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Abstract
Motion planning in an uncertain dynamic environment is a complex task, especially when obstacles move in a non-linear 
fashion. In this paper obstacles refer to other vehicles, pedestrians, bicycles, riders etc. In such cases, predicting the obstacles’ 
kinematics requires a forecast of the obstacles’ trajectories. The choice of the forecast time horizon is critical, especially in 
conflict scenarios where an accident can be avoided only by adjusting the maneuvers of one of the vehicles. In this paper, 
we present an approach for establishing optimal forecast time based on Maneuverability Maps that determine a vehicle's 
possible maneuvers. The approach can be used as guidance for human drivers and can also be implemented in the control 
system of autonomous vehicles. Simulation results indicate that optimizing the forecast time in a conflict scenario can reduce 
the probability for an accident.

Keywords  Agent-based microsimulation · Autonomous driving · Collision avoidance

1 � The problem of dynamic obstacles 
avoidance

Controlling a vehicle (manual or automatic) in various traf-
fic settings involves negotiation with numerous static (e.g., 
parked vehicles, traffic islands, road signs) and dynamic 
(other vehicles, pedestrians) objects. Interactions with the 
dynamic obstacles are, evidently, more complicated for man-
aging, and uncertainties in estimating their positions and 
velocities raise severe challenges to the safe navigation of 
human drivers and pedestrians. A formal view of the interac-
tion between the traffic participants is especially important 
for autonomous vehicles control systems operating in mixed 
traffic and interacting with humans driving vehicles.

There are several approaches to the planning/dynamic 
obstacle avoidance algorithms. However, some of them have 
significant limitations for performing correctly in real-world 
situations [1]. Some exploit simplified models of moving 
obstacles’ dynamics [1, 2] where the objects follow traffic 

regulations [1, 3, 4], while others are based on the kinematic 
patterns of drivers and pedestrians in specific motion maneu-
vers [5–7].

In reactive collision avoidance, the driving trajectory is 
constructed in reaction to the instantaneously observed mov-
ing objects [2, 8, 9]. These algorithms are affected by the 
“time horizon”—the duration of the time window chosen for 
forecasting the objects’ expected displacements. Typically, 
for human drivers, the time horizon is 1–2 s [10]. Improper 
selection of time horizon may cause erroneous estimates 
of an object’s future location [5, 8] and time to collision 
(TTC), and may result in a collision [1, 11, 12]. Given the 
time horizon, the precision of drivers’ estimates of distances 
and velocities decreases when the distance to or speed of the 
moving objects increases or lighting and other environmen-
tal conditions worsen [13, 14].

According to the National Safety Council (NSC) in the 
US (https://​www.​nsc.​org/​safety-​train​ing/​defen​sive-​drivi​ng), 
human and automated driving should be defensive: “..the 
driving behavior that saves lives, time, and money, despite 
the conditions around, and the actions of others, that best 
provides preventative methods for traffic incidents”. In 
addition to being alert, focused, and obeying traffic rules, 
defensive driving also demands continuous scanning of 
the environment and the ability to forecast unpredictable 
behavior of other drivers. For this purpose, we propose 
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the Maneuverability Maps (MM) that represent the possi-
ble future avoidance maneuvers of a vehicle regarding the 
mobile obstacles over a variety of time horizons and the 
possible safe maneuvers that can prevent a crash. MM can 
serve as a part of Advanced Driver-Assistance Systems or 
Autonomous Vehicle (AV) control system.

Our previous papers presented the algorithm for avoid-
ing vehicle–pedestrian interaction [15, 16] and investigated 
its properties with the agent-based simulation environment 
(SAFEPED). In this paper, we extend the proposed algo-
rithm for vehicle-vehicle interaction.

The structure of the paper is as follows:
Section 2 briefly reviews the algorithmic for computing 

maneuvers for a vehicle capable of accelerating, decelerat-
ing, and steering, which avoids collision with an obstacle 
moving along a straight trajectory. It begins with explain-
ing the rationale behind selecting one of two alternatives, 
accelerating or braking, and proceeds to a combination of 
the decision for changing speed with the decision to change 
direction in avoiding a crash.

Section  3 is devoted to the avoidance of obstacles 
moving along a curved trajectory. It explains the depend-
ency of maneuver outcomes to the time horizon selected 

for forecasting the obstacles motion. Finally, it presents a 
method for selecting the proper forecast time horizon of 
motion planning, and introduces the maneuverability map 
as a useful instrument for computing optimal avoidance 
maneuvers.

