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Abstract
Heart rate variability (HRV) is an indicator of changes in the interval between successive R-waves on the electrocardiogram 
(ECG), known as R–R intervals (RRI), caused by autonomic nervous system activity. Measurement of RRI is useful in 
detecting diseases related to autonomic nervous system activity and predicting seizures. This study proposes an improved 
heart-rate measurement system that combines a highly accurate, compact, and inexpensive patch-type RRI telemeter with 
a smartphone application that automatically selects the appropriate measurement position without the need of an expert. 
To evaluate the measurement accuracy, the RRIs of 10 healthy men and 10 healthy women in supine, sitting, standing, and 
walking (3 km/h) postures were simultaneously measured using the proposed system and a reference ECG measurement 
system, and the obtained results were compared. Furthermore, the R-wave detection rate was measured, and Bland–Altman 
analysis was conducted to analyze the measurement accuracy of the proposed system. The results show that the R-wave 
detection rate and limit-of-agreement were sufficiently accurate for HRV analysis for 68 and 67 out of the total of 80 epochs, 
respectively. The fabricated system is expected to enhance the ability of non-experts to conduct ECG measurements and will 
contribute to improve the quality of healthcare through continuous monitoring at home.
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1 Introduction

In recent years, it has become clear that heart rate variability 
(HRV) analysis can detect signs of illnesses and seizures. 
For example, it can be used to screen patients with suspected 
sleep apnea, those who fall asleep at the wheel, and for the 
prediction of epileptic seizures [1–3]. To perform HRV 
analysis, it is necessary to measure the R–R interval (RRI) 
in the electrocardiogram (ECG) with sufficient accuracy and 
long-term stability. In general, heart rates are measured in 
hospitals, because the medical equipment required for the 
measurement is difficult to carry, requires specialized knowl-
edge, and is expensive. Furthermore, this equipment can-
not respond to out-of-hospital symptoms that occur at night 
or following sudden arrhythmias. A small, wireless Holter 
electrocardiograph is used for continuous heart-rate meas-
urement outside the hospital. However, Holter ECGs are not 
equipped with a function to analyze HRV in real time, which 
is problematic and ineffective. Several wearable electronic 
technologies have been introduced for daily heart rate meas-
urements, including smart clothing, smart wear, wearable 
health systems, and wearable ECGs [4, 5]. Compared with a 
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conventional ECG, a garment-type wearable device is more 
suitable for long-term monitoring and daily use. However, 
motion artifact interference, mainly caused by the friction 
between the textile electrodes and the skin, considerably 
limit the performance of these devices [6]. Furthermore, 
garment-type devices have fixed electrode measurement 
positions, and some studies have shown that the position of 
the electrodes affects the results of the measurements [7]. In 
addition to garment-type ECGs, patch-type telemeters have 
also been studied [8]. Unfortunately, conventional patch-type 
devices are too large to conduct measurements for long peri-
ods of time in daily life, and it is difficult to wear them when 
going out. In addition, expertise and experience are required 
to affix these devices in the proper position.

Therefore, we developed a highly accurate, compact, 
and inexpensive patch-type RRI telemeter to measure 
heartbeats continuously in daily life. To allow this device to 
facilitate long-term stable RRI measurements, the R-wave 
should have a sufficiently high amplitude relative to baseline 
variations and other characteristic waves. However, the 
optimal electrode placement for inducing such an ECG 
varies considerably among individuals. Therefore, for 
people with little or no expertise, analyzing HRV by placing 
the electrodes at the appropriate positions can be difficult. 
Hence, a system that instructs the user on the proper use of 
the device is essential.

The remainder of this paper is organized as follows. We 
describe the system design and algorithm in Sects. 2 and 3, 
respectively. In Sect. 4, we explain the evaluation process, 
and validation results are presented in Sect. 5. Finally, the 
conclusions are stated in Sect. 6.

2  Patch‑type RRI measurement device

2.1  Device overview

Figure 1 shows the patch-type device, and Fig. 2 shows its 
attachment.

