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Abstract
Decision making is an essential component of autonomous vehicle technology and received significant attention from aca-
demic and industry organizations. One of the promising approaches in designing a decision-making method is Reinforcement 
Learning (RL). To apply an RL algorithm to an autonomous driving problem, a feature representation of the state must first 
be chosen. The most commonly used representation is the spatial-temporal state feature. However, if the number or order 
of the surrounding vehicle changes, the feature representation will be affected. In this paper, we utilize time-to-collision 
(TTC) as the feature representation and propose a TTC-based safety check system. The action output by the RL controller 
would be replaced with a safer action chosen by the safety check system when an agent detects a potential collision, i.e., 
the TTC is below the time threshold. A ramp merging task is used to illustrate the effect. Simulation results show that the 
proposed method can effectively improve the arrival rate and reduce the collision rate, even in the case of dense traffic situ-
ations. Furthermore, we also conducted experiments to examine the performance of the safety check system with different 
time thresholds.
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1  Introduction

In recent years, the development of autonomous vehicle 
(AV) technologies are greatly promoted by advances in the 
field of artificial intelligence (AI) and machine learning 
(ML). However, there are still many issues in high interac-
tive traffic scenarios such as ramp merging [1] unprotected 

left turns [2, 3], and narrow street passing [4, 5]. Autono-
mous vehicles need to interact with other traffic participants, 
react to road objects, and select an appropriate strategy.

Most autonomous vehicles have a modular hierarchical 
structure and can be divided into four components [6], which 
are perception, prediction, decision-making, and control. 
Decision-making is an essential component and received 
significant attention from academic and industry organi-
zations. The majority of current approaches for decision-
making methods can be divided into the rule-based method 
and the data-driven method. The rule-based methods employ 
heuristics and hard-coded rules to guide the behaviors, such 
as the Intelligent Driver Model (IDM) [7] and the MOBIL 
model [8]. For instance, if an autonomous vehicle with a 
rule-based model observes a stop sign while driving, rules 
enforce the model to set the acceleration to negative until the 
vehicle stop. It is feasible to design a strategy hand-crafted 
for simple traffic scenarios. However, the number of rules 
increases exponentially in complex scenarios, and there may 
be conflicts between the rules. Furthermore, the strategies 
are designed case-to-case, which lacks robustness and gen-
eralization ability to new scenarios.
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An alternative is data-driven method such as Reinforce-
ment Learning (RL). Recently, RL has made a remarkable 
achievement in addressing a variety of robotic problems [9, 
10] and autonomous driving tasks [11, 12] . The decision-
making problem for autonomous navigation can be formal-
ized as a Markov Decision Process (MDP) [11]. An agent 
(autonomous vehicle) tries to select the optimal policy to 
maximize the rewards with consideration of the influences of 
its behaviors through dynamic interaction with the environ-
ment. Most of the previous works are limited to single-agent 
tasks and cannot be directly introduced to multi-agent tasks. 
Multi-agent RL algorithms need to maximize the sum of 
the rewards of all agents, which makes it more difficult to 
optimize the network. Furthermore, as the number of agents 
increases, the complexity of the environment rises as well, 
which leads to a dramatic increase in the variance of optimi-
zation methods that estimate gradients by sampling.

To apply a reinforcement learning algorithm to an autono-
mous driving problem, a feature representation of the state 
must first be chosen. The state should at least contain a 
description of nearby vehicles and the environment. The 
spatial-temporal state feature is the most commonly-used 
representation [13]. A vehicle driving on the road can be 
described in a kinematic way by its continuous position, 
velocity, and heading. This representation is efficient. How-
ever, it has two limitations. First, the environment could 
vary over time and space, which is problematic for learn-
ing approaches that expect constant-sized inputs. Second, 
this type of feature representation is permutation-variant, 
i.e., dependent on the order in which the interactive agents 
are listed. For instance, simply switching feature entries 
of agent i and agent j would result in a different feature 
representation.

In this paper, we utilize Time-to-Collision (TTC) as 
the feature representation to train a controller for multiple 
autonomous vehicles. TTC is the time needed for a vehicle 
to collide if it continues driving on the same route and at 
the same speed. TTC focuses on the potential risk posed 
by other vehicles and static obstacles rather than a specific 
agent. Therefore, even if the number or order of the sur-
rounding vehicles changes, the feature representation will 
not be affected.

