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Abstract
Most deep-learning frameworks for understanding biological swarms are designed to fit perceptive models of group behavior 
to individual-level data (e.g., spatial coordinates of identified features of individuals) that have been separately gathered from 
video observations. Despite considerable advances in automated tracking, these methods are still very expensive or unreliable 
when tracking large numbers of animals simultaneously. Moreover, this approach assumes that the human-chosen features 
include sufficient features to explain important patterns in collective behavior. To address these issues, we propose training 
deep network models to predict system-level states directly from generic graphical features from the entire view, which can 
be relatively inexpensive to gather in a completely automated fashion. Because the resulting predictive models are not based 
on human-understood predictors, we use explanatory modules (e.g., Grad-CAM) that combine information hidden in the 
latent variables of the deep-network model with the video data itself to communicate to a human observer which aspects of 
observed individual behaviors are most informative in predicting group behavior. This represents an example of augmented 
intelligence in behavioral ecology—knowledge co-creation in a human–AI team. As proof of concept, we utilize a 20-day 
video recording of a colony of over 50 Harpegnathos saltator ants to showcase that, without any individual annotations 
provided, a trained model can generate an “importance map” across the video frames to highlight regions of important behav-
iors, such as dueling (which the AI has no a priori knowledge of), that play a role in the resolution of reproductive-hierarchy 
re-formation. Based on the empirical results, we also discuss the potential use and current challenges to further develop the 
proposed framework as a tool to discover behaviors that have not yet been considered crucial to understand complex social 
dynamics within biological collectives.

Keywords  Deep learning in behavioral ecology · Swarm behavior · Explainable AI · Augmented intelligence · Knowledge 
co-creation

1  Introduction

Deep Convolutional Neural Networks (DCNNs) have been 
widely adopted as the primary backbone of data-driven 
frameworks to solve complex problems in computer vision 
including object classification or detection and recog-
nition of human actions [19, 24, 25]. The nature of their 
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multi-layer structure has a powerful ability to automatically 
learn to identify key local features (e.g., edges) from raw 
pixels of images and combine into more meaningful con-
cepts (e.g., pointy ears) to produce a final prediction output 
(e.g., dog), as the data is processed from the lowest layer 
through the higher ones  [7]. Consequently, if the target 
video data contains global information of biological swarms, 
lower-level visual properties such as locations, motions, and 
interactions of the entities could automatically be identified 
throughout the hierarchical layers of a DCNN during the 
training process. However, deep learning in behavioral biol-
ogy has mostly been limited to building perceptive models 
to localize particular body parts of each entity to generate 
another input to a subsequent analysis model to capture 
motional concepts of individuals and perform a prediction 
for the entire swarm based on them [1, 8, 14, 21].

There can be two significant challenges in deep-learn-
ing approaches based on first localizing human-chosen 
features in video data: (1) obtaining the individual feature 
labels can require a significant amount of human effort 
especially when a large group of individuals are monitored 
simultaneously, and (2) the choice of features relies heav-
ily on prior knowledge of human experts in the biological 
system. To address these issues, as visualized in Fig. 1, we 
here suggest training the deep-network models to predict 
system-level states directly from generic graphical features 
from the entire view, which can be relatively inexpensive 
to gather, and examine the salient behavioral regularities 
discovered in the trained intermediate layers by using gra-
dient-based explanation modules (e.g., Grad-CAM [23]). 

In other words, our proposal is to make more use of the 
aforementioned potential of DCNN to automatically dis-
cover fine-grained, individual-level motional patterns 
highly associated with macroscopic swarm properties 
so that the predictive model can later be queried about 
what these patterns are without being constrained by prior 
knowledge from human experts.

