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Abstract
The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve 
work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion 
trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and 
simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the 
lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular 
acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, 
and the improved PSO algorithm took the shortest time to compute the route.
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1 Introduction

With the development of technology, people’s lives are 
becoming more and more convenient, especially in industrial 
production, where highly repetitive labor has been gradually 
replaced by industrial robots [1]. As an automation device, 
industrial robots combine technologies such as mechan-
ics, control and programming and have the advantages of 
being programmable and working with high stability and 
efficiency. When the initial industrial robots used robotic 
arms to carry goods, their routes were set manually and the 
robotic arms worked in cycles according to the set routes [2], 
which were relatively simple but too rigid to cope with unex-
pected situations, and the manually planned routes might 
be not the best routes for robotic arm operation because of 
unstable joint changes during route changes. With the devel-
opment of cybernetics and programming, the route planning 
of robotic arms has become more intelligent, and a suitable 
route connecting the starting and end points can be planned 
using intelligent algorithms [3]. Prianto et al. [4] proposed 
a soft actor-critic-based route planning algorithm and found 
through experiments that the performance of the algorithm 

was better than the current results. Wall et al. [5] proposed 
a new path planning algorithm to perform the high-speed 
computation to deal with fast-moving obstacles and found 
that the algorithm could calculate a safe path faster for the 
robotic arm. This paper briefly introduced the motion model 
and trajectory planning method of robotic arms. The motion 
trajectory of the robotic arm was optimized by the particle 
swarm algorithm improved by the genetic algorithm. The 
simulation experiments were conducted for the trajectory 
planning of the robot arm. The improved particle swarm 
algorithm was compared with the genetic and particle swarm 
algorithms.

2  Robotic arm motion model of robots

Figure 1 shows a schematic diagram of a robot arm with 
six-degree-of-freedom, and every node serves as an origin 
in the linkage coordinate system. There are six rotatable 
nodes in the robot arm [6]; then, there are seven origin 
points in the linkage coordinate system, where origin 0 
is the part connecting the base to the first node. Table 1 
shows the D–H parameters of the robotic arm in the 
linkage coordinate system [7]. �i−1 represents the angle 
required by Zi−1 to rotate to the Zi axis around the Xi−1 
axis, which is used for determining the direction of the Zi 
axis for node i , ai−1 represents the straight-line distance 
between the Zi−1 axis and the Zi axis along the Xi−1 axis, 
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di represents the straight-line distance between the Xi−1 
axis and the Xi axis along the Xi−1 axis, and �i is the angle 
required by the Xi−1 axis to rotate to the Zi−1 axis along the 
Xi−1 axis, i.e., the joint angle of node i rotating around the 
Zi axis. The conversion formula of the fixed coordinates 
and the linkage coordinates is:

Among the four D–H parameters used in the above con-
version expression matrix, only joint angle �i is a variable. 
The remaining three D–H parameters are determined by the 
structure of the robotic arm, and the three parameters are 
constants for the same robotic arm [8].
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3  Trajectory motion control algorithm

3.1  Joint space planning method

Planning the robotic arm trajectory is to move the end of the 
arm from the initial position to the set position by changing 
the joint angle. To keep the robotic arm stable along the 
planned path, interpolation calculation for intermediate tran-
sition points between the starting and end points is needed 
to fit the smooth route curve.

The Cartesian spatial planning method directly solves the 
spatial trajectory of the end of the robotic arm. The obtained 
trajectory is intuitive, but the computation required to cal-
culate the joint angles corresponding to the spatial point 
location of the trajectory in real-time is huge, especially in 
the robotic arm whose joint has a high degree of freedom. 
The joint spatial planning method performs interpolation 
calculations on the joint angles corresponding to the starting 
and ending points. Although the trajectory obtained from the 
planning is not intuitive, the computation is much smaller. 
The goal of this paper is to optimize the running time of the 
robotic arm trajectory movement, so the joint space planning 
method is finally chosen to design the motion trajectory.

In this paper, the joint space planning method is chosen 
to plan the robotic arm trajectory. The general process of 
the joint space planning method [9] is: ① calculate the joint 
angles when the end of the robotic arm is at the starting 
point, transition point and end point; ② make interpolation 
calculations on the joint angles of two adjacent points and fit 
to get the function relationship between joint angle and time 
in the two adjacent points. In the first step, the joint angles 
are obtained through the inverse operation of Eq. (1); in the 
second step, the trajectory is fitted by polynomial interpola-
tion [10].

