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Abstract
The control of voluntary movements is a dual structure consisting of cognitive and physical controls; cognitive control, 
unlike physical control requires attentional resources. Various voluntary movements can be performed by combining cogni-
tive and physical controls. Body movements depending on attentional resources are performed using cognitive control; these 
movements fluctuate with white noise and their fluctuations gradually change to one-over-f fluctuation as the dependence 
on attentional resources decreases. Characters are handwriting processes in voluntary movement. This study focused on 
the relationship between a repetitive handwriting process and attentional resources allocated to it. The attention resources 
allocated to handwriting processes depend on how challenging the task is. Moreover, the difficulty of a handwriting task 
is determined by the complexity of the shape of the handwritten characters, and the stroke counts are one indicator of this. 
Therefore, we focused on three Chinese kanji characters with different stroke counts. Attentional resources can be identified 
by tapping movements concurrently with writing movements and comparing the result. An experiment was conducted for 6 
days for each of the three Chinese kanji characters, with 25 subjects who were familiar with the Chinese kanji character. We 
investigated fluctuations in the six temporal handwriting elements defined within each Chinese kanji character handwriting 
process. In the analysis, six-dimensional temporal handwriting elements were reduced to three dimensions using principal 
component analysis. Furthermore, detrended fluctuation analysis was applied to the three-dimensional principal compo-
nents. In this study, we examine the effectiveness of principal component analysis for the analysis of multidimensional data. 
Furthermore, we discussed the relationship between handwriting task difficulties and temporal handwriting elements using 
local scaling indices based on detrended fluctuation analysis.

Keywords Handwriting task · Fluctuation · One-over-f fluctuation · White noise · Detrended fluctuation analysis · Principal 
component analysis

1 Introduction

The control of voluntary movements is a dual structure con-
sisting of cognitive and physical controls; cognitive con-
trol, unlike physical control, requires attentional resources. 

Various voluntary movements can be performed by combin-
ing cognitive and physical controls. The separation of these 
controls could enable us to predict the level of physical skill 
acquisition based on the expenditure of attentional resources. 
The relationship between repetitive body movements and 
attentional resources has been studied using synchronous 
tapping tasks [1, 2]. Body movements depending on atten-
tional resources are performed using cognitive control; these 
movements fluctuate with white noise and their fluctuations 
gradually become one-over-f fluctuations as the dependence 
on attentional resources decreases.

Handwriting is a voluntary movement. Maleki et  al. 
focused on the repetitive handwriting task of Chinese kanji 
characters and developed an experimental system to clarify 
the relationship between fluctuations and voluntary move-
ments, that is, a dual-task method that combines synchronous 
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tapping and handwriting tasks [3, 4]. The specific method 
involved repeating and alternating one character handwrit-
ing and one tapping in time with auditory stimuli presented 
at regular time intervals. In their experiment, six types of 
partial motion times were defined within the single-character 
handwriting task, which is known as handwriting tempo-
ral elements (HTE), and the time series of the six HTEs 
were measured by repeating the single-character handwrit-
ing process. Fluctuation analysis was applied to each of the 
six measured HTE time series to examine the relationship 
between the partial motion elements corresponding to each 
HTE and the attentional resources assigned to it. Differences 
in the number of strokes between the three focused Chinese 
kanji characters were associated with differences in hand-
writing difficulty, and the relationship between handwriting 
difficulty and the allocation of attentional resources corre-
sponding to each HTE was discussed.

The complexity of the shape of the handwritten characters 
determines the difficulty of a handwriting task, and stroke 
counts are one indicator of this. The complexity of the char-
acter shape may affect the attention resources consumed 
during the handwriting process. Probably, the arrangement 
state (the distribution) of attention resources in one character 
shape is not uniform, and the arrangement state of attention 
resources varies from trial to trial, even within an individual, 
and it may not be uniform. Furthermore, the authors believe 
that if one wants to handwrite a beautiful character, one 
must focus on the appropriate part of the character shape. 

