
Vol.:(0123456789)1 3

Artificial Life and Robotics (2024) 29:29–36
https://doi.org/10.1007/s10015-023-00927-2

ORIGINAL ARTICLE

Light‑weight color image conversion like pencil drawing for high‑level
synthesized hardware

Honoka Tani1 · Akira Yamawaki1

Received: 28 August 2023 / Accepted: 24 November 2023 / Published online: 22 December 2023
© International Society of Artificial Life and Robotics (ISAROB) 2023

Abstract
We are developing pencil-drawing-style image conversion software suitable for high-level synthesis, HLS, technology that
automatically converts software into hardware. The pencil-drawing-style image conversion consists of the former and latter
processes. The former generates the images expressing edge strengths and their directions. The latter process convolves the
line segment corresponding to the edge strength with its direction. As hardware-oriented software description, the medium
data across the former and latter processes are optimized. In addition, the former and latter processes are overlapped between
the FIFO buffer passing the medium data. The obtained image is still a gray-scaled image. To make it support the color
image, this paper inserts a process compositing the original color image with the grayed pencil-drawing-style image to not
intervene in the pipelined data path behavior. As a result, an HLS tool used is expected to generate a hardware module with
the ideal pipelined data path by one output data/one clock. The experimental results show that the colorization hardware had
no significant performance degradation issues for circuit size, run time, or power efficiency compared to the pencil drawing
hardware with grayscale. Compared with the software execution, our hardware supporting color image can achieve 4.2 times
the performance improvement and 130 times power efficiency.

Keywords High-level synthesis · Non-photorealistic rendering · FPGA · Colorization

1 Introduction

Further development in image processing technology will
accelerate the growth of virtual space systems. We aim to
realize battery-driven smart glasses that can run long-term
and realize virtual spaces without PCs or GPUs. One of the
heavy-load image processing performed on smart glasses
is non-photorealistic rendering (NPR) [1], which is the

composition, processing, and transformation of authentic
images in the field of view. We are developing hardware for
high performance and low-power consumption for pencil
drawing-style image conversion [2], which is one of the NPR
methods. The development uses high-level synthesis (HLS),
automatically converting software (SW) into hardware
(HW). Although HLS techniques have been used to develop
HW modules for several software applications, we cannot
find an example adapted to pencil-drawing-style image con-
version of NPRs [3–5]. Using HLS allows for quick and
flexible changes and improvements to the algorithm, thus
significantly reducing the burden of HW design [6–9]. How-
ever, when using HLS, large, slow HW may be generated
if the software program is not HW oriented. Therefore, to
use HLS effectively, it is necessary to create HW-oriented
software programs. Thus, we are improving algorithms and
SW programs for HLS to develop better HW.

As an initial step in developing pencil-drawing-style
image conversion HW, we divided the entire process into
former and latter sub-processes to reduce the target size and
develop SW for each HLS [10, 11]. Then by overlapping the
execution of the generated former and latter HLS modules,

Honoka Tani is the presenter of this paper.

This work was submitted and accepted for the Journal Track of
the joint symposium of the 29th International Symposium on
Artificial Life and Robotics, the 9th International Symposium on
BioComplexity, and the 7th International Symposium on Swarm
Behavior and Bio-Inspired Robotics (Beppu, Oita and Online,
January 24–26, 2024).

 * Akira Yamawaki
 yama@ecs.kyutech.ac.jp

 Honoka Tani
 tani.honoka795@mail.kyutech.jp

1 Kyushu Institute of Technology, Fukuoka, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-023-00927-2&domain=pdf

30 Artificial Life and Robotics (2024) 29:29–36

1 3

the data path was pipelined to achieve the ideal performance
of one processing/one clock [12].