The top part of the patch-type device has dimensions 
equal to 103 mm × 30 mm × 8 mm, and the thickness of the 
base is 0.15 mm. The sampling frequency is 1.2 kHz and 
the resolution of the analog/digital (A/D) converter was 24 
bits. The base itself was sufficiently flexible to conform to 
the curves of the body, and has a mass equal to only 44.0 g. 
Furthermore, automatic gain adjustment and digital filters 
provided stable R-wave detection.

The device uses Bluetooth low energy (BLE), a low-
power-consumption communication method, to transmit data 
to a smartphone for continuous measurements over a long 
period without constraints. When the battery was charged 

to a capacity of 100%, it could operate continuously for 
approximately 18 h.

This patch-type device does not calculate the HRV 
directly; however, it measures only the RRI. A smartphone 
application receives and calculates RRI data in real time to 
derive the HRV indices [3]. The HRV indices to be derived 
comprise a) four time-domain indices: the mean of RRI 
(meanNN), the standard deviation of the RRI (SDNN), 
the root-mean-square of the difference of adjacent RRIs 

Fig. 1  Patch-type device

Fig. 2  Attached patch-type device
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(RMSSD), and the number of pairs that are 50 times greater 
than the difference of adjacent RRIs (NN50); and b) four 
frequency-domain indices: total power (TP), power in the 
low-frequency band of 0.04–0.15 Hz (LF), power in the 
high-frequency band of 0.15–0.4 Hz (HF), and the ratio 
of LF to HF (LF/HF). The HRV indices were obtained 
from statistical, or frequency analyses of the 3 min moving 
window. From this, an outlier in the RRIs would affect 
adversely the indices of the subsequent 3 min intervals. 
Therefore, the outlier RRIs ought to be replaced by the real-
time compensation techniques, which were implemented as 
a function of a smartphone application. The RRIs observed 
during 180 s were stored in a buffer. The median absolute 
deviation  RRIMAD of the ith RRI was calculated using the 
stoNred RRIs  (RRIn | n: 1–i-1) as

where the function “median” estimates the median of the 
input variables. The range of normal RRIs is given by

where the standard deviation � = 1.4826 × RRI
MAD

 . The 
RRI outliers, which are smaller than the lower limit, are 
removed from the RRI data used for the HRV analysis. 
However, when the observed RRI is greater than the upper 
limit, multiple heartbeats are assumed to have been missed. 
Therefore, the number of heartbeats N is estimated as

where the function “round” returns the decimal point 
rounded value of the input value (in ms), and the outlier is 
replaced with the Nth corrected RRIs, given by

2.2  Operation principle of patch‑type device

A block diagram of the device is shown in Fig. 3.
A high-pass filter with a frequency of 0.16 Hz was applied 

to the input signal to remove the direct current and low-
frequency-drift components in the ECG measurements. The 
signal was then amplified using an instrumentation amplifier 
with a common-mode feedback mechanism. The common-
mode feedback mechanism allows in-phase waveforms to 
appear at each positive and negative input terminals of the 
differential amplifier circuit. This subsequently ensures that 
the noise introduced at each terminal is cancelled out. The 
instrumentation amplifier was INA122 manufactured by 
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Texas Instruments. The amplification factor was defined as 
follows:

In this study, R
G
= 10 kΩ. Therefore, the amplification 

factor of this instrumentation amplifier was 25. A variable 
gain low-pass filter (LPF) was used to attenuate frequencies 
above 678.6 Hz. The working of the variable gain LPF is 
explained in detail in Sect. 2.2.2 and thereafter. A multiple 
feedback type BPF with a center frequency of 30 Hz and a 
quality factor of 1.0 was inserted between the output of the 
instrumentation amplifier and the input of the variable gain 
LPF.

The ECG waveform was amplified to obtain the R-wave 
amplitude of approximately 0.2 V (+ 500,000 in digital 
value) by an automatic gain-optimization mechanism in the 
variable gain LPF that is explained in Sect. 2.2.2. Herein, 
the desired amplitude of 0.2 V was set to help the signal 
to remain in the dynamic range despite the ECG-baseline 
fluctuations.