That is, if the arrangement of state of attention resources in 
the handwriting process of the character is quantitatively 
evaluated, it will provide a learning guideline in handwriting 
learning. Furthermore, the increase and decrease in attention 
resource consumption may be used in handwriting profi-
ciency evaluation.

By the way, principal component analysis (PCA) is a 
method for reducing the dimensionality of multidimensional 
data. In this study, PCA is used on a six-dimensional (6D) 
HTE to filter measurement data into three-dimensional (3D) 
PCA data. We focused on three Chinese kanji characters, 
with different numbers of strokes, “den,” “tsu,” and “dai,” 
and performed fluctuation analysis on the 3D PCA data. 
Because of the difficulty in ensuring the linearity of HTE 
data, we followed previous studies [5, 6] and used detrended 
fluctuation analysis (DFA). Then, we investigated the effec-
tiveness of PCA by evaluating the relationship between the 
local scaling index on the timescale and the difficulty of the 
handwriting task. We also evaluated the proficiency of each 
subject.

2  Experiment

Figure 1 illustrates the configuration of our experimental 
system [7]. The stroke motion was measured using a pen 
tablet (PTH860, WACOM Corp.); the coordinate positions 
of the pen on the pen tablet were recorded on the computer 

Fig. 1  Experimental system [7]
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at 200 Hz. Moreover, a trigger signal indicating whether 
the pen tip is attached to or detached from the tablet was 
output via a digital-to-analog converter (USB-3105, Meas-
urement Computing Corp.) and recorded at 1 kHz via an 
analog-to-digital converter (AIO-60/4/1B-USC, Y2 Corp.). 
The handwriting field on the pen tablet comprised a square 
area with a 50-mm side on the left (H-area) and a square area 
with a 10-mm side on the right (T-area). An “x” mark was 
drawn in the H-area to serve as the subject’s starting point 
for handwriting the designated kanji character.

The computer outputs a voltage rectangular waveform 
with a 20-ms width for emitting auditory stimuli through 
the speaker. Following a previous study by Maleki et al. 
[3, 4], we measured body temperature to easily assess the 
autonomic nervous system during the experiment. The body 
temperature was measured using three contact thermome-
ters (thermistor sensor SZL-64, high-accuracy temperature 
converter E471-0, Tateyama Kagaku Kogyo); the peripheral 
skin temperature was measured by attaching a thermometer 
to the tip of both hands so that it did not impede movement, 
and another was placed on the abdomen (50-mm above 
the navel) to monitor the temperature. First, the subjects 
answered two types of psychological questionnaires; the 
profile of mood states (POMS) and the state-trait anxiety 
inventory (STAI) [8, 9]. Then, they were instructed to close 
their eyes and rest for 150 s. Furthermore, they repeated the 
character writing and tapping tasks 250 times in time with 
the auditory stimuli, followed by 150-rest with closed eyes. 
Finally, the POMS and STAI questionnaires were conducted 
again. The experiment lasted 6 days and approximately 3 h 
per day. The POMS and STAI and the body temperature 
recordings were set up to monitor the subjects’ well-being 
during the experiment. Therefore, no cases of suspected 
influence on experimental results were found in any subject.

Figure 2 shows the time chart of the task [7]. We main-
tained the auditory stimulus until the task was completed, 
based on the repetitive periods (interstimulus interval, ISI) 
detected by the preliminary experiment with the task Chi-
nese kanji character “den.” The subjects were required to 
start writing with the first auditory stimulus. When they fin-
ished writing, they tapped the T-area using their pen tips to 
ensure that they were as in synchrony with the second audi-
tory stimulus as possible. The subjects started writing from 
the “X” mark in the H-area. They were allowed to complete 
250 trials, which comprised one set. The HTE was divided 
into six components (i.e., “SLs,” “SLe,” “LsT,” “LsLe,” 
“LeT,” and “ST”), which could be obtained from a single 
trial. The six HTEs were defined using four times, deter-
mined from the relationship between the auditory stimulus 
and handwriting task flows (Fig. 2). S, T, Ls, and Le mean 
sound (1st auditory stimulus), tapping, letter start (beginning 
of writing), and letter end (end of writing). That is, SLs is 
the time from sound to the beginning of writing, SLe is the 

time from sound to the end of writing, and ST is the time 
from sound to tapping. LsLe is the time from the start of 
writing to the end of writing; LsT is the time from the start 
of writing to tapping. LeT is the time from the end of writing 
to tapping. In this research, physical dimension of HTE is 
time, and the unit of HTE is the millisecond.