This paper attempts to insert a light-weight colorizing
hardware to the data path of gray-scaled version previously
we have developed, without performance degradation and
huge expanding hardware resources. Thus, we propose the
simple colorizing algorithm based on the alpha blending,
mixing the grayed pencil like image and the original color
image. Since this algorithm is relatively simple using only
stream input/output data, it is expected not to impair the
flow of the existing pipeline. The experiments will show the
performance effects of colorization of pencil-style images in
terms of circuit size, execution time, and power efficiency.

We organize this paper as follows. Section 2 briefly
describes the overall process flow of the pencil-drawing-
style image conversion process with gray scale, and Sect. 3
describes the proposed method for colorization. In Sect. 4,
we present the verification results and a discussion. Finally,
Sect. 5 describes the conclusion of this paper.

2 Pencil‑drawing‑style image conversion
with gray scale

The pencil-drawing-style image conversion in this study is
an algorithm that imitates the characteristic of pencil sketch-
ing, in which multiple line segments are overlapped along
an outline in the same direction. The algorithm considers
the edge of the input image as the outline and convolves the
line segments along the edge direction to obtain the desired
atmosphere. Figure 1 shows an overview of the conventional
process.

The overall processing flow consists of former process-
ing and latter processing. In the former processing, an edge
strength image of the input image is obtained. The color

input image is gray scaled, and a Sobel filter is applied to
extract edges. When the Sobel filter is applied, the edge
strength is given in the x- and y-directions and the vector
direction is the edge. This is separated into eight directions
of 22.5 degrees each to obtain an edge strength image. The
line segments corresponding to the edge strength images
obtained from the former processing are convolved in the
later processing. The output images are combined, and the
brightness is inverted to produce a pencil-drawing-style
image.

3 Proposal method

This paper proposes a method to add colorization process-
ing to the existing grayscale pencil-drawing-style image
conversion algorithm without performance loss. In 3.1, we
show the improved processing flow for colorization and
describe the specific algorithm in 3.2. We then propose a
method of inserting the data path without disturbing the
flow of the existing pipelined data path in 3.3. Finally, we
describe an overview of the operation of the proposed HW
based on an overview of the existing HW operation in 3.4.

3.1 Restructured processing flow for color image

To realize a colorized pencil-drawing-style image conver-
sion, we propose a processing flow shown in Fig. 2. There-
fore, we develop a relatively simple algorithm that can
tailor the degree of transparency based on alpha blending.
This idea is motivated by seeing the color source image
through its grayscale pencil drawing image. This see-
through method is explained in 3.2.

Fig. 1 Conventional pencil drawing style conversion Fig. 2 Colored pencil drawing style image conversion

31Artificial Life and Robotics (2024) 29:29–36

1 3

3.2 Colorization algorithm

By overlapping the pencil image onto the input color
image, colorization is realized. The transparency in over-
lapping is calculated from the pixel values of the pencil
image, and the overlap of the input color image is adjusted
according to the transparency. Figure 3 shows the method
of calculating transparency.

The overlap of images is adjusted by varying the thresh-
olds (TH, TH1, TH2). The TH is a primary threshold to
emphasize the pencil drawing. The larger TH, the stronger
pencil strokes are left. The TH1 and TH2 represent the
strength of the transparency about the part with less pencil
stroke. The looser the slope of the line, the blurrier see-
though image is. The x-axis direction indicates the pixel
value of the pencil drawing, where 0 is black and 255 is
white. When the pixel value is less than TH, the transpar-
ency is always set to 0, and the pencil image is output
as it appears. The y-axis direction indicates the degree
of transparency. Transparency ‘0’ indicates that the input
color image is blocked, while transparency ‘255’ indicates
that the input color image is output as it is.

Therefore, the output pixel value “final_img”, overlap-
ping the pencil image “pen_gray_img” and the input color
image “org_col_img”, can be given by the following equa-
tion. The transparency, y, is still normalized from 0 to 255.
However, since the transparency is inherently rate [%],
Eq. (3) divides the parts about y with 256 to make their
ranges to be [0:1.0].

A pseudo code representing these equations is shown
in Fig. 4.

