
Vol:.(1234567890)

Artificial Life and Robotics (2022) 27:652–662
https://doi.org/10.1007/s10015-022-00804-4

1 3

ORIGINAL ARTICLE

Largest coverage network in a robot swarm using reinforcement
learning

Dalia S. Ibrahim1,2 · Andrew Vardy3

Received: 23 May 2022 / Accepted: 15 September 2022 / Published online: 14 October 2022
© International Society of Artificial Life and Robotics (ISAROB) 2022

Abstract
Establishing a large adaptive connected network for decentralized swarms is useful for their behavior to share information
about the working environment. A hard-coded implementation is time-consuming to achieve. Therefore, we are motivated
to explore the benefits of reinforcement learning (RL) to learn a suitable adaptive policy. We also explore the combined use
of a scalar field, which was inspired by template pheromones in social insects. In this paper, we investigate using RL with
low and high-resolution scalar fields to solve the largest covering network problem. Our results show that RL outperforms
the hard-coded approach in the presence of the high-resolution scalar field.

Keywords  Largest coverage network · Reinforcement learning · Scalar field · Swarm robotics

1  Introduction

Controlling the physical proximity between a swarm
of robots can allow the swarm to gather more data and
exchange it between them. Each robot could be responsi-
ble for a specific territory, if it faces a threat or needs help,
it will send that information to its connected robots. Also,
if there are some obstacles in front of some robots, they
can propagate that information to others to avoid them. In

the largest covering network (LCN) task, the robots should
be connected to one cluster with the least possible overlap
to cover the largest possible working area. Each robot can
detect another robot if the other robot is in its range. These
swarm robots work independently in a distributed manner
with very simple computational power.

In mobile robots swarm, Panerati et al. [1] select a master
robot, and the swarm performs a rendezvous around that
master robot as an essential step to establish the connectivity
of the swarm inside the coverage area. In [2], Francesca at
al. presented an automatic control design for a robot swarm.
They tested their controller on five different robotics tasks
with LCN as one of these tasks. Mitaka et al. use static tem-
plates to help the robots to perform the required behavior.
Researchers are inspired by social insects like ants, termites,
wasps, and bees because these insects use pheromones and
other cues to guide them to perform different activities in
their societies [3]. For example, in building the royal cham-
ber for the queen termite, the queen discharges a particular
type of pheromone as a template to guide the worker ter-
mites to deposit the mud in a specific distance around it [4].
Similar to the pheromones in insects, Vardy [5] presents the
scalar field as a global signal to guide a robot swarm in their
work. The scalar field is introduced as a static template to
guide the robots to create a two-dimensional enclosure using
ambient objects by nudging them to form the desired shape.
That scalar shape is projected on the working environment
helps the robots construct an enclosure.

This work was presented in part at the joint symposium of the
27th International Symposium on Artificial Life and Robotics,
the 7th International Symposium on BioComplexity, and the 5th
International Symposium on Swarm Behavior and Bio-Inspired
Robotics (Online, January 25-27, 2022).

 *	 Dalia S. Ibrahim
	 dsibrahim@mun.ca

	 Andrew Vardy
	 av@mun.ca
	 http://bots.cs.mun.ca/

1	 Department of Computer Science, Memorial University
of Newfoundland, St. John’s, NL, Canada

2	 Department of Computer Systems, Faculty of Computer
and Information Science, Ain-Shams University, Cairo,
Egypt

3	 Department of Computer Science, Department of Electrical
and Computer Engineering, Memorial University
of Newfoundland, St. John’s, NL, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-022-00804-4&domain=pdf

653Artificial Life and Robotics (2022) 27:652–662	

1 3

In [6], Strickland et al. use the power of reinforcement
learning (RL) with scalar field to construct an enclosure
and L-shape. The RL gives better results in terms of shape
formation with a single type of robots, unlike [5], who used
two types of robots.