We also propose a safety check system (SCS) based on TTC 
as shown in Fig. 1. First, the SCS needs to determine whether a 
vehicle is unsafe. TTC is used as a threat assessment in several 
approaches [14, 15]. However, the general definition of TTC 
is calculated from relative distance and relative velocity with 
constant relative acceleration. When two vehicles are mov-
ing with approximately the same velocity, even if the distance 
between them is very close, the general TTC-based SCS will 
not detect a potential collision. Therefore, in the proposed 
method, the TTC under the three driving circumstances of uni-
form speed, acceleration, and deceleration will be calculated 

to improve the safety of the system. Second, the SCS needs 
to replace dangerous action output by RL with a safer action. 
For instance, the safety system proposed in [16, 17] includes a 
dynamically learned safety module in addition to handcrafted 
safety rules. However, the majority of current safety enhance-
ment methods were created for single autonomous vehicle 
tasks. For tasks involving multiple autonomous vehicles, the 
purpose of SCS is to guarantee the safety of the entire system. 
In this case, relying on communication between vehicles, the 
proposed method can satisfy comprehensive requirements 
including safety and order rationality.

The main contributions of this paper are summarized as 
follows.

1. We use the modified TTC as the state representation to 
train an RL controller for multiple AVs. It performs better than 
the conventional approach utilizing kinematics, demonstrating 
the reliability of this state representation.

2. We propose a safety check system for multiple AVs to 
enhance the safety of the system and improve the learning 
efficiency of RL. Simulation results show that the proposed 
method can effectively improve the arrival rate and reduce 
the collision rate, even in the case of dense traffic situations. 
Furthermore, we also conducted experiments to examine the 
performance of the safety check system with different time 
thresholds.

3. A ramp merging task in the computer simulation is used 
to examine the effects of the proposed method. Autonomous 
vehicles and environmental vehicles co-exist in the merge lane 
and the main lane. Vehicles on the ramp need to merge into 
the main lane efficiently without collision. After passing the 
main lane, autonomous vehicles need to divert to the ramp 
and reach the goal.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the methods. Experiment settings are described 
in Section 3. Results are shown in Sect. 4. Finally, we conclude 
this paper in Sect. 5.

2 � Methods

In this study, a deep reinforcement learning (DRL) algo-
rithm called Proximal Policy Optimization (PPO) [18], 
is used to train a decision-making controller. However, 

Fig. 1   The framework of the proposed approach
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DRL algorithms are not safe enough since the agent is 
encouraged to explore a wide range of states to find the 
best strategy. Therefore, it is necessary to equip autono-
mous vehicles with a security assurance mechanism when 
collisions are about to occur. In this study, we propose a 
safety check system for reducing collisions by utilizing 
Time-To-Collision (TTC).

2.1 � Proximal policy optimization (PPO)

A reinforcement learning problem can be formulated as 
a Markov Decision Process (MDP), which involves a set 
of states S, a set of actions A, a reward function R: S × A 
→ ℝ , and a probability function of the state transition P: 
S × S × A → [0,1]. At each timestep, the agent observes a 
state s ∈ S , takes an action a ∈ A, and gets a reward r ∈ 
ℝ , then moves to the state s� ∈ S . The final objective is to 
find an optimal control policy � : S → A, which maximizes 
the long-term cumulative reward. One of the most popular 
reinforcement learning algorithms, Proximal Policy Opti-
mization (PPO) [18], is applied in this task. It achieves 
remarkable levels of performance in a wide range of tasks 
including Atari 2600 games and Mojoco continuous con-
trol tasks. This method has two networks, i.e., actor and 
critic networks. PPO trains a stochastic policy in an on-
policy way. It improves the efficiency of the training data 
with the implementation of the clip function in the objec-
tive function. The main contribution of PPO is to make 
sure that an updated policy does not depart too far from the 
previous policy. This leads to smooth training and ensures 
that the agent will improve the performance monotonously.

The objective function for PPO is shown in Eq. 1.

Where rt(�) =
�
�
(at|st)

�
�old

(at|st)
 denotes the probability ratio under 

new and old policies, � is a hyperparameter denotes the limit 
of the range within which the update is allowed, Ât is the 
advantage of current timestep.