(1)a =
TH2−TH1

255−TH
,

(2)y =

(

pengrayimg
− TH

)

∗ a + TH1.

(3)finalimg =
orgcolimg

∗y+pengrayimg
∗(256−y)

256
.

The Transmittance function in Fig. 4 corresponds to
Eqs. (1) to (2). As explained above, the transparency is
calculated from the pixel values of the pencil drawing.
The inside of Transmittance has been converted from the
floating-point calculation to the fixed-point calculation.
This is because HLS is not good at handling floating-point
numbers. When floating-point numbers are included, the
calculators used makes the amount of HW very large. To
prevent this, when multiplication is performed in a func-
tion, the value is once shifted to the left to make it larger.
This way, the calculation result becomes an integer and
does not adversely affect the HLS. When calculating the
transparency “y,” the desired value can be obtained by
right shifting the value again.

The coloring function shown in the bottom of Fig. 4
realizes Eq. (3). It is assumed that the color pixel consists
of B, G, and R each of them is 8-bit data. Therefore, the
final RGB blending the original RGB by the transparency
are calculated individually. To calculate the final RGB (fb,
fg, and fr), original RGB is extracted from the color pixel
by shifting and masking. The dividing with 256 is realized
by right shifting of 8-bit to eliminate the divider, making
the amount of HW large. Finally, the obtained RGB are
concatenated to new single pixel, and this pixel is stored
to the output image.

Fig. 3 From gray to transparency

Fig. 4 Transmitting function and coloring

32 Artificial Life and Robotics (2024) 29:29–36

1 3

3.3 Restructure of existing data path for coloring

As shown in Fig. 2, the blending process using the pencil
drawing image and the original color image must be added.
Intuitively, the execution time of the whole process becomes
larger by the added processes. To avoid this performance
degradation, we propose the HW organization shown in
Fig. 5. Figure 5a is the conventional HW organization [13]
and Fig. 5b is that of the proposed one.

The existing data path is shown in Fig. 5a. The input
image is read from external memory, and the edge strength
image obtained through former processing is written to a
FIFO, first-in-first-out, buffer. The FIFO buffer allows the
received data to be passed directly to subsequent processing.
The PF, pixel feeder, is a HW module compensating for the
lack of pixels. The intermediate image across each stage
is shaved by the inherent algorithm, making the memory
access stream style for efficient HW generation. The role
of PF expands the image shaved back to the original size of
the image. In former processing and later processing, the
position of the output image after processing is shifted to
the lower right corner, so the PF must restore it. The role of
MemStore is to output the image compensated continuously
into the external memory. The SW description following this
HW organization has been converted to the ideal pipelined
HW module with one output per one clock.

In this study, we propose a method of insertion into
the data path that does not affect the flow of the existing

pipeline. The proposed data path is shown in Fig. 5b. Fig-
ure 5b is represented in the program as shown in Fig. 6. In
the HW configuration, the input image for pencil drawing
and the input image for colorization are read from different
physical ports [14]. Pencil pixels “ pen_gray_img ” obtained
from src1 and “ org_col_img ” (scr2) are overlapped by the
Coloring function shown in Fig. 4. On the scr1 side, the
processes are executed starting with the first process. There
is a FIFO buffer between processes, and this buffer is set by
pragma. Comparing with Fig. 5a, we can see that similar
data path is realized.

3.4 Execution snapshot of pipelined hardware

Figure 7 shows a snapshot of the execution of existing gray-
scale HW. As explained in Sect. 2 using Fig. 1, the former
process with the Sobel filter and the latter process with the
line convolution perform the window processing. Since the
output of window-level processing is transferred to memory
non-continuously, the HLS tool cannot infer burst transfers,
causing a significant performance loss. To make this transfer
continuous, a memory access streaming technique is applied
[10]. Figure 7a shows this continuous processing. A virtual
window is assumed and slides over the input image using
the raster scan method. Here, the window size is assumed
to be 3 × 3. Although the virtual window contains an invalid
pixel placing at the outside of the input image, the memory
streamer is generating the output pixel. In this area, the
output image is invalid, that is to be partially shaved. The
memory streamer starts to output correct output pixels after
the whole of the virtual window enters the input image. This
technique can make HLS generate a pipelined HW module
with 1 output / 1 clock, but the image shaving remains as a
side effect.