Solving LCN is also useful in the initial deployment of
fixed sensors, such as a wireless sensor network. Based on
the specific target wanted to be covered, the users calculate
the sensors’ locations to be sure that target is fully covered.
The sensors can be deployed in an unstructured or structured
way, depending on the application. In the structured deploy-
ment, the place of the sensors are predetermined with the
advantage of less cost of maintenance and good coverage.
However, the sensors are randomly distributed in the envi-
ronment in the unstructured deployment, so more sensors
may cover the same area [7]. Also, in [8], they show how
the overlapped sensors can form a disjoint cover set, and the
only disjoint sensor should be active at a time to save their
battery life.

In this paper, we address the spatial coverage of mobile
robots to achieve global connectivity with minimum overlap-
ping sensing range. The robots are placed randomly without
any central control. They collectively explore the environ-
ment and use RL with a scalar field to build one connected
network of robots. The resolution of the scalar field to be
provided to the robots is an interesting quantity to explore.
If a high-resolution scalar field (HRSF) is required, then
this places certain constraints on the robots ability to sense
this field. On the other hand, if a low-resolution scalar field
(LRSF) suffices, then it may be possible to implement our
technique on simpler robots with fewer and less accurate
sensors.

Using RL, the robots can automatically learn how to
establish a large coverage area with minimum overlap
between communication ranges of the other robots. The
working environment is examined in both LRSF and HRSF
situations. The rewards in RL are determined based on the
detected number of robots in range and the total coverage
area. The results are obtained from a simulation environment
and compared to the hard-coded implementations.

2 � Proposed methods

The LCN’s objective is to maximize the coverage area by a
robot swarm while maintaining the connection among these
robots. Tabular Q-Learning shows promising results when
applied in a dynamic environment [6, 9]. Therefore, we pro-
pose to use Q-Learning as a RL algorithm and the hard-
coded approaches for solving LCN in two different environ-
ments LRSF and HRSF. Robots try to form one connected
cluster with minimum intersection areas among them.

In HRSF, the scalar field values are in the range [0,1],
where the center of the environment equals one and
decreases towards the environment’s border. On the other
hand, in LRSF, the working environment is virtually
divided into four quadrants.

The operated robots are equipped with five sensors, as
shown in Fig. 1. The A, B and C sensors measure the
intensity of light projected on the floor, which we named
center, left, and right sensors, respectively. These sensors
return the scalar value in a range from zero to one. The D
sensor is the obstacle sensor to detect the presence of the
walls and other robots. The E sensor is the communication
sensor that covers a circular region of the space around
the robot. The F sensor is the position sensor that returns
the robot’s x and y coordinates and is used only in the low
resolution scalar field environment.

2.1 � Low‑resolution scalar field (LRSF)

The robots depend on the readings of their communication
range sensor and obstacle sensors. So using the scalar field
guides the robots and gives them an idea of where they are.

In our proposed solution LRSF, we divided the work-
ing environment into four quadrants (Q1, Q2, Q3 and Q4),
so the expected shape with a large number of robots will
be spread over the environment. Also, with this division,
the robots could explore the whole environment, switch
among different quadrants, and take random positions in
these quadrants, giving them more options to find their
best positions. At the beginning of the simulation, each
robot is placed randomly in a random quadrant. The dif-
ference between hard-coded and RL implementations is
how the robot selects the next quadrant in each time step.

Fig. 1   Robot’s sensors. A, B, and C are floor sensors. D is the obsta-
cle sensor. E is the communication range sensor. F is the position
sensor

654	 Artificial Life and Robotics (2022) 27:652–662

1 3

2.1.1 � Hard‑coded implementation

The robot has systematic moves. It always moves to a ran-
dom position in the lower integer number. For example, if
a robot is placed in the third quadrant, it will move to a
random position in the second quadrant. Any robot located
in the first quadrant keeps selecting positions randomly
and waiting for any other robot to join its cluster. Once two
robots or more form a small cluster in the first quadrant,
the robots in this cluster reduce the intersection area among
them using Eq. 1. We added a random floating number [0,1]
to the backward speed to ensure the two intersected robots
take different values to reduce their intersection areas.

