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Abstract
Establishing a large adaptive connected network for decentralized swarms is useful for their behavior to share information 
about the working environment. A hard-coded implementation is time-consuming to achieve. Therefore, we are motivated 
to explore the benefits of reinforcement learning (RL) to learn a suitable adaptive policy. We also explore the combined use 
of a scalar field, which was inspired by template pheromones in social insects. In this paper, we investigate using RL with 
low and high-resolution scalar fields to solve the largest covering network problem. Our results show that RL outperforms 
the hard-coded approach in the presence of the high-resolution scalar field.

Keywords  Largest coverage network · Reinforcement learning · Scalar field · Swarm robotics

1  Introduction

Controlling the physical proximity between a swarm 
of robots can allow the swarm to gather more data and 
exchange it between them. Each robot could be responsi-
ble for a specific territory, if it faces a threat or needs help, 
it will send that information to its connected robots. Also, 
if there are some obstacles in front of some robots, they 
can propagate that information to others to avoid them. In 

the largest covering network (LCN) task, the robots should 
be connected to one cluster with the least possible overlap 
to cover the largest possible working area. Each robot can 
detect another robot if the other robot is in its range. These 
swarm robots work independently in a distributed manner 
with very simple computational power.

In mobile robots swarm, Panerati et al. [1] select a master 
robot, and the swarm performs a rendezvous around that 
master robot as an essential step to establish the connectivity 
of the swarm inside the coverage area. In [2], Francesca at 
al. presented an automatic control design for a robot swarm. 
They tested their controller on five different robotics tasks 
with LCN as one of these tasks. Mitaka et al. use static tem-
plates to help the robots to perform the required behavior. 
Researchers are inspired by social insects like ants, termites, 
wasps, and bees because these insects use pheromones and 
other cues to guide them to perform different activities in 
their societies [3]. For example, in building the royal cham-
ber for the queen termite, the queen discharges a particular 
type of pheromone as a template to guide the worker ter-
mites to deposit the mud in a specific distance around it [4]. 
Similar to the pheromones in insects, Vardy [5] presents the 
scalar field as a global signal to guide a robot swarm in their 
work. The scalar field is introduced as a static template to 
guide the robots to create a two-dimensional enclosure using 
ambient objects by nudging them to form the desired shape. 
That scalar shape is projected on the working environment 
helps the robots construct an enclosure.

This work was presented in part at the joint symposium of the 
27th International Symposium on Artificial Life and Robotics, 
the 7th International Symposium on BioComplexity, and the 5th 
International Symposium on Swarm Behavior and Bio-Inspired 
Robotics (Online, January 25-27, 2022).
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In [6], Strickland et al. use the power of reinforcement 
learning (RL) with scalar field to construct an enclosure 
and L-shape. The RL gives better results in terms of shape 
formation with a single type of robots, unlike [5], who used 
two types of robots.

Solving LCN is also useful in the initial deployment of 
fixed sensors, such as a wireless sensor network. Based on 
the specific target wanted to be covered, the users calculate 
the sensors’ locations to be sure that target is fully covered. 
The sensors can be deployed in an unstructured or structured 
way, depending on the application. In the structured deploy-
ment, the place of the sensors are predetermined with the 
advantage of less cost of maintenance and good coverage. 
However, the sensors are randomly distributed in the envi-
ronment in the unstructured deployment, so more sensors 
may cover the same area [7]. Also, in [8], they show how 
the overlapped sensors can form a disjoint cover set, and the 
only disjoint sensor should be active at a time to save their 
battery life.

In this paper, we address the spatial coverage of mobile 
robots to achieve global connectivity with minimum overlap-
ping sensing range. The robots are placed randomly without 
any central control. They collectively explore the environ-
ment and use RL with a scalar field to build one connected 
network of robots. The resolution of the scalar field to be 
provided to the robots is an interesting quantity to explore. 
If a high-resolution scalar field (HRSF) is required, then 
this places certain constraints on the robots ability to sense 
this field. On the other hand, if a low-resolution scalar field 
(LRSF) suffices, then it may be possible to implement our 
technique on simpler robots with fewer and less accurate 
sensors.