PPO ensures that in each update, the new policy is not 
too different from the old policy. It acheives this by clip-
ping the probability ratio rt in the range of [1 − �, 1 + �] . In 
this way, a huge update that might potentially be irrecover-
ably harmful is not allowed.

2.2 � Time‑to‑collision (TTC)

In research on traffic conflicts techniques, Time-To-Colli-
sion (TTC) has proven to be an effective measure for rating 
the severity of traffic conflicts [19]. According to Hay-
ward’s definition, TTC [20] is the amount of time needed 
for two vehicles to collide if they continue driving in the 
same route and at the same speed. It stands for the danger 

(1)LCLIP(𝜃) = �̂t[min(rt(𝜃)Ât, clip(rt(𝜃), 1 − 𝜖, 1 + 𝜖)Ât)]

posed by the vehicle at the current lane and speed. There 
is a higher chance of a collision when the TTC is low. The 
TTC of two vehicles can be approximated by Eq. 2.

Where Ri is the relative position vector of vehicle i, Vi is the 
relative velocity vector of vehicle i, | ⋅ | is the 2-norm of a 
vector.

2.3 � PPO with safety check

In this study, we propose a safety check system based on 
TTC. The central concept is that the action output by the 
DRL controller should be replaced with a safer action cho-
sen by the safety check system when an autonomous vehi-
cle detects a potential collision, i.e., the TTC is below the 
threshold. The overall algorithm is shown in Algorithm 1.

The detection of collision is achieved by calculating 
the TTC under the three driving circumstances of uniform 
speed, acceleration, and deceleration. Autonomous vehicles 
will communicate with each other, when a potential collision 
is detected, a safer action using Algorithm 2 will replace the 
action output by the RL controller. First, all the AVs will 
calculate their TTC according to the action output by the RL 
controller. Then, each AV broadcasts its TTC to other AVs 
and sequences them based on the level of risk. The action 
will be replaced if the TTC is below the time threshold. 
The high-risk vehicle will be given top priority for action 
replacement. The TTC of every possible action will be recal-
culated and the action with the highest TTC will be chosen 
as the new action, indicating maximum safety. When the 

(2)TTC =
|
|Ri

|
|

|
|Vi

|
| ⋅ cos < Ri,Vi >
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new action is selected, the high-priority AV will broadcast 
its latest target lane and speed to others. The process will 
then be repeated by vehicles with lower priority until the 
entire system is in a safe situation. 

3 � Experiment

This study conducted experiments in highway-env simula-
tors [21]. The code is implemented in Python using Pytorch 
framework. A desktop computer with NVIDIA RTX 3070 
GPU, AMD Ryzen 9 3950x CPU, and 128GB memory is 
used for the experiments.

3.1 � Task settings

In this study, a ramp merging task is used to evaluate our 
method. The environment is shown in Fig. 2. The simple 
task consists of 4 autonomous vehicles and 6 environmental 
vehicles. There are 300,000 timesteps in one training pro-
cess. The hard task consists of 8 autonomous vehicles and 8 
environmental vehicles. There are 500,000 timesteps in one 
training process. To increase the complexity of the hard task, 
an obstacle is added to the main lane. In the beginning, the 
vehicles in each of the three lanes are generated at a random 
position. Autonomous vehicles and environmental vehicles 
co-exist in the merge lane and the main lane. Vehicles on the 
ramp need to merge into the main lane efficiently without 
collision. After passing the main lane, autonomous vehicles 
need to divert to the ramp and reach the goal. For envi-
ronmental vehicles, we utilize the Intelligent Driver Model 
(IDM) [7] and MOBIL model [8] for longitudinal accelera-
tion and lateral lane change decisions.

3.2 � Neural network settings

The state space of the baseline method is the features of 
other vehicles, including ispresent, x, y, vx , vy , where ispre-
sent is a variable denoting whether a vehicle is observable, x 
and y are the longitudinal and lateral position of the observed 
vehicle, vx and vy are the longitudinal and lateral speed of the 
observed vehicle. A maximum of 16 vehicles (including 8 
autonomous vehicles and 8 environmental vehicles) can be 
observed, the state is represented by a 16 × 5 matrix.