Section 4 presents a case study which exhibits the advan-
tage of using a maneuverability map over arbitrary selected 
constant forecast time horizon in realistic urban road interac-
tion. Finally, Sect. 5 provides a discussion and concluding 
remarks.

2 � Collision avoidance in vehicle—vehicle 
interaction

A collision can be avoided by a combination of braking, 
accelerating, and steering maneuvers. To present the con-
cept, we start with the case of two potentially colliding vehi-
cles that cannot steer, and then continue with the description 
of the case where all three maneuvers are possible.

Fig. 1   Vehicle A resolves a possible collision with vehicle B by brak-
ing or accelerating: a A accelerates to avoid a crash; b A decelerates 
before B ’s front edge reaches the potential crash point c A decelerates 

to avoid a crash with the back edge of B ; d displacement CC of A for 
the given time horizon
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2.1 � The case of braking/accelerating only

The scenario in Fig. 1 considers two vehicles, A (blue) and B 
(red), approaching a road intersection, both constrained to a 
narrow road and, thus, able to brake or accelerate only. A and 
B will crash if they maintain their current speeds VA and VB.

The dashed lines lA and rA represent the trajectories of left 
and right edges of A respectively that moves from left to 
right, and  lB and rB the trajectories of the left and right edges 
of B respectively that moves downwards. DB1 is the distance 
from the front of B to lA , and DB2 is the distance from the 
rare end of B to rA . DA1 and DA2 are the distances of the back 
and front edges of A to the left and right edges of B respec-
tively (Fig. 1a–c). The time to the collision between the front 
edge of B and the left edge of A is ΔtTTC

1
=

DB1

VB

 , and between 
the front edge of vehicle A and the right back side of B is 
ΔtTTC

2
=

DB2

VB

.
Let us assume that B ignores A by maintaining its initial 

speed, and it is up to A to avoid the collision. If A deceler-
ates, it must not pass DA2 before the period 

[
ΔtTTC

1
ΔtTTC

2

]
 , 

when B will leave the zone of a potential crash. If A acceler-
ates, it must pass DA1 at ΔtTTC

1
 . An object moving at an initial 

speed of v0 and accelerating with a constant acceleration a, 
covers, during Δt , a distance D:

thus, the acceleration/deceleration necessary to avoid the 
collision is:

Let dmax be the maximal deceleration and amax the maxi-
mal acceleration of A.

If VA ⋅ Δt
TTC
2

+
dmax

⋅(ΔtTTC2 )
2

2
> DA2, then A is incapable of 

avoiding the crash by braking. Otherwise, vehicle B  safely 
passes the intersection first if the acceleration of  A is lower 
than a1:

If VA ⋅ Δt
TTC
1

+
amax

⋅(ΔtTTC1 )
2

2
< DA1, then A is incapable of 

avoiding the crash by accelerating. Otherwise, vehicle A  
safely passes the intersection first if the acceleration of  A 
is higher than a2:

In what follows, we assume that A tries to avoid the col-
lision by choosing the maneuver that demands a minimal 
deviation from its current speed. The optimal acceleration 
is, thus,

(1)D = v0 ⋅ Δt +
a⋅Δt2

2
,

(2)a =
2⋅(D−v0⋅Δt)

Δt2
.

(3)a1 =
2⋅(DA2−VA⋅Δt

TTC
2 )

(ΔtTTC2 )
2

(4)a2 =
2⋅(DA1−VA⋅Δt

TTC
1 )

(ΔtTTC1 )
2

Let at every time moment t, the driver, human or com-
puter, plans the maneuvers for a time horizon Δth . Then, in 
the above scenario, the vehicle’s velocity at the end of Δth 
is given by:

V e l o c i t i e s  w i t h i n  t h e  r a n g e 
VCt+Δth ∈

[
vt + a1 ⋅ Δt

h, vt + a2 ⋅ Δt
h
]
 are unsafe and lead to 

a crash; velocities outside this range are considered safe.
In this example, the direction of the displacement always 

coincides with the velocity vector. The displacement of A 
for the time horizon Δth (Fig. 1c) is:

and the range for unsafe displacement is

2.2 � General case—braking, accelerating, 
and steering

In the case of steering, the set of unsafe displacements 
becomes two-dimensional, and its shape depends on the rela-
tive motion of A toward B . To construct this set, we follow 
Fiorini and Shiller [17]. They proposed the Relative Colli-
sion Cone (RCC): the relative velocities of A that remain 
within the RCC lead to a crash, while the relative velocities 
of A outside RCC are safe (Fig. 2a). By mapping RCC to the 
absolute velocities space, we obtain the Absolute Collision 
Cone (ACC), see Fig. 2b.