To improve the stability of the path and reduce the com-
putational effort, avoiding the Runge’s phenomenon should 
be avoided. This paper combines the cubic and quintic 
polynomial interpolation methods, and the corresponding 
formulas are:

Fig. 1  Schematic diagram of a robotic arm with six-degree-of-free-
dom and its linkage coordinate system

Table 1  D–H parameters of the robotic arm

Joint number i 1 2 3 4 5 6
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where �1(t) , �2(t) and �3(t) are the joint angles in the first, 
second and third sections of route, t is the time, t1 is the time 
required for the first section of route, t2 is the time required 
for the second section of route, t3 is the time required for 
the third section of route, a is the matrix of the unknown 
coefficients, D is the matrix of the equation set of the path 
constraints, and m is the four known insertion points of the 
three sections of route.

3.2  Particle swarm optimization‑based trajectory 
optimization

In this paper, the joint space planning method divides the 
route into three sections, so there are four route points in a 
route. Using Eqs. (2) and (3), the corresponding planned 
route can be obtained as long as the four route points and 
the movement time are known. The route fitted by the poly-
nomial interpolation method is smooth enough, so the opti-
mization of the trajectory of the robotic arm in this paper 
mainly focuses on the running time, i.e., to make the robotic 
arm move from the starting point to the end point as fast as 
possible while maintaining stability.

There are various algorithms for optimizing motion tra-
jectories in space, and this paper chooses the particle swarm 
optimization (PSO) algorithm [11]. The PSO algorithm imi-
tates bird foraging in nature. In this algorithm, a population 
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containing a plural number of particles is generated first. The 
position coordinates of every particle in the population in 
the search space is a candidate solution, i.e., a population is 
a set of candidate solutions. The fitness value of every par-
ticle in the population is calculated. Taking the best particle 
position as the target, the particle population moves in the 
search space. “The judgment of the current and historical 
optimal position of the particle—particle population move-
ment” is repeated until the particle population converges 
at a certain position. The coordinates of this position is the 
optimal solution.

This paper uses the joint space planning method to plan 
the end movement trajectory of the robotic arm, which 
means that the movement of the end of the robotic arm is 
achieved by controlling the change of the joint angle. The 
starting and ending positions of the end of the robotic arm 
can obtain the angle of every joint angle through convers-
ing Eq. (1). The movement of the end can be regarded as 
the change of the joint angle from the angle corresponding 
to the starting position to the angle corresponding to the 
end position. Since the end can have different paths from 
the starting point to the end, the changing process of the 
joint angle is also different.

To make the trajectory smoother and more stable, this 
paper chooses polynomial interpolation to fit the joint 
angle change curve with time and divides the process from 



564 Artificial Life and Robotics (2022) 27:561–567

1 3

the starting point to the end point into three segments. The 
first and third segments are fitted with cubic polynomial 
interpolation, and the second segment is fitted with quintic 
polynomial interpolation. In this three-segment polyno-
mial interpolation method, in addition to the starting point 
and the end point, two additional insertion points need 
to be inserted, and the corresponding joint angles can be 
obtained using Eq. (1).

Based on the starting point, the end point, and the joint 
angles corresponding to the two insertion points, polyno-
mial interpolation can be performed in combination with 
Eqs. (3) and (4), with the final goal of obtaining the coef-
ficient matrix a of every joint angle. In this paper, besides 
using the interpolation method to obtain a smooth moving 
trajectory, it is also necessary to make the moving time 
of the trajectory as small as possible so as to improve the 
efficiency of the robotic arm.

When using the PSO algorithm to optimize the trajec-
tory of joint angle change, instead of gradually fitting coef-
ficient a , the coordinates of the particles can be used as 
coefficient a and thus substituted into the polynomial, fol-
lowed by the calculation of the consumed time. The time 
consumption is minimized during the population iteration. 
However, a robotic arm often has plural joint angles, and 
the trajectory polynomial of every joint angle requires a 
coefficient matrix a , which leads to a high dimensional-
ity of particles within the PSO population and increases 
the search difficulty. The plural joint angle changes of 
the robotic arm are simultaneous, which means that the 
movement time of the robotic arm does not need to distin-
guish the joint angle; therefore, it searches by taking the 
movement time spent in the three segments of paths as 
the particle coordinates, and the time represented by the 
particles are substituted into Eqs. (3) and (4) to calculate 
the coefficient of every joint angle polynomial in the itera-
tion process. The goal of the particle iteration process is 
still to minimize the total time, but to ensure the stability 
of the moving trajectory, after the polynomial function of 
the trajectory is obtained based on the consumed time, it 

is necessary to calculate the running speed of joint angles, 
and the particles exceeding the limit cannot be used as the 
optimal particle even if the total time is minimal.