Table 1 summarizes the three characters selected for the 
handwriting task. They differ in the number of strokes used 
and in the handwriting ease. There are various possible indi-
cators of handwriting difficulty. However, in this study, the 
handwriting difficulty level is unimportant, but the differ-
ences in the handwriting difficulty between the three charac-
ters used in this experiment. The three characters used in this 
experiment are ranked by the number of strokes. In many 
cases, handwriting characters with a high stroke count are 
more tedious than handwriting characters with a low stroke 
count. The subjects were 28 healthy males and one female 

Fig. 2  Handwriting temporal elements (HTE) [7]

Table 1  Chinese kanji characters selected for the handwriting task

Pronunciation Character Stroke count

den 13

tsu 9

dai 3
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(aged 21–25). They were all college students with Japanese 
as their native language.

3  Analysis method

3.1  Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was invented by Peng 
and others in 1994 [10, 11]. The DFA is an effective method 
for fluctuation analysis in finite-length time series. The time 
series of the HTEs or HSEs is represented by ri (i = 1, 2, 3, 
…, N − 1, N, where N denotes the number of HTE or sam-
ples, that is, N = 250 ), which is the intended DFA signal. 
HSE is the data used in the previous study [7]. HSE is not 
included in the analysis of this research at this time. The 
definition of HSE is data that captures the size of characters 
in terms of X and Y coordinates. Full name of HSE is hand-
writing spatial-series element. Figure 3 shows an example of 
ri . This data is the ri for subject 1, day 1, ST. The horizontal 
axis is i and the vertical axis is ri . The time series sk (k = 1, 
2, 3, …, N − 1, N) of the cumulative sum of ri was computed 
as follows:

where r is a mean value ofri . Value s∗
n
(k) is the regression 

line of the time series ( sk,sk+1,sk+2 , …,sk+n−2,sk+n−1 ), where 
n = 3, 4, 5, …, N − 1, N is the timescale. Its slope on the 
log–log scale field of the F(n) characteristic defined by 
Eq. (2) is known as the scaling index

(1)Sk =

k∑
i=1

(
ri − r

)

If the scaling index is around 1.0, the motion is controlled 
by physical control. If the scaling index is around 0.5, move-
ment is controlled by cognitive control [1, 12]. Therefore, 
the more familiar the subject becomes with the task, the 
larger the value of the scale index.

In this study, the general shape of the F(n) - n character-
istics was curved, which is commonly referred to as a crosso-
ver phenomenon. The same linearity is limited to a specific 
timescale for the qualitatively observed crossover phenom-
enon. To avoid this crossover problem, we focused on local 
trends and defined a new slope parameter �knj

m,day
 ( knj = den, 

tsu, dai; day = day1, day2, …, day6; m = 1, 2, 3, …, N–(M + 
1), N − M ) as a local scaling index. �knj

m,day
 is the slope of the 

regression line when F(n) - n is a log–log plotted in the time-
scale interval [ m , m +M − 1 ]. M is set to an arbitrary con-
stant. In this study, it was set to 70, approximately 1/4 of the 
overall length, because of the stability of the DFA [13]. The 
calculated image of the beta is drawn in Fig. 4. As shown in 
Fig. 4, the slope of the regression line was calculated on a 
log–log plot of F(n)-n with the time scale interval fixed at 
70, and the value of �knj

m,day
 is the slope of the regression line.