The domain VV− in Fig. 2c represents the set of reduced 
velocities of A that give way to B, while the domain VV+ 
represents the set of increased velocities of A that allow B 
to pass the potential crash zone after A leaves that potential 
crash zone.

In the case of straight motion (Fig. 2b), we consider 
the avoidance maneuver as optimal if it can be performed 
with the minimal change of the vehicle speed equal 
tomin

(
V−
A
,V+

A

)
 . For the case of unconstrained motion ofA , 

the optimal avoidance is within the two infinite sets—
VV−,VV+ (Fig. 2c) and we call VV− “accelerate-and-steer” 
and VV+ “brake-and-steer” sets of velocities.

2.3 � Motion along circular arcs

The motion of ground vehicles is constrained by kine-
matic and dynamic features such as maximal accelerating/

(5)aoptimal = min
(||a1||, ||a2||

)
.

(6)Vt+Δth = vt + a ⋅ Δth

(7)St+Δth = vt ⋅ Δt
h +

a⋅(Δth)
2

2
,

(8)CC ∈

⎡
⎢⎢⎣
vt ⋅ Δt

h +
a1⋅(Δth)

2

2
,

vt ⋅ Δt
h +

a2⋅(Δth)
2

2

⎤
⎥⎥⎦
.
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deceleration capabilities and minimal turning radius. To 
account for the displacement along a non-straight trajec-
tory, Waizman et al. [16] consider displacements along a 
circular arc (Fig. 3a). In this figure, A can avoid a collision 
with B by constructing a “synthetic” obstacle OB based on 
the obstacle’s dimension and its current speed, using the 
ACC procedure.

In Fig. 3a, A can avoid the collision by sharp left turn 
(denoted ⌣a1 ) or by a moderate right turn (denoted ⌣a2 ). The 
locus of available displacements is denoted by AS in Fig. 3b 
and is formed by the maximal acceleration/deceleration and 
the minimal turning radius for a given time horizon Δth . 
The minimal and maximal longitudinal displacements 
( Smin, Smax ), which depend on the current speed of A and 
on its maximal deceleration/acceleration, determine the rear 

Fig. 2   Identifying the set of velocities that guarantee no collision in case of a straight motion of A: a the relative velocities are out of RCC; b in 
case of straight motion v < V

+
A
&v > V

−
A

 c v ∈ VV
+
&v ∈ VV

−

Fig. 3   The set of velocities that guarantee no collision in case of a 
circular motion of A a unconstraint vehicle must steer out of O

B
  b 

Set of available displacements AS, set of safe displacements ASS− , 

the optimal displacement S− ∈ ASS
− for brake-and-steer avoidance 

for the time horizon Δth c the optimal displacement S+ ∈ ASS
+ for 

accelerate-and-steer avoidance for the time horizon Δth
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and front boundaries of AS (Fig. 3b). The minimal turning 
radius ( Rmin ), determines the radii of the lateral boundaries 
of AS.

The set of all collision displacements for brake-and-steer 
maneuvers—CSS− (Fig. 3b) resides between ⌣a1 and ⌣a2 , which 
forms the closest safe bypass trajectories of A from the left 
and right sides of obstacle OB accordingly. The shape of OB 
is derived from ACC (for more details, see [16]). The set of 
available brake-and-steer safe displacements ASS− is a result 
of subtracting CSS− from the AS.

The collision displacements for accelerate-and-steer 
maneuvers—CSS+ (Fig. 3c) include the area of ACC and 
the areas between ACC and A . The set of available accel-
erate-and-steer safe displacements ASS+ , similarly to VV+

, 
includes displacements over CSS+ with a higher velocity of 
the current velocity vector of A and therefore is associated 
with acceleration (Fig. 3c).

The displacement for the optimal unconstrained motion 
is selected from the safe displacements requiring minimal 
effort (acceleration/deceleration/steering) to maneuver the 

vehicle. If the endpoint of the current velocity vector of 
A falls inside the set of collision displacements ( CSS− or 
CSS+ ), the control system (automatic or manual) identifies 
the optimal displacement inside the set of the safe displace-
ments ( ASS− or ASS+ ). The optimal displacement requires 
minimal energy to be applied and, therefore, corresponds 
to the minimal combination of longitudinal and lateral 
acceleration for A . The optimal displacement from ASS− , 
is denoted by S−(Fig. 3b), and the one from ASS+ is denoted 
by S+ (Fig. 3c).