Fig. 5 Conventional data path and proposed data path Fig. 6 Top function realizing whole processing flow

33Artificial Life and Robotics (2024) 29:29–36

1 3

To prevent such image shaving, we have proposed
the insertion of the pixel feeder between each process as
shown in Fig. 5. The PF briefly copies the valid pixels to
neighbor invalid pixels on its line buffer. The memory out-
put is performed continuously by storing the compensated
pixels on the buffer sequentially into the memory. This is
shown in Fig. 7b. So, the HLS can generate the straight
pipeline data path from the memory input to the output
without any pipeline stall.

Figure 8 shows an execution snapshot of the proposed
HW with coloring. The coloring HW gets the sequential
pencil pixels from the PF continuously. In parallel, the
coloring HW can get the original color pixel from the
individual physical port accessing the input image on the
memory. The transmitted final pixel goes to the memory
continuously. This pipelined operation indicates that
although our HW expansion inserts the coloring process,
the HLS may realize an ideal pipelined data path with 1
output/1 clock.

4 Experiments and discussion

We used a high-level synthesis tool of Xilinx Vitis HLS
2022.2. The SW program was converted into a HW behavior
in VHLD of HW description language (HDL). The gener-
ated HW behavior was converted into circuit data for writ-
ing to an FPGA by Xilinx Vivado 2022.2. The FPGA was
a Xilinx Zynq-7000, and the FPGA board ZYBO Z7 from
DIGILENT was used to perform demonstration experiments
on an actual machine. The CPU of the PC is Intel Core i5. A
display was connected to the HDMI port on the FPGA board
for visual confirmation.

The images used in the experiment are shown in Fig. 9.
The image size is 1280 width × 720 height. In this study, the
window size of the Sobel filter and the line segment is 3 × 3.

Fig. 7 Execution snapshot of conventional hardware

Fig. 8 Execution snapshot of proposed hardware

34 Artificial Life and Robotics (2024) 29:29–36

1 3

4.1 Output image

In this paper, we propose an additional method of coloriza-
tion processing without performance loss, but the output
image should also be examined to confirm the effectiveness
of this processing. The colorization process in this study can
change the atmosphere of the output image by changing the
threshold shown in Fig. 3 in the range of 0 to 255. The base
threshold value is TH = 100, TH1 = 100, and TH2 = 150, and
each threshold value is changed. The output images obtained
by varying thresholds are shown in Fig. 10.

The more significant the TH is, the more clearly the out-
line of the pencil image is drawn. However, if TH is too
large, even the near-white areas of the pencil pixels are out-
put, making the output image appear rough. If TH1 is close
to 0, the output image becomes paler; if TH2 is close to 255,
the output image becomes more distinct.

4.2 Circuit size

The circuit size was measured using reports generated by
Vitis HLS. Figure 11 shows this experimental result. Here,
the numbers of LUTs, D flip-flops, and the FPGA embed-
ded memories, BRAMs are shown.

From Fig. 11, the number of LUTs and FFs increases
for the proposed HW compared to the conventional HW.
This is because the Color function contains many multi-
plications. The number of BRAMs is almost equal. This
is because there is no difference in the number of FIFO
buffers used in the data path among the conventional HW
and the proposed one, as shown in Fig. 5.Fig. 9 Input image (W1280 × H720)

Fig. 10 Output image

Fig. 11 Circuit size

35Artificial Life and Robotics (2024) 29:29–36

1 3

4.3 Execution time

HW execution time is measured by running on an FPGA. The
SW execution time is also measured on a PC to be compared
with the HW execution time. The following equation gives the
execution time. The clock frequency of the CPU on the PC is
3.7 GHz, and that of the FPGA is 100 MHz

The measured execution time is shown in Fig. 12. As shown
in Fig. 9, the total number of pixels in the image used in this
study is 921,600. Therefore, the ideal HW execution time with
1 output data/1 clock is 9.216 ms.