Compared with the genetic algorithm, the PSO algo-
rithm is simpler in principle and implementation, but in the 
process of searching for the optimal solution, the particles 
may fall into the locally optimal solution. To make the par-
ticle population jump out of the locally optimal solution, 
this paper introduces the concept of crossover and mutation 
from the genetic algorithm, so that the particles in the PSO 
population perform crossover and mutation operations after 
the iteration of position and velocity. The randomness of the 
two operations is used to avoid the particles falling into the 
locally optimal solution as much as possible.

Figure 2 shows the basic process of optimizing the joint 
angle trajectory of the robotic arm using an improved PSO 
algorithm, and the specific steps are as follows.

➀ Every particle in the population represents a planning 
scheme, and the coordinates of the particle in the search 
space are the scheme content. The time required for the 
first, second and third sections of the route is taken as 
the coordinate axes of the three-dimensional search 
space. The initialization of the population will randomly 
generate particles at different positions under the num-
ber of population sizes.

➁ Whether particles corresponding to the time required 
for the three sections of the route in the population can 
make matrix D singular is determined. Positions of par-
ticles that will make matrix D singular are adjusted, i.e., 
the time required for the three sections of route repre-
sented by the particles is adjusted.

➂ The time required for the three sections of route repre-
sented by the particles are substituted into Eqs. (2) and 
(3) to calculate the coefficient of the three-segment poly-
nomial function for every joint angle trajectory.

➃ The maximum running speed of the joint angle in the 
path is calculated according to the three-segment poly-
nomial function of every joint angle trajectory to deter-

Fig. 2  Basic flow of joint space 
trajectory planning under an 
improved particle swarm opti-
mization algorithm
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mine whether the running speed exceeds the maximum 
running speed allowed by the joint angle. If not, the next 
step is performed; if it does, the particles exceeding the 
limit are processed by regular PSO iterations to make 
the joint angle speed decrease.

➄ The fitness of the particles within the population is cal-
culated, i.e., the total time required for the three sections 
of the route, and the particles are sorted in descending 
order of fitness.

➅ The position and velocity of the particles within the pop-
ulation are updated [12] using the following equation:

where vi(t + 1) and xi(t + 1) are the velocity and posi-
tion of particle i after one iteration, vi(t) and xi(t) are 
the velocity and position of particle i before the itera-
tion, � is the inertia weight of the particle, c1 and c2 are 
learning factors, r1 and r2 are random numbers between 
0 and 1, Pi(t) is the individual historical optimal point 
of particle i , and Gg(t) is the historical optimal point of 
particle swarm.

➆ The three coordinate values of particles in the search 
space are regarded as three gene fragments. The single-
point crossover [13] is used in this paper, which means 
exchanging the fragment of the same gene locus in two 
randomly selected particles according to the crossover 
probability. The mutation operation is also used, which 
means changing one gene fragment in a randomly 
selected particle according to the mutation probability.

➇ If the termination condition is satisfied, then the opti-
mal scheme in the population is output; if not, step ② is 
repeated until the termination condition is satisfied.

4  Simulation experiments

4.1  Experimental setup

The robotic arm used in the simulation experiment was a 
six-degree-of-freedom robotic arm, whose basic structure is 

(4)

{
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r
1
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2
r
2
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xi(t + 1) = xi(t) + vi(t + 1)
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shown in Fig. 1. The D–H parameters of the robotic arm are 
shown in Table 2. In Table 2, �i represents the rotation angle 
of joint angle i , whose value depends on the end position 
of the arm. The planned joint space trajectory was fitted by 
the three-segment polynomial interpolation method, so four 
interpolation points were needed [14], which were starting 
point M0 , transition points M1 and M2 , and end point M3 . 
The joint angles corresponding to the four points are shown 
in Table 2.

To further demonstrate the performance of the improved 
PSO algorithm, this paper compared it with the traditional 
PSO algorithm and the genetic algorithm. The basic pro-
cess of the traditional PSO algorithm was the process 
after removing the crossover and mutation steps in Fig. 2, 
and its relevant parameters were the same as those of the 
improved PSO algorithm except the crossover and mutation 
probabilities.