2.4 � Switching between the brake and accelerate 
maneuvers

During the motion, the size of the safe “brake-and-steer” and 
“accelerate-and-steer” displacements may change (Fig. 4) 
and can result in a qualitative change in the optimal maneu-
ver. At time t (Fig. 4a), “brake-and-steer” is selected because 
ASS−> ASS+ . “Accelerate-and-steer” is selected at time 
t + Δt in the situation described in (Fig. 4b) as vehicles A 

Fig. 4   Safe displacements loci 
in A reaction to B : a at the time 
t the area of a safe “brake-and-
steer” ASS−

t
 is 70% of its total 

area, while safe “accelerate-
and-steer” ASS+

t
 is just empty; 

b at the next moment  t + Δt 
ASS−

t+Δt
 decreases to 15% of 

the total area while ASS+
t+Δt

 
increases to 20%
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and B approach each other and ASS+> ASS− . Selecting the 
most extensive set of safe displacements between ASS− and 
ASS+ preserves more options for further maneuvering of A , 
i.e., leaves more options for avoiding a collision.

3 � Predicting maneuvering of mobile 
obstacles

3.1 � The effect of forecast time horizon 
on maneuverability

As already mentioned, drivers predict the location of mov-
ing obstacles 1–2 s. ahead of time and control their vehi-
cles respectively [10]. Let us consider this prediction in 
the case of non-linear motion. Figure 5 presents the loci of 
safe displacements ASS− and ASS+ for vehicle A in reac-
tion to vehicle B for three different forecast time horizons 
𝜏1 < 𝜏2 < 𝜏3 and three predicted locations PA

�1
 , PA

�2
 and PA

�3
  

of A along its anticipated trajectory. The velocity vectors 

of B for these three horizons are different, and as shown,  
ASS+

𝜏1
< ASS+

𝜏2
< ASS+

𝜏3
  whileASS−

𝜏1
> ASS−

𝜏2
> ASS−

𝜏3
.

Since the vehicle’s maneuverability option is defined by 
the largest of the two safe zones, an algorithm for establish-
ing the optimal time horizon is suggested as follows:

Construct safe “brake-and-steer” and “accel-
erate-and-steer” domains ASS−

�
  and ASS+

�
  for 

the series of time horizons between 0 and 2  s. for 
�
i
= {Δ� ⋅ i ∶ i = 0, 1..16,Δ� = 0.125sec}.
Select the maximal of 32 areas of the obtained safe 

displacements:

where � = �
i
 is considered as the optimal time horizon that 

can be braking-and-steering or accelerating-and-steering, 
depending on which of ASS−

(
�

)
 or ASS+

(
�

)
 is selected.

i = argmax f (i) ∈ {i ∶ i = 0, 1..16},

f (i) = max
({

ASS−
(
�i

)
,ASS+

�

(
�i

)})

Fig. 5   Increasing forecast time � affects the relative size of the ASS−
�
  and ASS+

�
 domains, thus resulting in different accelerating/braking decision
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3.2 � Constant vs. optimal forecast time horizon

Figure 6 presents a scenario, in which vehicle A , with a 
maximal speed of 45 km/h, approaches the roundabout at a 
speed of 40 km/h, while vehicle B exiting the roundabout 
at a speed of 40 km/h by turning left without using its turn-
ing signals. Vehicle A can choose to brake, assuming that B 
does not leave the roundabout, maintain its current speed or 
even accelerate, assuming that B will exit the roundabout. 
The intermediate option for A is to decrease the speed at the 
beginning (between Fig. 6a, b) and then accelerate (Fig. 6c, 
d) after realizing that B is exiting the roundabout. Let us 
investigate the outputs of this scenario in case of the constant 
and optimal horizon time �

Figure  7a–c presents A’s speed for constant 
�
A
= 0.5, 1.0 sec and 2.0 sec . If there are no obstacles to 

avoid or sharp turns of the road, vehicle A increases its 
speed to a maximum of 45 km/h. It starts reacting to vehicle 
B between time t ≈ 1.0 s. ( � = 2.0 s, Fig. 7c) and ≈1.1 s ( � 
= 0.5 s, Fig. 7a) from the beginning of the interaction. In 
the case of variable � ∈ [0.0 − 2.0] sec. (Fig. 7d) vehicle A 
reacts as earlier as in the case of  � = 0.5 s. As can be seen, 
in all cases, A first brakes and then accelerates, and accel-
eration depends on � – the speed of A decreases to 26 km/h 
for �A = 0.5 and to 32–33 km/h for τA = 1.0 and τA = 2.0. 
In case of the optimal time horizon that varies during the 
movement, the decrease in speed is minimal, to ≈ 36 km/h 
(Fig. 9d).