Using RL, the robots can automatically learn how to 
establish a large coverage area with minimum overlap 
between communication ranges of the other robots. The 
working environment is examined in both LRSF and HRSF 
situations. The rewards in RL are determined based on the 
detected number of robots in range and the total coverage 
area. The results are obtained from a simulation environment 
and compared to the hard-coded implementations.

2 � Proposed methods

The LCN’s objective is to maximize the coverage area by a 
robot swarm while maintaining the connection among these 
robots. Tabular Q-Learning shows promising results when 
applied in a dynamic environment [6, 9]. Therefore, we pro-
pose to use Q-Learning as a RL algorithm and the hard-
coded approaches for solving LCN in two different environ-
ments LRSF and HRSF. Robots try to form one connected 
cluster with minimum intersection areas among them.

In HRSF, the scalar field values are in the range [0,1], 
where the center of the environment equals one and 
decreases towards the environment’s border. On the other 
hand, in LRSF, the working environment is virtually 
divided into four quadrants.

The operated robots are equipped with five sensors, as 
shown in Fig. 1. The A, B and C sensors measure the 
intensity of light projected on the floor, which we named 
center, left, and right sensors, respectively. These sensors 
return the scalar value in a range from zero to one. The D 
sensor is the obstacle sensor to detect the presence of the 
walls and other robots. The E sensor is the communication 
sensor that covers a circular region of the space around 
the robot. The F sensor is the position sensor that returns 
the robot’s x and y coordinates and is used only in the low 
resolution scalar field environment.

2.1 � Low‑resolution scalar field (LRSF)

The robots depend on the readings of their communication 
range sensor and obstacle sensors. So using the scalar field 
guides the robots and gives them an idea of where they are.

In our proposed solution LRSF, we divided the work-
ing environment into four quadrants (Q1, Q2, Q3 and Q4), 
so the expected shape with a large number of robots will 
be spread over the environment. Also, with this division, 
the robots could explore the whole environment, switch 
among different quadrants, and take random positions in 
these quadrants, giving them more options to find their 
best positions. At the beginning of the simulation, each 
robot is placed randomly in a random quadrant. The dif-
ference between hard-coded and RL implementations is 
how the robot selects the next quadrant in each time step.

Fig. 1   Robot’s sensors. A, B, and C are floor sensors. D is the obsta-
cle sensor. E is the communication range sensor. F is the position 
sensor
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2.1.1 � Hard‑coded implementation

The robot has systematic moves. It always moves to a ran-
dom position in the lower integer number. For example, if 
a robot is placed in the third quadrant, it will move to a 
random position in the second quadrant. Any robot located 
in the first quadrant keeps selecting positions randomly 
and waiting for any other robot to join its cluster. Once two 
robots or more form a small cluster in the first quadrant, 
the robots in this cluster reduce the intersection area among 
them using Eq. 1. We added a random floating number [0,1] 
to the backward speed to ensure the two intersected robots 
take different values to reduce their intersection areas.

If they are connected with 2% of their connected range 
(maximum allowed intersection), they stop moving and wait 
for other robots to reach them, whether the coming robots 
reach the first quadrant or are on their way.

The control Algorithm is presented as Algorithm 1 with 
the function getNextMove provided separately. This function 
calculates the forward speed and angular velocity required 
for the robot to move from its current position to the selected 
random position in the low integer quadrant.