2.2.1  R‑wave detection method

Figure 4 shows the processing in the microcomputer.
An AD converter (ADS1246IPW, Texas Instruments) 

sampled the analog input with a sampling frequency of 
1.2 kHz. The sampling resolution was 24 bits; thus, the 
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Fig. 3  Block diagram of patch-type device

Fig. 4  Microcomputer block diagram
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input range was converted to a digital signal in the range of 
− 8,388,608 to + 8,388,607. Because the circuit treated only 
positive values, the range of 0 to + 8,388,607 corresponded 
to a voltage range of 0–3.3 V.

Furthermore, 50 Hz and 60 Hz notch filters were used 
to reduce the effect of hum noise generated by commercial 
power supplies. In addition, the attenuated BPF frequencies 
below 3 Hz and above 200 Hz. Subsequently, smoothing 
was added using the moving average of a 32-sample window 
for preprocessing, followed by first-order differentiation and 
R-wave detection.

The first derivative of the ECG was used for R-wave 
detection. It was further aided by steep changes in the wave-
form for R-wave detection. The threshold settings for the dif-
ferential waveforms are shown in Fig. 5. Thresholds for the 
height, width, and area were set for the positive and negative 
pulses of the differential waveform. The height indicates the 
magnitude of displacement and serves as an indicator of 
steep changes; the width represents the time required for 
the change, and the area represents the size of the R-wave in 
the original waveform. A wave was considered as an R-wave 
when all the aforementioned thresholds were exceeded [9].

2.2.2  Automatic gain‑optimization mechanism

A patient’s age and physique can affect considerably the 
R-wave amplitude. In addition, factors such as electrode 
placement and the degree of adhesion between the electrodes 
and body surface can decrease the amplitude during meas-
urements. Therefore, to account for these influencing fac-
tors, the patch-type device was equipped with an automatic 
gain-optimization mechanism. Herein, Fig. 6 illustrates the 
adjustment of Rc using the automatic gain-optimization 
mechanism on the patch-type device.

The amplification factor of a variable-amplification LPF 
is defined as R2/Rc, where Rc is a variable resistance. The 

 Rc value is within the range of 0–50 kΩ and is divided into 
64 steps by a microcomputer. In the patch-type device, the 
amplification factor is adjusted by increasing or decreasing 
the value of R, such that the R-wave amplitude eventually 
reaches a digital value of approximately + 500,000.

The method for adjusting R is as follows:

1. First, set the value of R  to  32Rstep, where 
Rstep = 50/64 kΩ. We note that  32Rstep is half of the 
maximum value of  Rc

2. If the R-wave amplitude exceeds the digital value 
of + 500,000, reduce the amplification factor. This is 
performed by changing the value of Rc to the midpoint 
of its upper limit and the original value. The lower limit 
of Rc is changed to its original value

3. If the amplitude of the R-wave is less than the digital 
value of + 500,000, the amplification factor is increased 
by changing the value of Rc and its original value. The 
upper limit of Rc is changed to its original value

As shown in Fig. 6, this process was repeated six times to 
determine the final amplification ratio.

3  Optimal pasting position

3.1  Pasting position‑selection algorithm

We developed a system that scores ECG waveforms and 
selects the optimal position for RRI measurements. The 
system indicates the pasting positions to the user on the 
corresponding smartphone application. Herein, the ECGs 
measured at each position are used for scoring. The pasting 
position with the highest score is determined to be optimal.

Fig. 5  Thresholding in differential waveforms. The height and area of 
the negative pulse have negative values

Fig. 6  Rc adjustment method
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The procedure for the operation of the pasting-position 
selection system is as follows:

Apply the patch-type device onto the human body at the 
recommended position specified by the application. By 
maintaining the device in that state, press the OK button 
on the application to facilitate measurement and scoring
After the measurement is complete, perform the 
measurement and scoring at the next specified pasting 
position. Repeat this process for all specified pasting 
positions
After all the measurements at all the pasting positions are 
completed, attach the patch-type device onto the optimal 
pasting position specified by the application and repeat 
the measurement
If the score of the optimal paste position is above 11,500, 
the selection application is terminated; otherwise, the 
procedure is repeated from the beginning until this 
condition is satisfied

A flowchart of the pasting-position selection process is 
presented in Fig. 7. The system employs a software–hard-
ware cooperative algorithm that is its most important fea-
ture, which contributes considerably to the usability of the 
system. The smartphone app (software) implements the 
functions for which visibility and user interaction are impor-
tant. The embedded program (hardware) is responsible for 
accurate measurements and scoring.