3.3 � Maneuverability map

Let us analyze the scenario in Fig. 6 for introducing the 
Maneuverability Indices and the Maneuverability Map. Let 
us define for vehicle A at some moment t of the interac-
tion with vehicle B, the Maneuverability Index for braking 
(MI−

t
(�) ) as the ratio between the area of the safe displace-

ments for braking maneuvers—ASS−
t
(�) and the area of all 

(safe and unsafe) available displacements—AS−
t
(�) for a 

given time horizon �:

Similarly, the Maneuverability Index for accelerating is 
given by

As mentioned,  we consider  forecast  t imes 
|� ∈ [0.02.0] at resolution of 0.125 sec . However, the fore-
cast time � above Time to Collision (TTC) is meaningless 
because it leads to a certain crash. The area in the MM 
map where 𝜏 > TTC is marked with gray. If MI−

t
(�) = 1 or 

MI+
t
(�) = 1 then, for the given τ, there is no risk of collision. 

Similarly, if MI−
t
(�) = 0 and MI+

t
(�) = 0 , then there are no 

safe displacements neither for braking nor for accelerating 
and resolution of a collision depends on the other vehicles’ 
maneuvers. We call this state “near-crash”.

The Maneuverability Map presents MI−
t
(�) and MI+

t
(�) 

as a function of � and t and consists of the acceleration and 
deceleration sections. Figure 8 presents the Maneuverabil-
ity Maps for the scenario shown in Fig. 6. Forecast time 
�
− is defined as the highest of MI−

t
(�) . Forecast time �+ is 

defined as the highest of and MI+
t
(�) . If MI−

t
(𝜏

−
) < MI+

t
(𝜏

+
) , 

the optimal forecast time is� = �
+ , otherwise� = �

− . The 
optimal forecast �  appears on the map as a solid black line, 
on the braking section if � = �

− or on accelerating section 
if� = �

+.
In both cases, vehicle A changes, while moving, from the 

“Brake and Steer” to “Accelerate-and-steer” maneuvers, but 
the dynamics of these changes are different. For the adjusta-
ble time horizon (Fig. 8a), A accelerates from 40 to 45 km/h 
during the time interval [0, 1.1 sec] , but at t ≈ 1.1 (point a′ in 
Fig. 8a), some displacements of A become unsafe due to the 
approaching vehicle B . As a result, the brake maneuverabil-
ity index for A decreases on the [1.1, 1.5 sec] time interval 
(segment a′–b′ in Fig. 8a) and A slows down to 38 km/h. 
At t = 1.5 , B turns toward the exit of the roundabout and A 
switches to accelerate-and-steer maneuvers. From t = 1.8 s. 
(point c′ in Fig. 8a), the optimal time horizon of A decreases 
as being limited by the TTC—until t ≈2.6 s. Shortly after 

(9)MI−
t
(�) =

ASS−
t
(�)

AS−t (�)
.

(10)MI+
t
(�) =

ASS+
t
(�)

AS+t (�)
.

Fig. 6   Vehicle A brakes in the period between a and b assuming vehicle B continues in the roundabout decision and then accelerates on the seg-
ment between c and d when realizing that B leave the roundabout
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Fig. 7   Change of A’s speed in time for the constant and variable forecast time a � = 0.5 s, b � = 1.0 s, c � = 2.0 s, d optimal � that varies within 
[0.0 2.0] during motion
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that (point d′ in Fig. 8a, t ≈ 2.9 sec ), the two vehicles drive 
away from each other.

For the constant time horizon of � = 1.0 sec. (Fig. 8b), 
A starts with a “Brake-and-Steer” maneuver, and, when 
switching to “Accelerate and steer” one, its speed is lower 
than the speed at the switching moment in case of the adjust-
able time horizon. At the end of the interaction, A's speed is 
45 km/h in both cases.

3.4 � The computational cost

Maneuvers’ computations using the MM consist of (a) 
establishing optimal forecast time  �  and (b) identify-
ing the optimal displacement S . As mentioned above, 
the first part includes constructing the areas of the safe 
displacements for 32 time horizons between 0 to 2 s. for 
�i = {Δ� ⋅ i ∶ i = 0, 1..16, Δ� = 0.125 sec}.

The second part exploits the area of safe displacement 
associated with the optimal �    as an input.

As mentioned, in this paper we use SAFEPED for all the 
simulations. SAFEPED software is developed in standard 
C++. The simulations below are done on a standard desktop 
computer with i3-4170 CPU, two physical cores.