(1)
Backward Speed (t) = −1

(

e
Max Intersected Area (t)

Robot�s Range + Rand_Float (0, 1)
)

For example, in Fig. 2 demonstrates the robot’s move-
ments to establish the one connected network. The colors 
of robots show which quadrants it belongs to, the yel-
low color means this robot stop moving, and the black 
arrows indicate the robot’s actions on the next move. In 
Fig. 2(A), robots in Q2 to Q3 choose to decrease their 
quadrant number, hoping it might find any other robots. 
Robot #1 in Q1 waits for other robots to come to its quad-
rant, so it selects a random position; perhaps it finds other 
robots. In (B), robot #2 reaches the Q1 and finds robot #1, 
but their intersection area is greater than 2% of the robot’s 
range size. Therefore, they choose to move back to reduce 
their intersection area with backward speed, as shown in 
the Eq.1. Robot #3 and #4 are still reducing the number of 
their quadrants searching for other robots. In (C), robots 
#2, #3, and #4 are connected with big intersection areas, 
so they choose to move backwards. However, robot #1 is 
connected with a good intersection area, so it stops mov-
ing, and its color changes to yellow. Based on (C) actions, 
robots #2 and #3 are still connected as with a good inter-
section area shown in (D), but the total number of robots 
in their range is less than the total operated robots. Also, 
robot #1 and #4 is disconnected. So, robots #2, #3 , and 
#4 decrease their quadrant numbers, and robot #1 gets a 
new random position in Q1. In (E), robots #3 and #4 are 
connected with a good intersection area, but robots #1 and 
#2 need to move back to adjust their intersection areas. In 
(F), all robots stop moving and establish one connected 
cluster with minimum intersections.

2.1.2 � Reinforcement learning implementation

The states for the Q-Learning algorithm are determined 
based on a robot’s point of view and how many neighbors 
are in its range. Besides, the robots have limited memory 
and computation capabilities; we tried to find the mini-
mum possible representation for state and action space. 
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Therefore, we discretize the many states into four states 
{n = 0, n <

2

3
TR,

2

3
TR <= n < TR, n = TR} where n is num-

ber of neighbors and TR is number of Total Robots.
The robot chooses between eight actions: normal move-

ment in which it goes to a random spot in the lower integer 
quadrant; selecting any other quadrant from the environ-
ment (Q1, Q2, Q3, Q4); or increasing or decreasing its 
forward speed, or stop.

In the reward function, we focus on maximizing the 
number of connected robots and increasing the coverage 
area as much as possible by minimizing the intersection 
area between neighbors.

(2)
Ri(t) =

Connected Neighbors (t)

Operated Robots
+

Coverage Area (t)

Max Coverage Area
− 1

As shown on Eq. (2), in the worst scenario, when a robot 
moves alone and does not belong to any cluster, the reward 
function approximately equals -1. And, when all robots are 
connected, the reward value is directly proportional to the 
coverage area.

2.2 � High‑resolution scalar field (HRSF)

We projected the scalar field on the working environment 
with a central light source. The grid value is between one 
and zero based on the intensity of the projected light on the 
floor. The robots use the three floor sensors readings, which 
measure the scalar field value projected on the environment. 
With the scalar field’s guidance, the robots move towards the 
lower scalar values. Once the robots reach the lowest scalar 
value, they save this value � as the desired contour line to 
use in their circular movement. The robots follow the orbit-
ing algorithm illustrated in [5], so all robots are aligned and 

Fig. 2   The sequence of snapshots shows the hard-coded implementation in the presence of a low-resolution scalar field; the colored robots indi-
cate which quadrants they are; the black arrows show the robots’ next decision based on these situations
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orbited in a clockwise direction in the same contour line. In 
Rl and hard-coded implementation, the initial value of the 
forwarding speed is calculated based on the number of con-
nected robots in its range Eq. (3).

2.2.1 � Hard‑coded implementation

If any robot detects another robot in its range using the 
communication range sensor, the robot’s forward speed is 
reduced based on the number of robots in its range as shown 
in Eq. (3). The more robots in a cluster, the less forward 
speed for the robots, which helps the other robots catch 
them.