The system evaluates the ECG waveforms obtained from 
five different pasting positions and selects the position that 

provides the most stable ECG waveform. A flowchart of the 
waveform analysis is shown in Figs. 8 and 9.

The waveform analysis procedure is as follows:

 1. A patch-type device is attached to pasting Position 1, 
and the ECG waveform is acquired for 2000 ms

 2. Gain adjustment is performed using the acquired ECG 
waveforms for 2000 ms. A score of 500 is added if the 
gain is greater than 7 and less than 44

 3. After gain adjustment, ECG waveforms for 3000 ms 
are acquired as the waveform (known as the “model 
waveform”) to be scored at this attachment position

 4. Scores are added according to the number of R-waves 
detected in the model waveform. The ratios of the val-

Fig. 7  Flowchart of pasting position-selection process Fig. 8  Waveform analysis flowchart (Start terminal–B terminal)
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ues of the numbers of detections and the score are 0:0, 
1–2:500, 3–5:1000, 6:400, 7:300, 8:200, and ≥ 9:0, 
respectively (Terminal A in the flowchart)

 5. If the average RRI obtained from the model waveform 
is between 300 and 1000 ms based on an estimation 
of the range of typical RRIs in the resting position, a 
score of 1000 is added

 6. The amplitude (AD sampling value) of the first R-wave 
in the model waveform is divided by 100, and then 
added to the score (Terminal B in the flowchart)

 7. If any AD sampling values of the model waveform 
are greater than twice the amplitude of the detected 
R-wave, a value that is five times the number of 
sampled data is subtracted from the score. This process 
intends to reduce the score for cases in which the 
waveform contains fluctuations or noise larger than 
the intensities of the R-waves

 8. If any AD sampling values of the model waveform 
are smaller than twice the amplitude of the estimated 
S-wave in the model waveform, the number of samples 
is subtracted from the score (Terminal C in the flow-
chart)

 9. The score thus obtained is saved at pasting Position 1
 10. Steps 1–9 are performed for pasting Positions 2–5 

in the same manner, and their respective scores are 
calculated (Terminal D in the flowchart)

 11. The scores obtained for pasting Positions 1–5 are 
compared, and the pasting position with the highest 
score is considered the optimal pasting position 
(Terminal End in the flowchart)

Thus, the optimal placement position was automatically 
selected by the microcomputer by comparing the scores from 
the ECG waveforms acquired at each placement position, 
and the subject was notified through the application’s user 
interface. Subsequently, the RRI measurement was initiated.

3.2  Pasting position

The optimal pasting position-selection system uses a smart-
phone application to instruct the user about the various place-
ments of the patch-type device. The system calculates the 
scores for five pasting positions, as shown in Fig. 10, and 
determines the optimal pasting position according to the score 
results.

Fig. 9  Waveform analysis flowchart (B terminal–D terminal, end ter-
minal)

Fig. 10  Pasting positions
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4  Methods

4.1  Experimental procedure

In this experiment, the patch-type device was applied, and 
measurements were conducted in four positions: supine, 
sitting, standing, and walking (3 km/h). Furthermore, the 
R-wave detection rate and RRI measurement accuracy were 
evaluated by employing simultaneously the proposed system 
and a reference ECG measurement system for measurements. 
In addition, a bedside monitor (BSM-3400, Nihon Kohden) 
was connected to the electrode terminals of the patch-type 
device to monitor the ECG waveform obtained at the optimal 
position. Experiments were conducted on 10 healthy male 
subjects and 10 healthy female subjects. The reference ECG 
measurement system comprised a high-sensitivity amplifier 
(MEG-6108, Nihon Kohden), digitizer (PowerLab16/35, 
ADInstruments), and PC with LabChart8Pro, connected in 
series.