In fact, such explanation-enabled designs of deep neu-
ral network have been actively investigated in a number of 
machine learning fields, such as computer vision [11, 23], 
natural language processing [10, 18], and medical diagno-
sis [9, 15], so as to ensure the credibility of the trained model 
by visualizing the fine-grained features in the space of pixels 
or words. To the best of our knowledge, however, we are 
the first to utilize a similar functionality in biological sys-
tem to map the abstract output of trained deep classifiers to 
the behavioral level of individual entities. Furthermore, our 
aim is not only at increasing transparency of the predictive 
model but also at realizing the knowledge co-creation pro-
cess for scientific discovery in which human observers can 
learn from the visual explanations the behavioral factors to 
the animal collective.

Specifically, in this paper, we propose the use of the 
explainable module Grad-CAM  (Fig.  2) for biological 
research. Extending our previous work [4], we utilize a 
20-day video recording of a colony of 59 Harpegnathos 
saltator ants to demonstrate that without any individual 
annotations provided as input, the trained classifier of social 
stability in ant colonies can also generate an “importance 
map” across video frames to selectively highlight regions of 

Fig. 1   Proposed usage of DCNNs, trained to predict global state of the swarm system from the entire view and later examined to reveal key local 
observations by utilizing the computed gradient between the learned local feature and the prediction output in the DCNN classifier
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interactions (e.g., dueling) as potentially important drivers 
of colony state.

The rest of this paper is organized as follows. In Sect. 2, 
we explore related literature and the distinction of our work. 
Then, we generally formalize the proposed method with 
DCNNs in Sect. 3. Section 4 offers an introduction of Har-
pegnathos saltator ants and the video recording procedure 
performed for data collection. We then present more details 
about actual implementation in Sects. 5, and 6 shows the 
experimental results with qualitative examples to support 
our proposed framework. Finally, in Sect. 7, we summa-
rize our research and discuss challenges and future work for 
further development as a useful instrument in research of 
collective behavior.

2 � Related work

2.1 � State modeling of swarms

Precise state assessment in collective systems can allow for 
autonomous monitoring of complex social interactions to 
better inform intervention strategies. Therefore, a number of 
data-driven approaches have been proposed to build mod-
els of focal systems of a large group to accurately discern 
irregularity from available observational data. For example, 
Mehran et al. [13] designed a computer vision algorithm 
to detect otherwise cryptic cues of group-level panic in 
observed behaviors in a human crowd. Similar approaches 
have also been applied to allow individuals within a sys-
tems to achieve situational awareness and adapt their local 
behaviors to meet global needs. In particular, Choi et al. 
[2, 3] designed a mobile robot that could accurately infer 
remote events encountered at distal ends of its team outside 

of sensing range; as a result, the robot could react and move 
in a fashion complementary to its remote teammates, hasten-
ing the achievement group-level mission objectives.

Behavioral ecologists, however, have focused more on 
simulating state evolution of social systems by modelling 
individual interactions as mathematical, stochastic pro-
cesses in response to proximal information. To be specific, 
self-organizing positional dynamics [6, 20], collective nest 
choice [17], and social hierarchy reformation [22] are all 
explained primarily by relatively simple equations represent-
ing local interactions among individuals. These models fit 
the representative data from real observations generally well, 
but the atomic behaviors taken into account for prediction 
are limited to prior knowledge that human experts can offer 
and incorporate into the abstract model structures.

To consider more dense information, DCNNs are often 
employed as part of a tracking system [1, 14] to extract spa-
tial coordinates of each individual entity from video record-
ings. We claim that the DCNNs are not being used to their 
full potential in this approach. Instead of using the DCNNs 
to identify novel features for analysis, the DCNNs extract 
data already known by humans to likely be of importance, 
and those data are then further analyzed by other means. 
Although results from this approach are likely to be readily 
explainable as they make use of features already identified 
by human researchers, the tracking process discards signifi-
cant amounts of data and potentially informative features. To 
tackle this issue, our proposal is to utilize DCNNs beyond 
tracking to independently discover salient behaviors for 
swarm-level states directly from generic graphical inputs, 
and human scientists intervene afterwards to examine the 
discoveries to potentially generate new knowledge of the 
biological system.