The proposed approach uses TTC as the state represen-
tation. At each timestep, each vehicle will calculate TTCs 
with different speeds. In this study, the state of the autono-
mous vehicle is represented by a 3 × 3 × 10 matrix. The first 
dimension represents the TTC if the vehicle at the current 
speed, slows down, or speeds up. The second dimension 
represents the left, current, and right lane of the vehicle. 

Fig. 2   The ramp merging task conducted using the highway-env 
simulator. In the left lanes, the vehicles are generated at random. 
Environmental vehicles are depicted in blue, whereas autonomous 

vehicles are depicted in green. The on-ramp’s vehicles need to merge 
into the main lane. After a section of main lane, autonomous vehicles 
need to exit the highway by the off-ramp
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The third dimension represents the TTC time in one-hot 
encoding.

The action space of the autonomous vehicle is defined as 
the set of high-level control decisions, including turn left, 
idle, turn right, speed up, and slow down. After selecting the 
high-level decision, the low-level controller will produce the 
corresponding steering and throttle control signals to control 
the vehicle.

There are two neural networks in PPO, i.e., the actor and 
the critic. Fully connected layers are used in both neural 
networks. The inputs of the actor and the critic networks are 
the states of the autonomous vehicle. The actor’s outputs are 
the probabilities of the actions that the vehicle can take. The 
output of the critic network is the value function of the cur-
rent state. There are two fully connected layers in the actor 
and critic networks, each of which has a hidden unit of 256.

The hyper-parameters used in this study are shown in 
Table 1. Each experiment was repeated ten times with dif-
ferent random seeds.

3.3 � Reward settings

The performance of deep reinforcement learning algorithms 
is highly dependent on the design of the reward functions. 
At each timestep, each vehicle gets a reward using the 
Equation 3.

Where rt is the total reward that the vehicle can receive at 
each timestep, rc is the collision penalty when the vehicle 
is involved in a collision, ra is the arrived reward when the 
vehicle reaches the goal, rs is the reward when the vehicle 
speeds up. The penalty for changing lanes is rl , which is 

(3)rt = rc + ra + rs + rl

intended to discourage lane switching by the vehicle. The 
values of each reward setting are shown in Table 2.

4 � Results

4.1 � Simple task

Ablation experiments are conducted to investigate the 
impact of the state representation and the safety check 
system. We employ the conventional PPO method as the 
baseline method, which does not employ the safety check 
system and uses kinematic representation. It needs to 
be noted that the conventional method cannot equip the 
safety check system due to a lack of TTC information. 
Figure 3 shows the performance trajectories on the sim-
ple task, which is an average of 10 trials. The simple task 
consists of 4 autonomous vehicles and 6 environmental 
vehicles. Figure 3a shows the number of arrivals for the 
conventional method, the method using TTC representa-
tion without the safety check system, and the proposed 
method. Arrivals converge to 2.31, 2.33, and 3.1 respec-
tively. When the safety check system is not provided, the 
conventional method and the method using the TTC rep-
resentation have similar performance. Figure 3b shows 
the number of collisions for the conventional method, the 
method using TTC representation without the safety check 
system, and the proposed method. Collisions converge to 
1.22, 1.41, and 0.47 respectively. The best collision avoid-
ance ability can be obtained by the proposed method. Fig-
ure 3c shows the velocity for the conventional method, the 
method using TTC representation without the safety check 
system, and the proposed method. The velocity converges 
to 23.9m/s, 28.1m/s, and 27.8m/s respectively. Simula-
tion results show that the proposed method can effectively 
improve the arrival rate and reduce the collision rate with-
out reducing the efficiency of autonomous vehicles.