The execution times for the proposed HW and the con-
ventional HW were equal. The proposed HW can achieve
the same performance of the conventional HW although the
proposed HW is expanded by embedding the coloring pro-
cess compared with the conventional one. This fact indicates
that our strategy shown in Fig. 5 not to intervene the pipeline
execution has been successfully accomplished.

4.4 Power efficiency

The following equation defines the power efficiency of HW
compared to SW on a PC.

Power efficiency is also calculated considering the circuit
size.

(4)Exec. time (ms) =
Total number of clocks (clks)

clock frequency (Hz)
.

(5)
Power efficiencywithout HW resource

=
SW exec. time (s)×FCPU(Hz)

HW exec. time (s)×FFPGA(Hz)

.

(6)
Power efficiencywith HW resource

=
SW exec. time (s)×FCPU(Hz)

HW exec. time (s)×FFPGA(Hz)×
Amount(HW)

Amount(HWref)

.

The amount of HW is calculated using the number of
truth tables, LUTs, D flip-flops, FFs, and embedded RAMs,
BRAMs. In this paper, conventional HW is used as the ref-
erence HW.

The power efficiency of the HW compared to the SW on
the PC is shown in Fig. 13.

The colorization power efficiency was about 20% less
efficient than the conventional power efficiency. This is due
to the increase in circuit size, although the performance is
the same. However, even with the colorized HW, the perfor-
mance improvement of 4.6 times and the power efficiency of
130 times compared to SW are considered enough.

5 Conclusion

In this paper, we developed colorization HW for pencil-
drawing-style image conversion using HLS and compared
its performance with the existing pencil drawing HW. As a
result, although the overall circuit size increased, the power
efficiency considering the circuit size also showed enough
performance to indicate no problem. The proposed HW
execution time was close to the ideal value calculated from
the input images. From the above, we were able to develop
efficient colorization HW using HLS.

In this paper, colorization was performed using a rela-
tively simple algorithm, and the atmosphere of the output
image was arbitrarily changed. In the future, we would like
to develop HLS HW for other colorization methods and

(7)
Amount(HW)

Amount(HWref)

=
LUT(HW)

LUT(HWref)
×

FF(HW)

FF(HWref)
×

BRAM(HW)

BRAM(HWref)
.

Fig. 12 Execution time Fig. 13 Power efficiency compared to software execution on PC

36 Artificial Life and Robotics (2024) 29:29–36

1 3

compare their performance. Finally, we plan to perform
real-time processing using a camera.

Data availability The data that support the findings of this study are
available from the corresponding author upon reasonable request.

References

 1. Kumar MPP, Poornima B, Nagendraswamy HS et al (2019) A
comprehensive survey on non-photorealistic rendering and bench-
mark developments for image abstraction and stylization. Iran J
Comput Sci 2:131–165

 2. Cewu L, Li X, Jiaya J (2012) Combining sketch and tone for pencil
drawing production. In: Proceedings of international symposium
on non-photorealistic animation and rendering 2012, pp 65–73

 3. Younes H, Ibrahim A, Rizk M, Valle M (2021) Algorithmic-level
approximate tensorial SVM using high-level synthesis on FPGA.
Electronics 10(2):205. https:// doi. org/ 10. 3390/ elect ronic s1002
0205

 4. Sjövall P, Lemmetti A, Vanne J, Lahti S, Hämä-läinen TD (2022)
High-level synthesis implementation of an embedded real-time
HEVC intra encoder on FPGA for media applications. ACM Trans
Des Autom Electron Syst 27(4):1–34 https:// doi. org/ 10. 1145/
34912 15 (Article No.: 35)