If they are connected with 2% of their connected range
(maximum allowed intersection), they stop moving and wait
for other robots to reach them, whether the coming robots
reach the first quadrant or are on their way.

The control Algorithm is presented as Algorithm 1 with
the function getNextMove provided separately. This function
calculates the forward speed and angular velocity required
for the robot to move from its current position to the selected
random position in the low integer quadrant.

(1)
Backward Speed (t) = −1

(

e
Max Intersected Area (t)

Robot�s Range + Rand_Float (0, 1)
)

For example, in Fig. 2 demonstrates the robot’s move-
ments to establish the one connected network. The colors
of robots show which quadrants it belongs to, the yel-
low color means this robot stop moving, and the black
arrows indicate the robot’s actions on the next move. In
Fig. 2(A), robots in Q2 to Q3 choose to decrease their
quadrant number, hoping it might find any other robots.
Robot #1 in Q1 waits for other robots to come to its quad-
rant, so it selects a random position; perhaps it finds other
robots. In (B), robot #2 reaches the Q1 and finds robot #1,
but their intersection area is greater than 2% of the robot’s
range size. Therefore, they choose to move back to reduce
their intersection area with backward speed, as shown in
the Eq.1. Robot #3 and #4 are still reducing the number of
their quadrants searching for other robots. In (C), robots
#2, #3, and #4 are connected with big intersection areas,
so they choose to move backwards. However, robot #1 is
connected with a good intersection area, so it stops mov-
ing, and its color changes to yellow. Based on (C) actions,
robots #2 and #3 are still connected as with a good inter-
section area shown in (D), but the total number of robots
in their range is less than the total operated robots. Also,
robot #1 and #4 is disconnected. So, robots #2, #3 , and
#4 decrease their quadrant numbers, and robot #1 gets a
new random position in Q1. In (E), robots #3 and #4 are
connected with a good intersection area, but robots #1 and
#2 need to move back to adjust their intersection areas. In
(F), all robots stop moving and establish one connected
cluster with minimum intersections.

2.1.2 � Reinforcement learning implementation

The states for the Q-Learning algorithm are determined
based on a robot’s point of view and how many neighbors
are in its range. Besides, the robots have limited memory
and computation capabilities; we tried to find the mini-
mum possible representation for state and action space.

655Artificial Life and Robotics (2022) 27:652–662	

1 3

Therefore, we discretize the many states into four states
{n = 0, n <

2

3
TR,

2

3
TR <= n < TR, n = TR} where n is num-

ber of neighbors and TR is number of Total Robots.
The robot chooses between eight actions: normal move-

ment in which it goes to a random spot in the lower integer
quadrant; selecting any other quadrant from the environ-
ment (Q1, Q2, Q3, Q4); or increasing or decreasing its
forward speed, or stop.

In the reward function, we focus on maximizing the
number of connected robots and increasing the coverage
area as much as possible by minimizing the intersection
area between neighbors.

(2)
Ri(t) =

Connected Neighbors (t)

Operated Robots
+

Coverage Area (t)

Max Coverage Area
− 1

As shown on Eq. (2), in the worst scenario, when a robot
moves alone and does not belong to any cluster, the reward
function approximately equals -1. And, when all robots are
connected, the reward value is directly proportional to the
coverage area.

2.2 � High‑resolution scalar field (HRSF)

We projected the scalar field on the working environment
with a central light source. The grid value is between one
and zero based on the intensity of the projected light on the
floor. The robots use the three floor sensors readings, which
measure the scalar field value projected on the environment.
With the scalar field’s guidance, the robots move towards the
lower scalar values. Once the robots reach the lowest scalar
value, they save this value � as the desired contour line to
use in their circular movement. The robots follow the orbit-
ing algorithm illustrated in [5], so all robots are aligned and

Fig. 2   The sequence of snapshots shows the hard-coded implementation in the presence of a low-resolution scalar field; the colored robots indi-
cate which quadrants they are; the black arrows show the robots’ next decision based on these situations

656	 Artificial Life and Robotics (2022) 27:652–662

1 3

orbited in a clockwise direction in the same contour line. In
Rl and hard-coded implementation, the initial value of the
forwarding speed is calculated based on the number of con-
nected robots in its range Eq. (3).