First, a disposable electrode was affixed to induction 
II (midaxillary line to 5th intercostal space, left lateral 
clavicular fossa, and right lateral clavicular fossa) to obtain 
a reference ECG. Subsequently, the patch-type device was 
switched on and the application was started to select the 
pasting position. Subsequently, the process of optimal 
position selection described in the previous chapter was 
initiated, and measurements in the four body positions were 
started at the selected optimal position. After pasting the 
device on the optimal position, the electrode terminals of 
the patch-type device were connected to the bedside monitor. 
Measurements were then taken in four postures for 5 min 
each simultaneously using the reference ECG measurement 
system, a bedside monitor, and a patch-type device.

All experiments were conducted in compliance with the 
Declaration of Helsinki, using methods approved by the 
Ethics Committee of the Graduate School of Advanced 
Science and Technology, Kumamoto University (No. 
H26-1).

4.2  Evaluation indices

We used the R-wave detection rate, which has been proposed 
as a criterion for the stability of RRI measurements [3] as 
an evaluation index in this study. According to Salo et al., 
the R-wave detection rate for HRV analysis is 95% [10]. 
Furthermore, we used Bland–Altman analysis, which 
quantifies the error between the two methods. The limit 
of agreement (LoA), calculated using the Bland–Altman 
analysis, is given by the following equation:

In the above equation, Bias is the mean of the differences 
between the two methods; SD is the standard deviation. 
Bland–Altman analysis requires a sampling rate of 250 Hz 
or higher in ECG measurements for HRV analyses. If the 
sampling rate is lower than that, the spectrum in the analysis 
will change [11]. Therefore, if LoA was within the range of 
± 4 ms, the RRI-measurement accuracy was sufficient for 
HRV analysis.

5  Results

Tables 1 and 2 present the results for the male and female 
subjects, respectively, for R-wave detection rate, LoA, and 
selected induction.

As presented in Table 1, the R-wave detection rate for 
male subjects was greater than 95% in 32 of the 40 measured 
epochs. In addition, LoA was within the Bias ± 4 ms in 32 
epochs. Positions 1–5 were selected with the probabilities of 
42.5%, 12.5%, 10%, 25%, and 10%, respectively. Thus, the 
least likely selected pasting position had a selection prob-
ability of 10%. As presented in Table 2, the R-wave detection 
rate for the female subjects was greater than 95% in 36 of 
the 40 measurement epochs. In addition, LoA was within 
Bias ± 4 ms in 35 epochs. Positions 1–5 were associated 
with the respective probabilities of 40%, 35%, 7.5%, 10%, 

(7)LoA = Bias ± 1.96SD

Table 1  R-wave detection rate 
[%]/limit of agreement (LoA) 
[ms]/selected induction in male 
subjects

Subjects Supine Sitting Standing Walking

M1 100/0.4 ± 2.1/2 89.8/0.4 ± 3.5/5 88.9/0.2 ± 6.4/2 99.5/0.3 ± 3.7/3
M2 99.6/0.4 ± 1.9/3 91.2/0.3 ± 3.0/4 100/0.4 ± 1.6/1 89.0/0.4 ± 6.0/1
M3 99.0/0.4 ± 1.8/4 99.7/0.4 ± 1.4/1 100/0.4 ± 1.7/1 93.3/0.3 ± 7.9/1
M4 98.9/0.4 ± 2.3/3 58.2/0.2 ± 10.8/4 98.4/0.4 ± 3.8/1 99.6/0.4 ± 2.5/1
M5 95.3/0.3 ± 2.1/1 98.0/0.4 ± 1.5/4 96.3/0.4 ± 5.0/5 90.9/0.4 ± 7.1/2
M6 100/0.4 ± 1.3/4 100/0.4 ± 1.4/1 99.6/0.4 ± 1.5/1 99.0/0.4 ± 3.8/5
M7 100/0.4 ± 1.5/4 99.4/0.4 ± 2.0/1 100/0.4 ± 1.3/1 99.5/0.4 ± 2.2/3
M8 97.0/0.4 ± 1.5/1 99.5/0.4 ± 1.2/5 98.3/0.4 ± 3.0/1 89.6/0.3 ± 10.0/1
M9 100/0.4 ± 2.0/2 99.7/0.4 ± 1.6/1 100/0 ± 2.5/1 99.2/0.4 ± 4.0/2
M10 100/0.4 ± 1.4/4 100/0.4 ± 1.2/4 100/0.4 ± 1.4/4 97.1/0.3 ± 4.2/4
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and 5%. There were nine epochs for the same subject in the 
same position that did not meet the criteria for the R-wave 
detection rate and LoA.

