 ms.

The execution times for the proposed HW and the con-
ventional HW were equal. The proposed HW can achieve 
the same performance of the conventional HW although the 
proposed HW is expanded by embedding the coloring pro-
cess compared with the conventional one. This fact indicates 
that our strategy shown in Fig. 5 not to intervene the pipeline 
execution has been successfully accomplished.

4.4  Power efficiency

The following equation defines the power efficiency of HW 
compared to SW on a PC.

Power efficiency is also calculated considering the circuit 
size.

(4)Exec. time (ms) =
Total number of clocks (clks)

clock frequency (Hz)
.

(5)
Power efficiencywithout HW resource

=
SW exec. time (s)×FCPU(Hz)

HW exec. time (s)×FFPGA(Hz)

.

(6)
Power efficiencywith HW resource

=
SW exec. time (s)×FCPU(Hz)

HW exec. time (s)×FFPGA(Hz)×
Amount(HW)

Amount(HWref)

.

The amount of HW is calculated using the number of 
truth tables, LUTs, D flip-flops, FFs, and embedded RAMs, 
BRAMs. In this paper, conventional HW is used as the ref-
erence HW.

The power efficiency of the HW compared to the SW on 
the PC is shown in Fig. 13.

The colorization power efficiency was about 20% less 
efficient than the conventional power efficiency. This is due 
to the increase in circuit size, although the performance is 
the same. However, even with the colorized HW, the perfor-
mance improvement of 4.6 times and the power efficiency of 
130 times compared to SW are considered enough.

5  Conclusion

In this paper, we developed colorization HW for pencil-
drawing-style image conversion using HLS and compared 
its performance with the existing pencil drawing HW. As a 
result, although the overall circuit size increased, the power 
efficiency considering the circuit size also showed enough 
performance to indicate no problem. The proposed HW 
execution time was close to the ideal value calculated from 
the input images. From the above, we were able to develop 
efficient colorization HW using HLS.

In this paper, colorization was performed using a rela-
tively simple algorithm, and the atmosphere of the output 
image was arbitrarily changed. In the future, we would like 
to develop HLS HW for other colorization methods and 

(7)
Amount(HW)

Amount(HWref)

=
LUT(HW)

LUT(HWref)
×

FF(HW)

FF(HWref)
×

BRAM(HW)

BRAM(HWref)
.

Fig. 12  Execution time Fig. 13  Power efficiency compared to software execution on PC
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compare their performance. Finally, we plan to perform 
real-time processing using a camera.

Data availability The data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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