Fig. 3 shows how the hard-coded algorithm works. The 
red, green, and yellow robots indicate the robots move clock-
wise, anticlockwise, or stopped, respectively. The black 
arrows show the actions that the robots decide to take based 
on the current situation. In (A), all robots are distributed 

(3)
Forward Speed (t) = Max Forward Speed

(

1 −
Robots In Range (t)

Operated Robots

)

randomly in the environment and look to decrease the sens-
ing scalar field projected on the ground. So that it helps them 
to go to the orange outer ring ( just for demonstration). In 
(B) and (C), the robots orbit clockwise and try to align with 
the lowest scalar value. The robots’ speeds are based on the 
number of robots in their range, as shown in Eq. (3). In (D), 
robot #3 connects to all other robots, and its intersection area 
is smaller than or equal to 2% of its communication range, 
so it stops moving. However, robots #1, #2, and #3 connect 
with a big intersection area, so they try to reduce this inter-
section by orbiting anticlockwise with speed, as shown in 
the Eq. 1. In (E), All robots should move anticlockwise to 
reduce their intersection area. In (F), all robots are connected 
and stop moving.

2.2.2 � Reinforcement learning implementation

The robots share the same orbital so that the robots can be 
connected at any time because they move with different for-
ward speeds based on the number of their connected neigh-
bors. Therefore, the states for Q-learning are defined based 
on the maximum intersection areas between the robots and 
their connected neighbors. The states are discretized into 

Fig. 3   The sequence of snapshots illustrates the hard-coded imple-
mentation in the presence of a high-resolution scalar field. The 
orange ring shows the lowest scalar field in the environment. The 

colored robots indicate the motion of the robots, either forward, back-
ward, or stop; the black arrows show the robots’ next decision based 
on the intersection between robots’ communication range
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four states: (1) there is no intersection between this robot 
and the others; (2) the maximum intersection area between 
this robot and its neighbors is greater than two-thirds of its 
coverage range; (3) the maximum intersection is greater than 
one-third; or (4) less than one-third of its coverage range.

According to the actions, the robots choose between three 
actions: rotating with the same forward speed, increasing it 
by 0.3 to catch the other robots, or stopping their movement. 
We used the same reward function as defined in Eq. (2) in 
the LRSF environment.

3 � Experiments and results

We used the C++ open-source simulator CWaggle1. This 
simulation is inspired by the Javascript robot simulator Wag-
gle2. CWaggle was used before in [6] and [10].

The circular robots move in a rectangle space 900 × 900 
and we use two performance metrics to evaluate the pro-
posed methods. Firstly, the number of clusters constructed 

by the robots. Secondly, calculating the axis-aligned bound-
ing box around the coverage area. We simulated all experi-
ments over ten trials; the thick lines are the average per-
formance for each proposed method, and the shaded areas 
are the confidence interval for the 90% confidence level. 
For all RL experiments in LRSF and HRSF, we use a dis-
count factor equal to 0.9 with learning rate varying between 
experiments.

Low-Resolution Scalar Field, The sequence of screen-
shots from the hard-coded algorithm with the presence of 
LRSF can be seen in the Fig. 4, at t = 1, robots are distrib-
uted randomly over the four quadrants. At t = 19, robots 
reach their positions in their quadrants; robots #1, #2, #3, 
and #4 are connected with some intersection areas between 
them, so they move back to reduce these intersections. At 
t = 26, robots #1 and #4 have a good intersection area, so 
they stop moving, and their colors turn to yellow; however, 
robots #2 and #3 are still moving back, aiming to reduce 
their intersection and keep connecting to that cluster. As a 
consequence of robot #3 ’s movements, it has a big intersec-
tion with robot #4, so both start moving back to reduce this 
intersection. After a while at t = 6000, robots #2 and #3 fix 

Fig. 4   Screenshots from the CWaggle simulation in different time 
steps. The working environment is divided into four quadrants. The 
colored robots indicate the destination quadrant the robots choose 

to go there. The colors are red, green, purple, and blue for the four 
quadrants respectively starting from the upper left corner. The yellow 
color indicates the robot chooses to stop

1  https://​github.​com/​davec​hurch​ill/​cwagg​le
2  https://​github.​com/​BOTSl​ab/​waggle

https://github.com/davechurchill/cwaggle
https://github.com/BOTSlab/waggle
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there intersections. Robots #5 and #6 move from their initial 
fourth quadrant to the third one and then reach the second 
quadrant. After that, they connect with the cluster, but they 
still have an intersection that needs to be reduced. Robot #8 
changes its quadrant to the second quadrant and connects 
with the cluster with the acceptable intersection, so it stops 
moving. Robot #7 reaches the second quadrant but with a 
big intersection with robot #8, so it moves back and discon-
nects from the cluster, so it moves to the first quadrant and 
intersects with robot #4. Finally, at t = 10000, all robots are 
connected with the smallest intersection except robots #4 
and #7; they still move backward and forward to reduce the 
intersection and keep connecting with the cluster.