3.2  Evaluation value

The PCA [14, 15] was performed on the six HTEs. PCA is a 
method to represent the information possessed by variables 
{xp}(p = 1, 2,… ,P) using independent principal compo-
nents {zm}(m = 1, 2,… ,M) given as the first-order combi-
nation of PX, while maximizing the loss of information.

(2)F(n) =

√√√√ 1

N

N∑
k=1

(
Sk − S∗

n
(k)

)2

Fig. 3  Example of ri
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�pm is determined to satisfy the following conditions. 
The variance of first component z1 is the largest among the 
variances possessed by all linear expressions of xp , and the 
variance of m th component zm is the largest among the 

(3)Zm =

p∑
p=1

�pm�p

variances possessed by all uncorrelated linear expressions of 
{zm� }(m

�

= 1, 2,… ,m − 1) . In addition, Eq. (4) is satisfied.

The principal component scores of the first through the 
third principal components were extracted. These were con-
firmed in the preliminary analysis, demonstrating that they 
had a principal component ratio above 90%. The results of 
the preliminary analysis are shown in Sect. 4.1. The first 
principal component makes the highest contribution and the 
third principal component has the lowest contribution.

�
knj

m,day
 was calculated using DFA for the first principal 

component on each experimental day. Eknj is calculated from 
the ratio of �knj

m,day
 in the first half of the experimental days to 

�
knj

m,day
 in the second half of the experimental days using 

Eq. (5).

(4)
p∑

p=1

�2

pm
= 1

(5)Eknj =

N−M�
m=1

⎛
⎜⎜⎝
�
knj

m,day1
+ �

knj

m,day2
+ �

knj

m,day3

�
knj

m,day4
+ �

knj

m,day5
+ �

knj

m,day6

− 1

⎞⎟⎟⎠

Fig. 4  �knj
m,day

Fig. 5  Cumulative contribution ratio of PCA
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If Eknj is positive, �knj
m,day

 increases; if Eknj is negative, �knj
m,day

 
decreases. That is, if Eknj is positive, the subject is used in 
the experimental task; if Eknj is negative, the subject is not 
used in the experimental task.

4  Result and discussion

4.1  Cumulative contribution ratio of PCA

We present data on the cumulative contribution obtained 
from preliminary analysis. By examining this data, we 
discuss why the 6D HTE data could be converted to 3D 
PCA data. cumulative contribution ratio results are the task 
Chinese kanji characters “den,” “dai,” and “tsu,” which are 
96% or higher as shown in Fig. 5. Figure 5 shows a bar 
chart with cumulative contribution ratio on the vertical 
axis and subjects on the horizontal axis. Result of "den” 
is shown in red, result of "tsu" in green, and result of "dai" 
in blue. A horizontal line is drawn where the cumulative 

contribution ratio is 96%. We found that the three principal 
components contained sufficient information about the six 
HTEs. As noted in Sect. 3.2, the cumulative contribution rate 
was higher than 90%. The 6D HTE data were successfully 
aggregated into 3D PCA data for all Chinese kanji char-
acter tasks for all subjects. We found that the cumulative 
contribution for PCA data up to 3D exceeds 90% because 
6D HTE data can be expressed in terms of HTE up to 3D, 
as shown in “ LsLe = SLe − SLs ,” “ LsT = ST − SLs ,” and 
“ LeT = ST − SLe.”

4.2  Best scaling index

The best scaling index was examined to determine how far 
along in the experimental task the subjects were most com-
fortable with the experimental task. We discuss whether sub-
jects continue to become used to the task over the course 
of the experiment or they stop being used to the task in the 
middle of the experiment.

During the experimental task, we investigate when m sub-
jects become used to the task. We retrieved the maximum 

Fig. 6  Histograms of the best �knj
m,day
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Fig. 7  Result of Eknj
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value of �knj
m,day

 for each day. Maximum �knj
m,day

 of 
m = 1,m = 180 is deleted, because it is not a peak. The 
results are shown in Fig. 6. “den” is shown in the upper red 
histogram, “tsu” in the middle green histogram, and “dai” 
in the lower blue histogram. The maximum �knj

m,day
 counted 

on the horizontal axis is represented by m . The vertical axis 
is the counted number.