4.2 � Hard task

Figure 4 shows the performance trajectories on the hard task, 
which is an average of 10 trials. The hard task consists of 
8 autonomous vehicles and 8 environmental vehicles. An 
obstacle is in the middle of the main lane. Figure 4a shows 

Table 1   Hyper-parameters

Hyper-parameter Value

Batch size 64
Buffer size 240
Parallel environments 32
Optimizer Adam
Learning rate 0.0005
Number of timesteps 3e5
� in PPO 0.2
TTC time threshold 3
Input size of kinematic representation 16 × 5
Input size of TTC representation 3 × 3 × 10
Output size 5
Hidden layers size of actor network [256,256]
Hidden layers size of critic network [256,256]

Table 2   Reward settings Reward Value

Collision Reward r
c

−50

Arrived Reward r
a

100
High Speed Reward r

s
0.2

Lane Change Reward r
l

−0.05
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the number of arrivals for the conventional method with 
kinematic representation, the method using TTC represen-
tation without the safety check system, and the proposed 
method. Arrivals converge to 2.5, 4.8, and 6.3 respectively. 
As mentioned earlier, kinematic state representation would 
be affected by the number or order of surrounding vehicles. 
The effect would be magnified in a dense traffic situation. 
As a result, the conventional method performs worse than 
methods using TTC representation, even without the safety 
check system. Figure 4b shows the number of collisions for 
the conventional method, the method using TTC represen-
tation without the safety check system, and the proposed 
method. Collisions converge to 3.0, 3.0, and 1.4 respec-
tively. The proposed method has the best collision avoidance 
ability. Figure 4c shows the velocity for the conventional 
method, the method using TTC representation without the 
safety check system, and the proposed method. The velocity 
converges to 23.7m/s, 23.0m/s, and 27.1m/s respectively. 
In a dense traffic environment, the speed of each algorithm 
decreases slightly more than in the simple task. Generally, 
simulation results show that the proposed method can deal 
with a dense traffic scenario more than other approaches.

Simulation snapshots of the controller trained with the 
proposed method are shown in Fig. 5. It can be observed 
in Fig. 5a, b, that the first autonomous vehicle is driving on 
the main road. The second autonomous vehicle is driving on 
the merging road. As shown in Fig. 5c, when the distance 
between the two vehicles is close, which means the TTC 
is less than the safe time threshold, the action output by 
DRL will be replaced by a safer action. Therefore, the first 
autonomous vehicle chooses to turn left into another lane to 
avoid the potential collision, rather than go straight to maxi-
mize the expected return. In Fig. 5d, e, the second vehicle 
successfully merges into the main lane. As seen in Fig. 5f, 
the second vehicle makes a lane change to avoid a probable 
collision with an environmental vehicle.

Furthermore, to examine the effect of different safety time 
thresholds, evaluation experiments were performed. The safety 
time threshold is an indicator for evaluating the degree of dan-
ger of a state. When TTC is less than the safety time thresh-
old, the actions output by the RL method will be replaced 
with safer actions by the safety check system. Therefore, we 
changed the safety time thresholds to 1s, 3s, 5s, 7s, and 9s, 
respectively. The corresponding controllers are trained in the 

Fig. 3   The performance trajectories in the simple task, where each data point is the average of 10 trials (with standard deviation)

Fig. 4   The performance trajectories in the hard task, where each data point is the average of 10 trials (with standard deviation)
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hard task. Each controller is evaluated 50 times. The results 
of the evaluation experiments are shown in Fig. 6. As it can 
be observed, when the time threshold is 3s, the lowest colli-
sion can be obtained. As the safety time threshold increases, 
the number of collisions increases accordingly. Since it is still 
relatively safe when TTC is 7s or 9s, it is not ideal to replace 
actions too early. Especially there is a great fluctuation when 
the time threshold is 1s. It is difficult to completely avoid a 
collision since the emergency response time is insufficient. As 
a result, the best performance and safety can be obtained by 
setting the safety time threshold to 3s.

5 � Conclusion

In this paper, we propose a safety check system based on time-
to-collision. The central concept is that the action output by the 
DRL controller should be replaced with a safer action chosen 
by the safety check system when an agent detects a potential 
collision, i.e., the TTC is below the time threshold. A ramp 
merging task is used to examine the effects of the proposed 
method.

Simulation results show that the proposed method can 
effectively improve the arrival rate and reduce the collision 
rate, even in the case of dense traffic situations. Furthermore, 
we also conducted experiments to examine the performance of 
the safety check system with different time thresholds.

One limitation of our approach is the lack of complexity in 
the design of the simulated environment. In the future scope, 
more research on autonomous vehicles will be conducted. For 
instance, developing a more realistic simulation environment 
by incorporating data from real-world traffic systems could be 
an interesting direction.
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