2.2 � Use cases of explainable AI systems

In general, explainability is implemented in deep learning 
models to help users build trust in the predictive outcomes. 
As demonstrated by Selvaraju et al. [23], for instance, par-
ticularly challenging patterns from images can be identified 
to draw more attention of researchers to those cases for fur-
ther investigation. In addition, predictive outcomes could be 
reconfirmed by human doctors before final decision in medi-
cal scenarios [15], in which false diagnosis can cause an irre-
coverable risk to patients. Similarly, if classification results 
are produced along with human interpretable explanations 
in text, end users tend to more readily trust the model [18].

A closely related application to our work is anomaly 
detection  [11], in which anomalous parts of industrial 
products are automatically localized in image data while 
explaining the peculiarity from normal structures seen dur-
ing training. Though our model uses optical flows as input to 
handle behavioral features of ants, novel shapes of flows will 

Fig. 2   Example of Grad-CAM in which the key regions are high-
lighted for class “Elephant”[5]
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similarly be identified to localize the ants whose behaviors 
have been deemed to be anomalous. In a similar sense, the 
prioritization of ants could be analogous to the feature-selec-
tion process where an explanatory module reveals dominant 
features for prediction of a particular class [9]. Most distinc-
tively, however, we introduce a novel application to complex 
biological systems, in which local interactions continuously 
occur over time leading the entire system to present unique 
social states throughout large-scale time periods.

3 � Proposed framework

Rather than training on small-scale features of individuals 
in videos, our approach trains a DCNN to predict coarse-
grained, large-scale state class c from representations of 
generic features from video data. Any discrete, large-scale 
property can be used, such as whether a crowd [13] is about 
to riot. We use hierarchy state c ∈ {Stable,Unstable} for our 
example system (described in Sect. 4), with the goal of pre-
dicting the current hierarchy state based on short intervals 
of video of the system [4]. Our n-layer classifier consists of 
m two-dimensional convolutional layers �1≤�≤m followed by 
other types �m+1≤��≤n , such as recurrent or fully connected 
layers to ultimately produce the likelihood of each state 
class yc . Convolutional layers are used as feature extractors 
in this architecture since each output  fij at �

�
 can compactly 

encode the local observation in a larger region (“receptive 
field”) at previous layers 𝜙

�′′<� ; i.e., a change in fij can imply 
the amplification or decrease of the motion pattern observed 
in the corresponding region.

For explanation of what visual regions are most impor-
tant to the predictive model, Grad-CAM [23] is employed 
on K two-dimensional output feature maps, each denoted 
as  f k ∈ ℝ

h×w , at a convolutional layer �
�
 to finally calcu-

late the “importance map” Mc over the original input for a 
particular state class c. In the technical aspect, �

�
 can be an 

arbitrary layer satisfying � ∈ {1, 2,… ,m} , but the layer �
�
 

close to �m is typically chosen to access more abstract fea-
tures with wider receptive fields than the ones available at 
lower layers 𝜙

�′<� . For brevity, we denote � to be the chosen 
convolutional layer in the following descriptions.

To generate the importance map Mc , we first obtain the 
gradient gc of the output yc (e.g., c = Unstable ) with respect 
to each feature map  f k from � , i.e., gc

ij
= �yc∕�f k

ij
 . Therefore, 

gc
ij
> 0 implies that enhancing the observational pattern 

encoded by f k
ij
 increases the predicted likelihood of class c—

the discovered pattern is “salient” for class c—and gc
ij
≤ 0 

implies that the observation is considered irrelevant to the 
prediction of class c. Then, for each feature map  f k , Grad-
CAM then uses this quantity to gain the averaged impor-
tance ac

k
= (1∕Z)

∑

i

∑

j g
c
ij
 (where Z is a normalization con-

stant). Finally, the importance map Mc is computed by the 
rectified weighted summation of feature maps, as in:

where ⊙ is the element-wise multiplication, and linear 
rectifier Γ(a) = a for a > 0 and Γ(a) = 0 otherwise, which 
ensures that only the features that bring positive impacts 
on yc are considered, as Selvaraju et al. [23] designed in their 
original Grad-CAM module [23]. In  Sect. 6, we also intro-
duce a more restrictive Γ� that gates only the top 5% values 
so as to strictly verify whether key behaviors are effectively 
highlighted with the highest level of confidence. Also, Mc 
can be spatially upsampled to fit the original image of a 
desired size for visualization purpose.