2.2.1 � Hard‑coded implementation

If any robot detects another robot in its range using the
communication range sensor, the robot’s forward speed is
reduced based on the number of robots in its range as shown
in Eq. (3). The more robots in a cluster, the less forward
speed for the robots, which helps the other robots catch
them.

Fig. 3 shows how the hard-coded algorithm works. The
red, green, and yellow robots indicate the robots move clock-
wise, anticlockwise, or stopped, respectively. The black
arrows show the actions that the robots decide to take based
on the current situation. In (A), all robots are distributed

(3)
Forward Speed (t) = Max Forward Speed

(

1 −
Robots In Range (t)

Operated Robots

)

randomly in the environment and look to decrease the sens-
ing scalar field projected on the ground. So that it helps them
to go to the orange outer ring (just for demonstration). In
(B) and (C), the robots orbit clockwise and try to align with
the lowest scalar value. The robots’ speeds are based on the
number of robots in their range, as shown in Eq. (3). In (D),
robot #3 connects to all other robots, and its intersection area
is smaller than or equal to 2% of its communication range,
so it stops moving. However, robots #1, #2, and #3 connect
with a big intersection area, so they try to reduce this inter-
section by orbiting anticlockwise with speed, as shown in
the Eq. 1. In (E), All robots should move anticlockwise to
reduce their intersection area. In (F), all robots are connected
and stop moving.

2.2.2 � Reinforcement learning implementation

The robots share the same orbital so that the robots can be
connected at any time because they move with different for-
ward speeds based on the number of their connected neigh-
bors. Therefore, the states for Q-learning are defined based
on the maximum intersection areas between the robots and
their connected neighbors. The states are discretized into

Fig. 3   The sequence of snapshots illustrates the hard-coded imple-
mentation in the presence of a high-resolution scalar field. The
orange ring shows the lowest scalar field in the environment. The

colored robots indicate the motion of the robots, either forward, back-
ward, or stop; the black arrows show the robots’ next decision based
on the intersection between robots’ communication range

657Artificial Life and Robotics (2022) 27:652–662	

1 3

four states: (1) there is no intersection between this robot
and the others; (2) the maximum intersection area between
this robot and its neighbors is greater than two-thirds of its
coverage range; (3) the maximum intersection is greater than
one-third; or (4) less than one-third of its coverage range.

According to the actions, the robots choose between three
actions: rotating with the same forward speed, increasing it
by 0.3 to catch the other robots, or stopping their movement.
We used the same reward function as defined in Eq. (2) in
the LRSF environment.

3 � Experiments and results

We used the C++ open-source simulator CWaggle1. This
simulation is inspired by the Javascript robot simulator Wag-
gle2. CWaggle was used before in [6] and [10].

The circular robots move in a rectangle space 900 × 900
and we use two performance metrics to evaluate the pro-
posed methods. Firstly, the number of clusters constructed

by the robots. Secondly, calculating the axis-aligned bound-
ing box around the coverage area. We simulated all experi-
ments over ten trials; the thick lines are the average per-
formance for each proposed method, and the shaded areas
are the confidence interval for the 90% confidence level.
For all RL experiments in LRSF and HRSF, we use a dis-
count factor equal to 0.9 with learning rate varying between
experiments.