Fig. 5, shows screenshots from RL implementation in the 
presence of LRSF in operation. At t = 1, the robots are on 
their way to their quadrants. At t = 859, some of the robots 
(yellow color) achieve their goal by connecting to others 
with minimum intersection areas. All other robots suffer 
from significant intersection areas, so they decide to con-
tinue searching for the best position for them. When these 
robots move away from that cluster, it reflects in the others’ 
reward function, so all the robots continue working again, 

as shown at t = 2507. After some tries, they can form a 
cluster with a different shape at t = 3805. But there are still 
three robots that have a big intersection area. At t = 4795, 
based on their learning policy, they can take actions that 
increase their reward; in this case, they decided to move to 
Q4. Finally, all robots fix their intersections and connect to 
one cluster at t = 6097.

Fig. 6 shows the comparison between RL and hard-coded 
implementation with LRSF regarding the number of con-
nected clusters and the maximum area achieved. The RL 
implementation can construct one cluster faster than the 
hard-coded implementation, and that cluster is more stable 
from t =5700. Unlike the hard-coded implementation, it can 
build one connected cluster, but due to its several backward 
movements to fix the intersections, this cluster is not stable 
like RL.

Regarding coverage area, the Rl can outperform the hard-
coded implementation, and its average coverage area equals 
290000. However, in hard-coded implementation, the aver-
age coverage area equals 270000 by the end of the simula-
tion time.

Fig. 5   Screenshots in different time steps show how the robots perform in the Cwaggle simulation using RL
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High-resolution scalar field, Fig. 7 presents the screen-
shots of hard-coded implementation with the HRSF environ-
ment. At t = 1, the robots detect the scalar values and move 
with the guidance of the scalar field to reduce the sensing 
values. According to this motion, robots are aligned to the 
outer orbital near the border as shown in t = 290. The robots 
orbit in a clockwise motion, and some of them construct 
small clusters. So, robots in that cluster decrease their speed 
with the same ratio based on the number of robots in their 
cluster. At t = 290, the first group are consisting of robots 
#6, #7, and #8; and the second group has the robots #1, #3, 
and #4. Robots #5 and #2 are orbiting alone, so their speed 
is faster than the other robots so that they can catch them. 
After a while, robot #2 connect with robot #8, so their clus-
ter speed is decreased, which allows robots #3, #4, and #1 
to catch them as shown at t = 1862. At t = 1868, all robots 
in green color start to move anticlockwise to reduce their 

intersections, and robot #1 successfully gets a minimum 
intersection, so it stops moving. On the other hand, robot 
#5 in its moves clockwise to reach that cluster. At t = 2498, 
all robots construct one cluster, but they still fix the inter-
sections among them by orbiting anticlockwise. Finally, at 
t = 10,000, robots in yellow color stop motion while the 
green robots keep moving anticlockwise, aiming to fix their 
intersection area.

Fig. 8 shows screenshots of the RL algorithm with HRSF 
from the CWaggle simulator in different simulation time 
steps. At the beginning of the simulation t = 1, all robots 
are distributed randomly in the environment. After that, they 
reach the lowest scalar value. These robots choose between 
actions: some increase their forward speeds, moving with 
the calculated forward speed Eq. 3 or stop movement, and 
the robots are colored purple, red, or yellow, respectively. 
According to their learned policy, at t = 1000, the purple 
robots that move alone try to increase their speed to catch 
other robots. Also, the robots with the maximum intersection 
with its neighbor try to increase their speed to reduce the 
intersection area. At t = 4100, and t = 4200, the red robots 
have a minimum intersection, but the number of connected 
robots in their cluster is less than the total number of con-
nected robots. So, they move with the calculated forward 
speed, while the purple robots increase their speed to reduce 
their intersection areas. At t = 4500, the yellow robots have 
a minimum intersection area, and the number of robots in 
their cluster equals operated robots, so they get a high reward 
and choose to stop their movement. Simultaneously, some 
robots are still moving to reduce their intersection areas, as 
shown in red. Finally, all robots stop and form one cluster 
with a minimum intersection area at t = 4560.