In this experiment, detection failures occurred at 17 
epochs, and the R-wave that caused detection failures at the 
M1 sitting position is shown in Fig. 11.

All R-wave amplitudes were measured for 17 epochs 
and divided into two groups for each epoch, namely, the 
detected and omitted amplitudes. Three of the epochs were 
excluded because of mismatches between groups, and the 
remaining 14 epochs were compared between groups using 
the Wilcoxon rank-sum test. The test results showed that in 
13 of the 14 epochs, the amplitude of the undetected R-wave 
was considerably smaller than that of the detectable R-wave.

6  Discussion

Currently, patch-type devices are already commercially 
available and, however, are intended for use by special-
ists with medical knowledge. In addition, its application is 

possible only based on the assumption that the device is 
positioned accurately to lead an appropriate ECG ampli-
tude, and that the device appropriately reapplies itself when 
measurement becomes faulty. The patch-type device used in 
the current study was assumed to be applied by nonspecial-
ists, and was used for routine measurements. People with 
no expertise experience difficulties in performing measure-
ments at the optimal pasting position. To overcome this limi-
tation and to improve the device usability for the public, we 
proposed the use of the patch-type device in combination 
with the optimal pasting position selection system.

The most frequently selected position for the male and 
female subjects was Position 1; however, the selection 
rate was approximately 40% for both genders. This result 
indicates that there are individual differences in the position 
and orientation of the heart. Fixing the position to only 
Position 1 may contribute to the improvement of usability by 
reducing the time required to select the position. However, 
the probability that the pasting Position 1 is the optimally 
selected position is at most 40%. This implies that other 
subjects may not be able to measure at the optimal position. 
Therefore, an optimal pasting position system that can 
accommodate individual differences could be useful.

A difference between the selection rate of the pasting 
positions by males and females could be observed. 
The selection rate of the pasting Position 2 was 12.5% 
for males, whereas it was 37.5% for females, which is 
the second highest rate. In addition, the selection rates 
for the pasting Positions 1, 3, and 5 were lower among 
females than males. Owing to the anatomical differences 
of the upper thorax in males and females, the presence 
of breasts in females may cause the patch-type device 
to tilt perpendicularly to their body axes. Therefore, the 
amplitudes of the R-waves detected by the patch-type 
device may become smaller at differing breast sizes. 
Therefore, females appear to be more prone to individual 
differences. As shown in Fig. 10, in the pasting Position 2, 
the device is placed at the center of the chest, and it may 
decrease the influences of the breast size compared with 

Table 2  R-wave detection 
rate [%]/LoA [ms]/selected 
induction in female subjects

Subjects Supine Sitting Standing Walking

F1 100/0.4 ± 1.3/1 100/0.4 ± 1.6/1 99.1/0.4 ± 2.2/3 97.4/0.4 ± 3.8/1
F2 100/0.4 ± 1.5/5 100/0.4 ± 2.1/5 99.1/0.4 ± 2.1/3 99.1/0.4 ± 3.1/4
F3 100/0.4 ± 2.7/2 96.6/0.4 ± 3.7/1 100/0.4 ± 1.7/4 97.2/0.4 ± 5.0/2
F4 100/0.4 ± 1.4/2 100/0.4 ± 1.2/2 96.0/0.4 ± 2.8/1 99.3/0.4 ± 2.1/1
F5 100/0.4 ± 1.7/1 99.5/0.4 ± 3.8/2 100/0.4 ± 2.9/2 96.0/0.4 ± 3.1/1
F6 100/0.4 ± 2.0/1 98.8/0.4 ± 3.4/2 100/0.4 ± 1.9/2 100/0.4 ± 2.6/2
F7 100/0.4 ± 2.1/3 100/0.4 ± 1.8/2 100/0.4 ± 1.3/4 94.1/0.4 ± 3.7/1
F8 98.3/0.4 ± 2.9/2 97.7/0.4 ± 2.0/1 83.6/0.4 ± 6.2/2 63.0/0 ± 8.6/1
F9 72.1/0.5 ± 6.7/1 99.2/0.4 ± 1.9/4 98.2/0.3 ± 3.2/2 99.8/0.4 ± 3.8/2
F10 100/0.4 ± 1.4/2 100/0.4 ± 1.4/1 100/0.4 ± 1.2/1 97.3/0.4 ± 4.4/1