Low-Resolution Scalar Field, The sequence of screen-
shots from the hard-coded algorithm with the presence of
LRSF can be seen in the Fig. 4, at t = 1, robots are distrib-
uted randomly over the four quadrants. At t = 19, robots
reach their positions in their quadrants; robots #1, #2, #3,
and #4 are connected with some intersection areas between
them, so they move back to reduce these intersections. At
t = 26, robots #1 and #4 have a good intersection area, so
they stop moving, and their colors turn to yellow; however,
robots #2 and #3 are still moving back, aiming to reduce
their intersection and keep connecting to that cluster. As a
consequence of robot #3 ’s movements, it has a big intersec-
tion with robot #4, so both start moving back to reduce this
intersection. After a while at t = 6000, robots #2 and #3 fix

Fig. 4   Screenshots from the CWaggle simulation in different time
steps. The working environment is divided into four quadrants. The
colored robots indicate the destination quadrant the robots choose

to go there. The colors are red, green, purple, and blue for the four
quadrants respectively starting from the upper left corner. The yellow
color indicates the robot chooses to stop

1  https://​github.​com/​davec​hurch​ill/​cwagg​le
2  https://​github.​com/​BOTSl​ab/​waggle

https://github.com/davechurchill/cwaggle
https://github.com/BOTSlab/waggle

658	 Artificial Life and Robotics (2022) 27:652–662

1 3

there intersections. Robots #5 and #6 move from their initial
fourth quadrant to the third one and then reach the second
quadrant. After that, they connect with the cluster, but they
still have an intersection that needs to be reduced. Robot #8
changes its quadrant to the second quadrant and connects
with the cluster with the acceptable intersection, so it stops
moving. Robot #7 reaches the second quadrant but with a
big intersection with robot #8, so it moves back and discon-
nects from the cluster, so it moves to the first quadrant and
intersects with robot #4. Finally, at t = 10000, all robots are
connected with the smallest intersection except robots #4
and #7; they still move backward and forward to reduce the
intersection and keep connecting with the cluster.

Fig. 5, shows screenshots from RL implementation in the
presence of LRSF in operation. At t = 1, the robots are on
their way to their quadrants. At t = 859, some of the robots
(yellow color) achieve their goal by connecting to others
with minimum intersection areas. All other robots suffer
from significant intersection areas, so they decide to con-
tinue searching for the best position for them. When these
robots move away from that cluster, it reflects in the others’
reward function, so all the robots continue working again,

as shown at t = 2507. After some tries, they can form a
cluster with a different shape at t = 3805. But there are still
three robots that have a big intersection area. At t = 4795,
based on their learning policy, they can take actions that
increase their reward; in this case, they decided to move to
Q4. Finally, all robots fix their intersections and connect to
one cluster at t = 6097.

Fig. 6 shows the comparison between RL and hard-coded
implementation with LRSF regarding the number of con-
nected clusters and the maximum area achieved. The RL
implementation can construct one cluster faster than the
hard-coded implementation, and that cluster is more stable
from t =5700. Unlike the hard-coded implementation, it can
build one connected cluster, but due to its several backward
movements to fix the intersections, this cluster is not stable
like RL.

Regarding coverage area, the Rl can outperform the hard-
coded implementation, and its average coverage area equals
290000. However, in hard-coded implementation, the aver-
age coverage area equals 270000 by the end of the simula-
tion time.

Fig. 5   Screenshots in different time steps show how the robots perform in the Cwaggle simulation using RL

659Artificial Life and Robotics (2022) 27:652–662	

1 3

High-resolution scalar field, Fig. 7 presents the screen-
shots of hard-coded implementation with the HRSF environ-
ment. At t = 1, the robots detect the scalar values and move
with the guidance of the scalar field to reduce the sensing
values. According to this motion, robots are aligned to the
outer orbital near the border as shown in t = 290. The robots
orbit in a clockwise motion, and some of them construct
small clusters. So, robots in that cluster decrease their speed
with the same ratio based on the number of robots in their
cluster. At t = 290, the first group are consisting of robots
#6, #7, and #8; and the second group has the robots #1, #3,
and #4. Robots #5 and #2 are orbiting alone, so their speed
is faster than the other robots so that they can catch them.
After a while, robot #2 connect with robot #8, so their clus-
ter speed is decreased, which allows robots #3, #4, and #1
to catch them as shown at t = 1862. At t = 1868, all robots
in green color start to move anticlockwise to reduce their

intersections, and robot #1 successfully gets a minimum
intersection, so it stops moving. On the other hand, robot
#5 in its moves clockwise to reach that cluster. At t = 2498,
all robots construct one cluster, but they still fix the inter-
sections among them by orbiting anticlockwise. Finally, at
t = 10,000, robots in yellow color stop motion while the
green robots keep moving anticlockwise, aiming to fix their
intersection area.