The red section of the graph in Fig. 9 represents the time 
required for determining the optimal �   as described above 
during the interaction between the two-vehicle. As shown, 
the average CPU time is ≈ 10 ms. The blue section corre-
sponds to the period when the vehicles do not interact, and 
the optimal displacement computations are performed at an 
average of ≈1 ms.

3.5 � Avoidance of multiple obstacles

So far, we have discussed two-vehicle interactions. However, 
the proposed algorithm can be extended to multiple vehi-
cles scenarios. Generally, the set of safe “Brake-and-Steer” 
displacements ASS− for vehicle A (Fig. 10a)—is the result 

Fig. 8   Maneuverability map for a adjustable and b constant � = 1.0 sec . Color denotes the values of the Maneuverability Index; the forecast time 
� above TTC is excluded (a gray area) as leading to a crash

Fig. 9   CPU time for motion planning in case of one mobile obstacle 
and case of no obstacles
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of subtracting form the set of available displacements AS , 
multiple sets of colliding displacements ( CSS−

B
,CSS−

C
 ) and 

ASS+  for “Accelerate-and-Steer” (Fig. 10b) is the result of 
subtracting ( CSS+

B
,CSS+

C
 ) form the set of available displace-

ments. Identifying the optimal forecast time �  with regard 
to N obstacles requires the computation of both ASS− and 
ASS+ for all permutations (with repetitions) of forecast 
times— �i = {Δ� ⋅ i ∶ i = 0, 1..16, Δ� = 0.125 sec} for all 
obstacles:

The number of permutations in total is:

Sequential computation of the algorithm, in this case, 
may become time-consuming. Parallelizing:

Estimating CSS−� i
j

,CSS
+� i

j
∶ i = 0..16, j = 0, 1..N

Subsequent computing:

significantly reduce execution time.

(11)

ASS
−[i1i2…iN]
[1,2…N]

= AS�
(
CSS

−�i1
1

∪ CSS
−�i2
2

∪⋯ ∪ CSS
−�iN
N

)
∶

i
1
= 0, 1..16, i

2
= 0, 1… 16… , i

N
= 0, 1… 16

(12)

ASS
+[i1i2⋯iN]
[1,2..N]

= AS�
(
CSS

+�i1
1

∪ CSS
+�i2
2

∪⋯ ∪ CSS
+�iN
N

)
∶

i
1
= 0, 1… 16, i

2
= 0, 1… 16… i

N
= 0, 1… 16

(13)A
N

16
= 16N

ASS
−[i1i2⋯iN]
[1,2..N]

,ASS
+[i1i2⋯iN]
[1,2..N]

Finding: max
(
ASS

−[i1i2⋯iN]
[1,2..N]

)
,max

(
ASS

+[i1i2⋯iN]
[1,2..N]

)
 using 

numerical tools for non-linear optimization e.g., the steepest 
descent can significantly reduce number of ASS− and ASS+ 
computations and consequently reduce the computation cost.

4 � A case study

This section demonstrates that using adjustable forecast 
time has an advantage in forming avoidance maneuvers in 
an urgent situation even if the behavior of the active agent is 
not optimal. Normally, if the endpoint of the current veloc-
ity vector of an agent is out of the set of safe displacements, 
the control system selects an optimal displacement which 
requires minimal energy to be applied (0). In this experi-
ment, we qualify urgent steering conditions if there is no safe 
displacement, neither for braking nor for accelerating, in the 
current direction of the agent’s motion. In this case, we set 
the control system to select displacement, which requires 
maximal energy to be applied. Consequently, A reacts to B 
and steers in the most forceful way, making its maneuvering 
less smooth.

Let A (Fig. 11) be the maneuvering vehicle and ⌣D – is the 
shortest trajectory of A toward B. The experiment runs are 
repeated ten times for two maximal speeds of B—30 and 
35 km/h, and five maximal speeds of A—25, 30, 35, 40, 
and 45 km/h. The speed of A affects the kinematic limits of 
its maneuvering (i.e., braking distance and minimal turning 
radius). The rate of the angular rotation of B depends on its 

Fig. 10   Constructing set of 
available displacements for 
multiple obstacles for a braking-
and-steering b accelerating-and-
steering maneuvers
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speed and affects the ability of A to make an accurate fore-
cast of B ’s motion. The start time of B is set to 0.0 s, while 
the start time of A is set with a time delay of

such that if both A and B do not react to each other, they 
crash. For all combinations of speeds, A starts moving later 
than B . The point of collision between A and B is at distance 
D1 = 47m from the start point of A along its trajectory and at 
distance D2= 27 m  from the start point of B. As mentioned, 
If vehicles A and B are “blind” and do not react to each 
other, they meet each other at the same point for all com-
binations of their initial speed due to different time delays.