Figure 6 shows that for “den,” �knj
m,day

 is at a maximum of 
around 90, implying that subjects get used to the experiment 
as the experiment progresses. However this result suggests 
that no meaning to run the experiment too long. Maximum 
�
knj

m,day
 for “tsu” is almost flat, implying that there are various 

tendencies depending on the subject and the number of 
experiment days. Maximum �knj

m,day
 for “dai” is at a maximum 

of around 1, implying that subjects are already used to the 
experimental task. We consider “dai” is too easy.

4.3  Evaluation value

The results of the Evaluation value Eknj are discussed. This 
result allows us to discuss how well the subjects became 
accustomed to the experiment as a whole.

Figure 7 shows the results of Eknj . The results are shown 
for Eden on the left, Etsu in the center, and Edai on the right. 
The vertical axis is Eknj and the horizontal axis is the subject. 
The color of the graph is changed according to the positive 
and negative values, with red for positive values and green 
for negative values.

Figure 7 on the left shows that the Eden was positive in 
23 of 29 subjects. The average Eden is 24.8. Figure 7 on the 
right shows that the Edai was positive in 10 of 29 subjects. 
The average Edai is − 1.98. Figure 7 in the center shows that 

the Etsu was positive in 13 of 29 subjects. The average Etsu 
is 2.76.

These results show that the subjects became used to the 
experimental task with “den,” but not with “tsu” and “dai.” 
The reason they were not used to the experimental task with 
“tsu” and “dai” is that the preliminary experiment for this 
study was conducted based on “den.” We consider the exper-
imental task with “tsu” and “dai” too easy.

4.4  Hierarchical cluster analysis

A cluster analysis is applied to the evaluated value E to 
divide the subjects into three clusters. By dividing the sub-
jects into clusters, we discuss what kind of subjects were 
present and what characteristics subjects of each cluster has.

The results of Eknj were discussed using hierarchical 
cluster analysis. Ward's method [16] and square Euclidean 

distance [17] were used for the hierarchical cluster analysis. 
Cluster analysis is a method of classifying a subject by col-
lecting data from a group of people that have similar ele-
ments to each other. The results are shown in Fig. 8. Red 
is the first cluster, green is the second cluster, and blue is 
the third cluster. This graph shows that the first cluster has 
5 subjects, the second cluster has 17 subjects, and the third 
cluster has 7 subjects. To further examine the contents, we 
discuss the data for each cluster. The results of Eknj for each 
cluster are shown in Fig. 9. The first cluster is at the top, 
the second cluster is in the middle, and the third cluster is 
at the bottom.

The first cluster had the highest Etsu values, and the sub-
jects were more used to “tsu” than to “den.” The second 
cluster consists of subjects who took high Eden values. How-
ever, they were not used to Etsu and Edai . The third cluster 

Fig. 8  Results of cluster analysis



433Artificial Life and Robotics (2023) 28:425–434 

1 3

had high values for both Eden and Edai . We assumed that Eknj 
is a measure that can be used to evaluate a certain level of 
proficiency, but that its effectiveness is different for each 
subject.

5  Conclusion

The 6D data was compressed into 3D data, and the cumu-
lative contribution ratio was examined. We confirmed the 
effectiveness of PCA for dimensional compression in this 
way. At the end of the experiment, all the subjects tended to 
become used to the task. The evaluation value Eknj created 
in this study indicated proficiency in the task Chinese kanji 
character “den.” However, it did not show proficiency for 
“tsu” and “dai,” which is because the experimental system 

Fig. 9  Results of Eknj for each cluster
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was constructed based on “den.” We would like to exam-
ine the effect of constructing an experimental system based 
on Chinese kanji characters other than “den” in the future 
to confirm this hypothesis. We will consider incorporating 
unlearned task characters into experiments in the future.

Appendix

See Figs. 10, 11 and 12.
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