Fig. 8 shows screenshots of the RL algorithm with HRSF
from the CWaggle simulator in different simulation time
steps. At the beginning of the simulation t = 1, all robots
are distributed randomly in the environment. After that, they
reach the lowest scalar value. These robots choose between
actions: some increase their forward speeds, moving with
the calculated forward speed Eq. 3 or stop movement, and
the robots are colored purple, red, or yellow, respectively.
According to their learned policy, at t = 1000, the purple
robots that move alone try to increase their speed to catch
other robots. Also, the robots with the maximum intersection
with its neighbor try to increase their speed to reduce the
intersection area. At t = 4100, and t = 4200, the red robots
have a minimum intersection, but the number of connected
robots in their cluster is less than the total number of con-
nected robots. So, they move with the calculated forward
speed, while the purple robots increase their speed to reduce
their intersection areas. At t = 4500, the yellow robots have
a minimum intersection area, and the number of robots in
their cluster equals operated robots, so they get a high reward
and choose to stop their movement. Simultaneously, some
robots are still moving to reduce their intersection areas, as
shown in red. Finally, all robots stop and form one cluster
with a minimum intersection area at t = 4560.

Fig. 9 presents the differences in the performance
between both implementations. The top figure shows that
most of the trials in the RL implementation can construct
one cluster around t = 3000 simulation step, which is faster
than the hard-code. However, In some trials, robots destroy
this cluster while moving to minimize the intersection areas,
and others keep it because it has minimum intersection areas
among the robots. Regarding the average coverage area, the
RL implementation got a larger coverage area than the hard-
coded implementation.

The comparison between all the proposed solutions is
shown in Fig. 10. Regarding number of clusters, all proposed
algorithms start with high number of clusters and by the end
of the simulation they can establish one cluster. However, the
RL implementation with LRSF takes the lowest simulation
steps to form one stable cluster. Also, in LRSF, every trial
produces different shapes that depend on the initial position
of the robots. Therefore, this solution will be preferable if

Fig. 6   Comparison between hard-coded and reinforcement learning
implementation using low-resolution scalar field

660	 Artificial Life and Robotics (2022) 27:652–662

1 3

the application wants to divide the working environment into
arbitrary territories. In respect of the average coverage area,
RL with HRSF achieved a higher coverage area compared
to the other implementations.

4 � Conclusion and future work

Methods to solve the largest coverage network for a robot
swarm are presented in this paper and we propose four dif-
ferent approaches, either hard-coded or reinforcement learn-
ing using Low- and High-Resolution Scalar Fields. From the
obtained simulation, the results show that using the benefits
of reinforcement learning to find the best policy to maxi-
mize the coverage area is preferable to the hard-coded in
both cases of low- and high-resolution scalar fields. Moreo-
ver, using the reinforcement learning combined with HRSF
gives the largest coverage area , as HRSF guides the robots
into alignment in the same orbital, making it much easier to
construct one large, connected network. So, we show that
increasing the scalar field resolution like HRSF will give us

better results and make it easier for both hard-coded and RL,
but it requires more sensing capabilities. On the other hand,
in LRSF, when the robots have minimal sensing capabilities,
it is also possible to construct one connected network, but
that requires increasing the action space.

In future work, it would be interesting to investigate how
the robots establish a connection with the presence of dif-
ferent sizes of obstacles and how these obstacles reflect on
the formed shapes. Also, if the robots have a communication
module, we would like to study how this may help them find
the largest coverage area among the robots by exchanging
information about the presence of obstacles, the number of
robots in their range, and the maximum overlapping. So the
communication among the robots could be helpful in the
robot’s decision if they destroy their structure or not. Also,
we plan to study how the bigger size of robots can reflect on
the proposed algorithms, does the increase in the number
of robots directly proportional to the coverage area or may
cause many intersection areas and collisions.