4.2  Experimental results

Figure 3 shows the convergence curves when optimizing 
the joint angle space trajectory of the robotic arm using the 
genetic algorithm, the traditional PSO algorithm and the 
improved PSO algorithm, and the fitness function is the total 
time required for the three sections of the route. It was seen 
from Fig. 3 that after optimization by the three algorithms, 
the total movement time of the robotic arm was subsequently 

Table 2  D–H parameters of the 
robotic arm

Node number i 1 2 3 4 5 6

�
i−1 0 − 90° 0 − 90° 90° − 90°

a
i−1 0 180 mm 640 mm 195 mm 0 0
d
i

0 0 0 740 mm 0 0
�
i
 of M

0
0.365 rad 0.020 rad 0 rad 0.716 rad 0 rad 0 rad

�
i
 of M

1
0.415 rad 0.050 rad 0.075 rad 0.082 rad 0.085 rad 0.065 rad

�
i
 of M

2
0.581 rad 0.174 rad 0.235 rad 0.962 rad 0.175 rad 0.115 rad

�
i
 of M

3
0.635 rad 0.248 rad 0.265 rad 1.040 rad 0.215 rad 0.195 rad

Fig. 3  Convergence curves of the three algorithms when optimizing 
the trajectory
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reduced, and the improved PSO algorithm iterated the min-
imum number of times and had the lowest fitness before 
stability.

Due to space limitation, this paper only shows the changes 
of angle, angular velocity and angular acceleration of joint 
angle 1 within the planned time, as shown in Fig. 4. Fig-
ure 4 shows that the route obtained by the genetic algorithm 
took 2.50 s, the route obtained by the PSO algorithm took 
2.00 s, and the route obtained by the improved PSO algo-
rithm took 1.00 s. It was seen from Fig. 4 that the changes 
in the joint angle and angular velocity were continuous and 
smooth under the routes planned by the three algorithms, 
and the quintic polynomial interpolation method was used 
to plan the intermediate route, which avoided the problem 

of sudden changes in angular acceleration in the planning 
of the cubic polynomial interpolation method and improved 
the joint stability of the robotic arm.

The computation time of the three optimization algo-
rithms is shown in Fig. 5. The genetic algorithm took 
3.2 s, the PSO algorithm took 2.8 s, and the improved 
PSO algorithm took 1.3 s. It was seen from Fig. 5 that the 
genetic algorithm consumed the most time in computation, 
followed by the PSO algorithm and the improved PSO 
algorithm. The reason for the above result is as follows. 
Although the genetic algorithm used the fitness function as 
the guiding target when iterating on the population, indi-
viduals in the population were randomly adjusted accord-
ing to the crossover and mutation probabilities, and the 
fitness function played more of a screening role. The PSO 
algorithm used the fitness function to select the optimal 
individuals when adjusting the individuals so that the other 
individuals were adjusted toward the optimal individuals, 
which had a more precise direction; therefore, it obtained 
the optimal solution faster than the genetic algorithm. 
As the PSO algorithm aimed at adjusting the particles to 
make them optimal, the optimal individual would affect 
the whole algorithm; thus, to avoid the optimal individual 
be a local optimum, the improved PSO algorithm used 
the crossover and mutation operations in the genetic algo-
rithm to adjust the individuals, thus jumping out of the 
locally optimal solution, accelerating the convergence and 
improving the computational speed.

Fig. 4  Changes in angle, angular velocity and angular acceleration of joint 1 under three algorithms

Fig. 5  Computational time of the three algorithms
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5  Conclusion

This paper briefly introduced the motion model of the 
robotic arm and the trajectory planning method. The tra-
jectory of the robotic arm was optimized using the genetic 
algorithm-improved PSO algorithm; simulation experiments 
were conducted on the trajectory planning of the robotic 
arm; the improved algorithm was compared with the genetic 
algorithm and the PSO algorithm. The genetic algorithm 
iterated about 330 times before stability and had the highest 
fitness; the PSO algorithm iterated about 300 times before 
stability and had the second-highest fitness; the improved 
PSO algorithm iterated about 200 times before stability 
and had the third-highest fitness. The paths planned by the 
genetic algorithm, the PSO algorithm and the improved PSO 
algorithm took 2.50 s, 2.00 s and 1.00 s, respectively, and the 
changes in the angle, angular and angular acceleration were 
continuous and smooth. The genetic algorithm consumed 
3.2 s in computing, the PSO algorithm consumed 2.8 s, and 
the improved PSO algorithm consumed 1.3 s.

The limitation of this paper is that only the improved PSO 
algorithm was compared with the traditional PSO algorithm 
and GA, the effectiveness of the improved PSO algorithm 
was initially verified, and the improved PSO algorithm was 
more suitable for trajectory planning with fixed targets. 
Therefore, the future research direction is to compare the 
improved PSO algorithm with other optimization algorithms 
and try to realize trajectory planning with real-time chang-
ing targets.
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