4 � Harpegnathos saltator ant‑colony testbed

Following our previous work [4], a colony of Jerdon’s jump-
ing ant, Harpegnathos saltator, is utilized as a testbed to 
validate whether our proposed framework can reveal sali-
ent behavioral patterns. A conspicuous transient “unstable” 
state can be induced in this system through the removal of 
identified egg layers (“gamergates”) [16] that triggers a hier-
archy reformation process among female workers, whose 
body lengths are typically 18–20 mm . During this process, 
aggressive interactions—e.g., dueling, for which two ants 
alternatively lunge back and forth whilst drumming their 
antennae (Fig. 4a) [22]—can be readily observed for several 
weeks until several workers activate their ovaries and start 
to lay eggs as part of the gamergate replacement process, 
causing the colony to recover its nominal stable state [12]. 
We apply our framework to this system by building a binary-
state classifier on the stability of the colony. We use the 
resulting deep-network model to identify important behav-
iors of interest and validate whether dueling is discovered 
without a priori knowledge of it. Other behaviors identi-
fied by the system may then warrant further investigation 
by human researchers.

4.1 � Video data from colonies undergoing 
stabilization

As shown in Fig. 3, each 20-day video was taken with an 
overhead camera to observe 59 H. saltator ants in plaster 
nests covered with glass. Due to a foraging chamber outside 
the view of the camera, not all ants are always visible, and 
some paralyzed crickets, their preferred food, can be car-
ried into the view. We artificially disturbed the reproduc-
tive hierarchy by removing all four preidentified gamergates 
after the second day of recording and further observed the 

(1)Mc = Γ

(

∑

k

ac
k
⊙ f k

)

,



397Artificial Life and Robotics (2022) 27:393–400	

1 3

process of hierarchy reformation until aggressive inter-
actions almost disappeared in the last several days of the 

20-day videotaping period. Therefore, the video frames of 
the first 2 days are annotated with c = Stable , while the later 
ones of 18 days are all with c = Unstable.

We follow the preprocessing method in [4] to extract from 
consecutive frames their optical flow, for which a pair of 
vectors encodes the horizontal and vertical transient move-
ments from the input sequence (e.g., Fig. 4) [13]. Two opti-
cal flows in spatial resolution of 64 × 64 were computed 
every 2 min to use as an input x to the model, as each was 
obtained from two consecutive RGB frames 0.5 s apart in 
times. More details of the dataset are available online.1

5 � Implementation of DCNNs with Grad‑CAM

We use a classifier from our previous work [4] for the one-
class classification task, in which the model trained only 
with observations from the first 2-day stable colony is to 
detect the unstable state of the colony later. We use the Area 
Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) to measure classifier performance; this 
classifier metric ranges from 1.0 (perfect classification) to 
0.5 (performance at chance) to 0.0 (reversed classification). 
That colony-state classifier has an overall AUC-ROC per-
formance of 0.786 using only two consecutive optical flows 
as input for each prediction. Moreover, as shown in Table 1, 
the colony-state predictions during the early period of first 
6 days after the reproductive hierarchy is disturbed have high 
AUC–ROC scores (0.909–0.933) on average [4], indicat-
ing that the micro-scale graphical features identified by the 
deep network may be strong predictors of macro-scale state 
dynamics.