Fig. 7   Screenshots from a CWaggle simulation in different time
steps. Eight robots are randomly distributed at t = 1, sharing the same
orbital with different, forward speeds. The robots’ colors are red,

green, or yellow, indicating that robots orbit with forwarding, back-
ward speed, or stop, respectively

661Artificial Life and Robotics (2022) 27:652–662	

1 3

Fig. 8   Screenshots show a
CWaggle simulation in different
time steps. The eight robots
are using RL to form LCN and
working on a central source
point scalar field. The colors of
the robots indicate the action
they choose; the red color
means the robots move with
the calculated forward speed;
the purple color indicates that
the robots increase their speed
and the yellow color means the
robot chooses to stop

Fig. 9   Comparison between hard-coded and RL using high-resolution
scalar field

Fig. 10   RL Vs hard-coded implementations

662	 Artificial Life and Robotics (2022) 27:652–662

1 3

References

	 1.	 Panerati J, Gianoli L, Pinciroli C, Shabah A, Nicolescu G, Bel-
trame G (2018) From Swarms to Stars: Task Coverage in Robot
Swarms with Connectivity Constraints, 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7674-7681

	 2.	 Francesca Gianpiero, Brambilla Manuele, Brutschy Arne, Garat-
toni Lorenzo, Miletitch Roman, Podevijn Gaëtan, Reina Andrea-
giovanni et al (2015) AutoMoDe-Chocolate: automatic design of
control software for robot swarms. Swarm Intell 9(2):125–152

	 3.	 Mitaka Y, Akino T (2021) A review of termite pheromones: mul-
tifaceted, context-dependent, and rational chemical communica-
tions. Front Ecol Evol. https://​doi.​org/​10.​3389/​fevo.​2020.​595614

	 4.	 Eric B, Marco D, Guy T (2020) Swarm intelligence: from natural
to artificial systems swarm intelligence: from natural to artificial
systems self-organization and templates: application to data analy-
sis and graph partitioning. In: Swarm intelligence: from natural to
artificial systems. Oxford University Press (Oxford Scholarship
Online (1999))

	 5.	 Vardy Andrew (2018) Orbital construction: Swarms of simple
robots building enclosures. In 2018 IEEE 3rd International Work-
shops on Foundations and Applications of Self* Systems (FAS*
W), IEEE, pp. 147-153

	 6.	 Strickland Caroline, Churchill David, Vardy Andrew (2019)
A reinforcement learning approach to multi-robot planar

construction. In 2019 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS),IEEE, pp. 238-244

	 7.	 Bajaj D Manju (2014) Maximum coverage heuristics (MCH)
for target coverage problem in Wireless Sensor Network, 2014
IEEE International Advance Computing Conference (IACC), pp.
300-305

	 8.	 Cardei M, Du DZ (2005) Improving wireless sensor network
lifetime through power aware organization. ACM Wirel Netw
11(3):333–40

	 9.	 Szepesvári Csaba (2010) Algorithms for reinforcement learning.
Synth Lect Artif Intell Mach Learn 4(1):1–103

	10.	 Vardy Andrew, Ibrahim Dalia S (2020) A swarm of simple robots
constructing planar shapes. arXiv preprint arXiv:​2004.​13888

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.3389/fevo.2020.595614
http://arxiv.org/abs/2004.13888

	Largest coverage network in a robot swarm using reinforcement learning
	Abstract
	1 Introduction
	2 Proposed methods
	2.1 Low-resolution scalar field (LRSF)
	2.1.1 Hard-coded implementation
	2.1.2 Reinforcement learning implementation

	2.2 High-resolution scalar field (HRSF)
	2.2.1 Hard-coded implementation
	2.2.2 Reinforcement learning implementation

	3 Experiments and results
	4 Conclusion and future work
	References