The results in Table 1 show that:

•	 In the runs with adjustable time horizon, A always lets B 
to pass and takes a left bypass; in the runs with constant 
time horizon, A always avoids B taking a right bypass.

•	 The minimal distance between the vehicles and the TTC 
are higher for the adjustable forecast. In the cases of A
-30 km/h velocities, the crash is avoided only in the case 
of adjustable forecast.

•	 For the scenarios without a crash, the minimal distance 
between the vehicles is slightly higher when the of the 

(14)Δt =
D1

V1

−
D2

V2

Fig. 11   Vehicle B, which does not react on A, turns left. A avoids 
collision with B. ⌣

D – is the shortest trajectory leading A to a collision 
with B . The range is the length of ⌣D

Table 1   The speed of A, the shortest range between A and B, and the TTC at the moment of their closest proximity in case of no-crash for the 
constant and adjustable time horizon

A 25km/h A 25 km/h 
B A forecast time 0.5 1.0 1.5 2.0 ADJ  B A forecast time 0.5 1.0 1.5 2.0 ADJ

35 km/h dist(m) 0.0 0.0 0.0 0.0 0.0 30 km/h dist(m) 0.0 0.0 0.0 0.0 0.0

 ttc(s) crash crash crash crash crash   ttc(s) crash crash crash crash crash
 speed(A) 26 27 26 25 24   speed(A) 25 26 25 25 25
 Maneuver right right right right left   maneuver right right right right right

A 30 km/h A 30 km/h 
B A forecast time 0.5 1.0 1.5 2.0 ADJ  B A forecast time 0.5 1.0 1.5 2.0 ADJ

35 km/h dist(m) 0.0 0.0 0.0 0.0 0.9 30 km/h dist(m) 0.0 0.0 0.0 0.0 0.8

 ttc(s) crash crash crash crash 0.08   ttc(s) crash crash crash crash 0.06
 speed(A) 33 32 31 31 40   speed(A) 31 30 30 30 42
 Maneuver right right right right left   maneuver right right right right left

A 35 km/h A 35 km/h 
B A forecast time 0.5 1.0 1.5 2.0 ADJ  B A forecast time 0.5 1.0 1.5 2.0 ADJ
35 km/h dist(m) 0.0 0.3 0.2 0.2 0.9 30 km/h dist(m) 0.3 0.3 0.2 0.2 1.1
 ttc(s) crash 0.02 0.02 0.02 0.08   ttc(s) 0.02 0.02 0.02 0.02 0.10
 speed(A) 42 41 40 39 41   speed(A) 39 38 37 37 40
 Maneuver right right right right left   maneuver right right right right left

A 40 km/h A 40 km/h 
B A forecast time 0.5 1.0 1.5 2.0 ADJ  B A forecast time 0.5 1.0 1.5 2.0 ADJ

35 km/h dist(m) 0.3 0.4 0.4 0.4 1.0 30 km/h dist(m) 0.5 0.4 0.4 0.3 1.2

 ttc(s) 0.02 0.03 0.03 0.03 0.08   ttc(s) 0.04 0.03 0.03 0.02 0.09
 speed(A) 51 50 47 46 46   speed(A) 47 45 44 42 46
 maneuver right right right right left   maneuver right right right right left

A 45 km/h A 45 km/h 
B A forecast time 0.5 1.0 1.5 2.0 ADJ  B A forecast time 0.5 1.0 1.5 2.0 ADJ

35 km/h dist(m) 0.3 0.7 0.6 0.5 1.1 30 km/h dist(m) 0.8 0.7 0.6 0.6 1.3

 ttc(s) 0.02 0.04 0.04 0.03 0.07   ttc(s) 0.05 0.05 0.04 0.04 0.09
 speed(A) 55 55 54 51 54   speed(A) 55 52 50 50 52
 maneuver right right right right left   maneuver right right right right left

If a crash occurs, the distance between the cars is zero, and vehicle A ’s speed at the moment of a crash is presented
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speed of A is higher for both constant and adjustable 
forecast.

•	 In the case of no-crash, the TTC and the minimal dis-
tance loosely depend on the vehicles’ speeds and vary 
within the intervals 0.2–0.7 m and 0.02–0.05 s. In the 
case of the adjustable forecast, the distance and the TTC 
are double than for the constant forecast.