More specifically, the classifier we use has four 2D con-
volutional layers �1∶4 with 2D max pooling between con-
secutive layers, and six other types of layers �5∶10 follow to 
produce the estimated likelihood of unstable colony state. 
As described in Sect. 3, we then employ Grad-CAM on 
the feature maps from �4 . For each generated importance 
map Mc , bicubic interpolation is applied to match the size of 
the frame image to overlay. Our codes are available online.2

Fig. 3   Colony of 59 H. saltator ants as a testbed. Ants can access a 
hidden foraging chamber through the south tunnel to bring paralyzed 
crickets for food

Fig. 4   a Example of two consecutive RGB frames cropped around 
a dueling interaction in yellow circle, in which red arrows visualize 
the moving directions of the two engaged ants at each time instant; b 
horizontal and vertical optical flow vectors generated from a, in each 
of which red (blue) are the regions of movement in the positive (neg-
ative) direction along the corresponding axis. Each flow vector has 
been normalized for better visualization (colour figure online)

Table 1   Temporal performance of state detector developed in [4] while the tested colony was stabilized for 18 days—i.e., D + 1–D + 18

For each period, the average AUC–ROC score from three individual executions is reported with the standard deviation

D + 1 D + 2 D + 3–D + 6 D + 7–D + 10 D + 11–D + 14 D + 15–D + 18

AUC–ROC 0.933 ± 0.027 0.943 ± 0.014 0.909 ± 0.014 0.792 ± 0.013 0.688 ± 0.017 0.678 ± 0.022

1  https://​github.​com/​ctyeo​ng/​Optic​alFlo​ws_​HsAnts
2  https://​github.​com/​ctyeo​ng/​Beyon​dTrac​king

https://github.com/ctyeong/OpticalFlows_HsAnts
https://github.com/ctyeong/BeyondTracking
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6 � Results and model validation

As discussed in Sect. 4, we validate our approach by con-
firming that dueling behavior between ants is identified by 
the AI as strongly related to the unstable colony state. A 
model that can detect dueling with no prior knowledge of 
the behavior may identify other behavioral patterns that 
warrant further investigation.

Figure 5 displays the heatmaps produced by the initial 
application of Grad-CAM with rectifier Γ . Grad-CAM 
identifies that the central area is more critical than the 
boundaries, and this general pattern is consistent over 
time despite changes in ant behaviors. This visualization 
indicates that, for the purpose of identifying changes in 
colony hierarchical state, the neural network has learned to 

ignore interactions near boundaries and instead focuses on 
interactions in the center of the area. Although this pattern 
matches intuition from human observations of these ants, 
it is too coarse to identify important behaviors.

We thus applied a filtered rectifier Γ� to only visualize 
regions of the top-5% positive gradients to identify the 
most dramatic responses in the generated heatmap to the 
ant motions, which resulted in more refined identifications of 
regions of importance. Figure 6 shows examples of dueling 
interactions detected by these highest gradients. Given that 
the deep network was not provided coordinates of the ants 
nor prior behavioral models of dueling, it is not surpris-
ing that the highlighted regions do not precisely identify 
specific ants in the interactions. Nevertheless, the network 
identifies general regions in close proximity to important 
behaviors. In particular, in  Fig.6c, d, more than two ants 
were engaged in dueling, but the detection region dynami-
cally moved around them while they actively participated. 
These results support that the trained model has not overfit 
trivial attributes such as brightness or contrast of video but 
learned from ant behaviors themselves.

Figure 7a also shows the case where two duelers are cap-
tured as intended while other active ants who are simply 
showing swift turns nearby each other without direct interac-
tion are ignored by our model. This indicates that the DCNN 
classifier does not blindly take any type of movement into 
account for prediction; only relevant patterns are prioritized 
as features to utilize. Similarly, in Fig. 7b, two dueling ants 
are detected among a group of other non-dueling neighbors 
that are presenting rapid changes in motion and orientation. 

Fig. 5   Heatmaps from Grad-CAM at two arbitrary times as the recti-
fier function Γ is applied. Central areas appear more positively influ-
ential (red) than the edges (yellow) (colour figure online)

Fig. 6   Dueling examples captured by the modified rectifier Γ� , which 
only visualizes the top 5% impactful regions. Each sequence displays 
three consecutive frames cropped around the interaction for clarity, 

in which engaged ants are within blue circles, and each yellow arrow 
indicates the motional direction and speed of the corresponding ant 
with its tip and length, respectively (colour figure online)
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This example also demonstrates the ability of our trained 
model to filter out unimportant motion patterns even when 
a high degree of motion flow is present.