Fig.  9 presents the differences in the performance 
between both implementations. The top figure shows that 
most of the trials in the RL implementation can construct 
one cluster around t = 3000 simulation step, which is faster 
than the hard-code. However, In some trials, robots destroy 
this cluster while moving to minimize the intersection areas, 
and others keep it because it has minimum intersection areas 
among the robots. Regarding the average coverage area, the 
RL implementation got a larger coverage area than the hard-
coded implementation.

The comparison between all the proposed solutions is 
shown in Fig. 10. Regarding number of clusters, all proposed 
algorithms start with high number of clusters and by the end 
of the simulation they can establish one cluster. However, the 
RL implementation with LRSF takes the lowest simulation 
steps to form one stable cluster. Also, in LRSF, every trial 
produces different shapes that depend on the initial position 
of the robots. Therefore, this solution will be preferable if 

Fig. 6   Comparison between hard-coded and reinforcement learning 
implementation using low-resolution scalar field
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the application wants to divide the working environment into 
arbitrary territories. In respect of the average coverage area, 
RL with HRSF achieved a higher coverage area compared 
to the other implementations.

4 � Conclusion and future work

Methods to solve the largest coverage network for a robot 
swarm are presented in this paper and we propose four dif-
ferent approaches, either hard-coded or reinforcement learn-
ing using Low- and High-Resolution Scalar Fields. From the 
obtained simulation, the results show that using the benefits 
of reinforcement learning to find the best policy to maxi-
mize the coverage area is preferable to the hard-coded in 
both cases of low- and high-resolution scalar fields. Moreo-
ver, using the reinforcement learning combined with HRSF 
gives the largest coverage area , as HRSF guides the robots 
into alignment in the same orbital, making it much easier to 
construct one large, connected network. So, we show that 
increasing the scalar field resolution like HRSF will give us 

better results and make it easier for both hard-coded and RL, 
but it requires more sensing capabilities. On the other hand, 
in LRSF, when the robots have minimal sensing capabilities, 
it is also possible to construct one connected network, but 
that requires increasing the action space.

In future work, it would be interesting to investigate how 
the robots establish a connection with the presence of dif-
ferent sizes of obstacles and how these obstacles reflect on 
the formed shapes. Also, if the robots have a communication 
module, we would like to study how this may help them find 
the largest coverage area among the robots by exchanging 
information about the presence of obstacles, the number of 
robots in their range, and the maximum overlapping. So the 
communication among the robots could be helpful in the 
robot’s decision if they destroy their structure or not. Also, 
we plan to study how the bigger size of robots can reflect on 
the proposed algorithms, does the increase in the number 
of robots directly proportional to the coverage area or may 
cause many intersection areas and collisions.

Fig. 7   Screenshots from a CWaggle simulation in different time 
steps. Eight robots are randomly distributed at t = 1, sharing the same 
orbital with different, forward speeds. The robots’ colors are red, 

green, or yellow, indicating that robots orbit with forwarding, back-
ward speed, or stop, respectively
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Fig. 8   Screenshots show a 
CWaggle simulation in different 
time steps. The eight robots 
are using RL to form LCN and 
working on a central source 
point scalar field. The colors of 
the robots indicate the action 
they choose; the red color 
means the robots move with 
the calculated forward speed; 
the purple color indicates that 
the robots increase their speed 
and the yellow color means the 
robot chooses to stop

Fig. 9   Comparison between hard-coded and RL using high-resolution 
scalar field

Fig. 10   RL Vs hard-coded implementations
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