The maneuverability maps for the adjustable and the con-
stant time horizon � = 2.0 s are presented in Fig. 12 in the 
scenario where A and B speeds are 35 km/h. At the time 
t1 = 1.0 s in both cases A switches to “Accelerate-and-Steer” 
because of insignificant advantage over “Brake-and-Steer.” 
In the case of adjustable forecast, the optimal forecast time 
is � = 0.0 s and remains up to t2 = 1.7 s , when A returns to 
“Brake-and-Steer” maneuver (Fig. 12a). It begins turning 
intensively because of the urgent steering conditions. The 
arc length of the sharp turning displacement is larger than 
that of the straight velocity vector. As a result, the speed of A 
shows slight growth for some 0.1 s. At t3 = 2.1 s , A switches 
again to “Accelerate-and-Steer” (Fig. 12a) to bypass B from 
the left, however keeping the same speed till t4 = 2.7sec. . 
Then it slightly accelerates until t5 = 3.2sec. when it leaves 
B behind and returns to the initial path.

For the fixed � = 2.0 s , at the beginning of B′
s left turn, 

the momentary linear paths of A and B intersect few meters 

ahead of A . Algorithm associates the area of intersection 
with the area of potential crash. Therefore, A begins the 
“Accelerate-and-Steer” maneuver at t

1
= 1.0 sec. As B fur-

ther turns left, momentary linear paths of B turns left as 
well. As a result, the area of potential crash moves forward 
ahead of A at an increasing rate. Consequently, vehicle A 
starts speeding up at t

2
= 1.5 sec till t3 = 2.8s (Fig. 12b). At 

t3 A returns from urgent steering condition. At t4 = 3.5s it 
leaves B behind and returns to the initial path (Fig. 12b).

5 � Discussion

Providing vehicles with collision alert systems and auto-
nomic driving capabilities becomes a common practice with 
the advance of the Driver-Assistance Systems. This paper 
proposes an algorithm for motion planning and collision 
avoidance that resolves uncertainty in predicting maneu-
vering of a dynamic obstacle that moves along a non-linear 
trajectory.

Given a moving object (a vehicle or a pedestrian), the 
algorithm accounts for the kinematic state of the surround-
ing moving objects and the short history of their behavior, 
calculates the optimal forecast time for estimating the set of 
available safe displacements for this object, and chooses the 
optimal displacement. The algorithm performs at a rate of 
100 times per second in our simulations. Using a realistic 

Fig. 12   Maneuverability map for the case of A − 35 B − 35 km/h a adjustable forecast t1 = 1.0 s, t2 = 1.7 s, t3 = 2.1 s, t4 = 2.7 s, t5 = 3.2 s b 2.0 s 
constant forecast t1 = 1.0 s, t2 = 1.5 s, t3 = 2.8 s, t4 = 3.5 s
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road situation, we demonstrate that the proposed method 
generates the maneuver which requires the lowest possible 
energy to avoid a crash.

The essence of the algorithm is the maneuverability maps 
that represent the set of available displacements at a high 
time resolution for all reasonable forecast times. The maneu-
verability maps approach can be part of training human driv-
ers in “defensive-driving” courses.

The proposed approach can be integrated into the control 
system of a driverless vehicle operating in a heterogeneous 
environment and sharing roads with human-driven vehicles, 
pedestrians, and other road users. This control system must 
include a sensing component for estimating the surround-
ing vehicles and pedestrians' dimensions and their relative 
motion. Data sharing between vehicles (V2V) and between 
the road infrastructure and road users (I2V) is the key fea-
ture of smart transportation systems. It is based on arrays 
of on-board, off-board sensors, as well as fast communi-
cation channels between all road users. Sensing based on 
video processing is one of the major methods used in mod-
ern smart transportation systems, it is well studied, widely 
used, and has zero environmental impact. Experience in 
using video processing to evaluate traffic scenes began in 
the early ‘90 s [18], and today it has grown to real-world 
autonomous driving applications [19]. In their control sys-
tem [19], the image processing performs in bounds of typical 
configuration—with 10 Hz for images with a resolution of 
782 × 582 [pix] on a Linux PC with a real-time kernel patch. 
The optimization procedure runs on a real-time rapid pace 
prototyping system with a cycle time of 25 Hz. SAFEPED’s 
100 Hz performing motion planning algorithm may easily be 
integrated into a control system with a processing rate such 
as the one discussed in [19]. The implementation of active 
sensors, such as LIDAR [20] and Doppler radar [21] are yet 
in development because it requires additional resources and 
time-consuming signal processing.
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