7 � Summary, discussion, and future work

We have proposed a deep-learning pipeline as a tool to 
uncover salient interactions among individuals in a swarm 
without requiring prior human knowledge about the behav-
iors or significant preprocessing effort devoted to individual 
tracking and behavioral coding. Our experimental results 
show that a trained classifier integrated with Grad-CAM can 
localize regions of key individual-scale interactions used by 
the classifier to make its colony-scale predictions. Validat-
ing our approach, identified behaviors, such as dueling, are 
the same behaviors that have been identified previously by 
human researchers without the aid of machine learning; 
however, our classifier discovered them without any prior 
guidance from humans. Thus, the library of other high-
lighted patterns from our pipeline can be used to generate 
new testable hypotheses of individual-to-colony emergence.

Our proposed approach greatly reduces human annota-
tion effort as only macro-scale, swarm-level annotations are 
used in training. Significant effort is currently being used to 

develop machine-learning models for the subtask of track-
ing alone. Our approach suggests that tracking individuals 
may, in many cases, be an unnecessary step that wastes both 
computational and human resources. Furthermore, our pro-
posed approach reduces the risk of introducing human bias 
in the pre-processing of individual-level observations. By 
examining the resulting set of prioritized micro-scale behav-
iors, human investigators could both identify individual 
contributors in specific videos as well as infer novel, gener-
alizable patterns useful for understanding the evolution of 
global states. Consequently, our example is a model of how 
human–AI observational teams can engage in knowledge 
co-creation—each providing complementary strengths and 
ultimately realizing the vision of augmented, as opposed to 
purely artificial, intelligence.

An important future direction is to further classify the 
highlighted patterns automatically discovered by these pipe-
lines. Human behavioral ecologists can discriminate between 
peculiar interactions (e.g., dueling, dominance biting, and 
policing [22]) that all may occur during the most unstable 
phases of reproductive hierarchy formation in H. saltator 
ants. Our method may have the ability to identify these 
behaviors, but it does not currently cluster similar identified 
patterns together and generate generalizable stereotypes that 
would be instructive to human observers hoping to identify 
these behaviors in their own future observations. Unsuper-
vised learning methods could be adopted as a subsequent 
module to perform clustering and dimensionality reduction 
to better communicate common features of clusters, which 
may include patterns not yet appreciated by human research-
ers that are apparently useful in predicting swarm behavior.

The example application that has motivated the current 
work focuses on large-scale phase transitions of groups over 
time. That is, the approach we have demonstrated is tailored 
for experimental blocks where each collective generates a 
single sequence of video data that can be divided into dis-
tinct temporal intervals labeled as one state (e.g., “before”) 
or another state (e.g., “after”). We have used hierarchy for-
mation in ants as a model example, but the same approach 
could be applied to a range of other changes in social behav-
ior over time, such as understanding the individual contri-
butions to transitions into mobbing or rioting behavior in 
previously calm human crowds. Furthermore, our approach 
could also be applied to experiments comparing the behav-
ior of groups under some treatment condition to control 
groups. For example, if a behavioral ecologist would like to 
identify candidate behaviors of worker ants that are directed 
only toward their queen, videos of worker isolates without 
a queen could be compared to worker isolates with a queen. 
More subtle differences in the behaviors of the workers may 
be difficult for an unaided human observer to notice, but 
a DCNN trained to discriminate among the treatment and 
control groups may be able to identify these less apparent 

Fig. 7   Two examples in each of which dueling ants are detected (blue 
dash line) while other active ones are ignored (white dash line) (col-
our figure online)
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behaviors. Thus, our model-free approach can be a precur-
sor to more formal hypothesis testing based on candidate 
behavioral differences between groups first highlighted by 
the DCNN.
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