 5. Akgün G, Khan H, Hebaish M, Elshimy M, Ghany MAAE,
Göhringer D (2020) SysIDLib: a high-level synthesis FPGA
library for online system identification. In: Applied reconfigur-
able computing. Architectures, tools, and applications. ARC 2020.
Lecture notes in computer science, vol 12083. https:// doi. org/ 10.
1007/ 978-3- 030- 44534-8_8

 6. Nane R, Sima V-M, Olivier B, Meeuws R, Yankova Y, Bertels K
(2012) DWARV 2.0: a CoSy-based C-to-VHDL hardware com-
piler. In: 22nd international conference on field programmable
logic and applications (FPL), pp 619–622. https:// doi. org/ 10. 1109/
FPL. 2012. 63392 21

 7. Ferrandi F et al (2021) Invited: Bambu: an open-source research
framework for the high-level synthesis of complex applications.

In: 2021 58th ACM/IEEE design automation conference (DAC),
pp 1327–1330

 8. Özkan MA et al (2020) AnyHLS: high-level synthesis with partial
evaluation. IEEE Trans Comput Aided Des Integr Circuits Syst
39(11):3202–3214

 9. Mousouliotis PG, Petrou LP (2020) CNN-grinder: from algorith-
mic to high-level synthesis descriptions of CNNs for low-end-
low-cost FPGA SoCs. Microprocess Microsyst https:// doi. org/ 10.
1016/j. micpro. 2020. 102990

 10. Tani H, Yamawaki A (2023) Memory access optimization for
former process of pencil drawing style image conversion in high-
level synthesis. In: Parallel and distributed computing, applica-
tions and technologies (PDCAT 2022), lecture notes in computer
science, vol 13798, pp 57–68

 11. Tani H, Yamawaki A (2023) Effect of line segment size on pencil
drawing-like image conversion hardware developed by high-level
synthesis. In: Proceedings of the 28th international symposium on
artificial life and robotics 2023 (AROB 2023), pp 740–743

 12. Tani H, Yamawaki A (2023) Process integration to realize full
pipelined pencil drawing style image conversion hardware in high-
level synthesis. In: 2023 5th international conference on computer
communication and the internet (ICCCI), Fujisawa, Japan, 2023,
pp 251–255. https:// doi. org/ 10. 1109/ ICCCI 59363. 2023. 10210 175

 13. Tani H, Yamawaki A (2023) Process chaining without image and
performance loss for pencil drawing style image conversion in
high-level synthesis. In: The 10th IIAE international conference
on intelligent systems and image processing 2023. To appear

 14. Yamasaki M, Yamawaki A (2020) Duplicating same argument
of function to realize efficient hardware for high-level synthe-
sis. Artif Life Robot 25(2):248–252. https:// doi. org/ 10. 1007/
s10015- 019- 00576-4

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.3390/electronics10020205
https://doi.org/10.3390/electronics10020205
https://doi.org/10.1145/3491215
https://doi.org/10.1145/3491215
https://doi.org/10.1007/978-3-030-44534-8_8
https://doi.org/10.1007/978-3-030-44534-8_8
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1016/j.micpro.2020.102990
https://doi.org/10.1016/j.micpro.2020.102990
https://doi.org/10.1109/ICCCI59363.2023.10210175
https://doi.org/10.1007/s10015-019-00576-4
https://doi.org/10.1007/s10015-019-00576-4

	Light-weight color image conversion like pencil drawing for high-level synthesized hardware
	Abstract
	1 Introduction
	2 Pencil-drawing-style image conversion with gray scale
	3 Proposal method
	3.1 Restructured processing flow for color image
	3.2 Colorization algorithm
	3.3 Restructure of existing data path for coloring
	3.4 Execution snapshot of pipelined hardware

	4 Experiments and discussion
	4.1 Output image
	4.2 Circuit size
	4.3 Execution time
	4.4 Power efficiency

	5 Conclusion
	References