Fig. 11  Missed detection of R-wave (M1 sitting)
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the other positions. However, pasting Positions 1, 3, and 
5 are such that a part of the device is placed away from 
the center of the chest. This implies that the presence or 
absence of breasts may contribute to the selection of the 
optimal pasting position.

Previous studies have reported that the R-wave amplitude 
decreases in leads I and  V2, and increases in lead II in 
standard 12 lead ECG during deep inspiration with reference 
to resting expiration in the supine position [12]. Among the 
five pasting Positions used in this study, pasting Position 
5 was lead I; pasting Positions 1, 3, and 4 were lead II; 
and pasting Position 2 mimicked the National Aeronautics 
and Space Administration lead. In this study, there were 
12 epochs in which the R-wave detection rate was lower 
than 95%, and eight of these epochs were caused by missed 
detections during waveform observations. Among these 
eight epochs, seven epochs had significant Wilcoxon rank-
sum test results. The results measured in supine position 
show that five of the seven epochs were measured at pasting 
Positions 1 and 4. From these results, we can infer that 
the amplitude of the R-wave was smaller during restful 
expiration than during deep inspiration. Moreover, two out 
of seven epochs were measured at pasting Positions 2 and 
5. This suggests that the amplitude of the R-wave decreased 
during deep expiration, giving rise to the missed detection.

In one of the eight epochs described in the previous 
paragraph, the Wilcoxon rank-sum test result was not 
significant, thus suggesting that the decrease in the R-wave 
amplitude associated with respiratory variability was not 
the cause of missed detection. Instead, the deformation 
of the R-wave due to the inclusion of electromyography 
contamination or motion artifacts is the cause of the 
undetectable R-wave.

Missed detection of the R-wave due to the decrease in 
R-wave amplitude associated with respiratory variation 
suggests that one of the parameters in R-wave detection 
(positive pulse height, positive pulse area, negative pulse 
height, or negative pulse area) may not have exceeded 
the threshold value. The threshold values adopted in this 
research were originally designed for lead II [3], and thus 
fine-tuning of the values should be performed in future 
studies to fit the various ECG obtained at the proposed 
pasting Positions.

The decrease in the R-wave amplitude with respiratory 
variation suggests the need to limit the number and depth 
of the subjects’ respiration for pure comparisons of the 
R-wave detection rate and LoA between the subjects, which 
will be necessary in future work. In addition, this study was 
conducted on young subjects in their early 20 s. In future 
work, we plan to conduct validation with different age 
groups, such as the elderly, and will seek to improve the 
usability of the device for a wider range of age groups.

7  Conclusion

In this study, we investigated an algorithm for selecting 
the optimum pasting Position. We conducted experiments 
to verify the stability and accuracy of RRI measurements 
using a patch-type device on ten male and ten female 
subjects. The patch-type device was applied to the positions 
suggested by the optimum pasting Position selection system, 
and RRI measurements were obtained for 5 min in each of 
the following four body positions: supine, sitting, standing, 
and walking (3 km/h). The results reveal that the R-wave 
detection rate and the LoA were sufficiently accurate for 
HRV analysis for 68 and 67 out of the total 80 epochs, 
respectively.

Statistical tests of the amplitude of the detected and 
undetected R-waves showed that the amplitudes of the 
undetected epochs were significantly lower than those of 
the detected epochs. Based on a review of the conditions 
for R-wave detection, we expect that the stability of the 
measurement can be improved further.
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