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Abstract
We attempt to develop an autonomous mobile robot that supports workers in the warehouse to reduce their burden. The pro-
posed robot acquires a state-action policy to circumvent obstacles and reach a destination via reinforcement learning, using 
a LiDAR sensor. Regarding the real-world applications of reinforcement learning, the policies previously learned under a 
simulation environment are generally diverted to real robot, owing to unexpected uncertainties inherent to simulation environ-
ments, such as friction and sensor noise. To address this problem, in this study, we proposed a method to improve the action 
control of an Omni wheel robot via transfer learning in an environment. In addition, as an experiment, we searched the route 
for reaching a goal in an real environment using transfer learning’s results and verified the effectiveness of the policy acquired.
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1  Introduction

Recently, the demand for workers in the distribution industry 
has been increasing owing to the increase in the handling 
amount of baggage due to the emergence of online shop-
ping. However, there is a shortage of workers in the distri-
bution industry because of the declining birthrate and aging 
population; hence, workers are required to work hard for 
long hours, which triggers several health problems, such as 
back pain and knee injuries. Therefore, there is an urgent 
need to improve labor efficiency and reduce the workload 
in the distribution industry. Autonomous logistic robots are 
expected to reduce the burden of workers and achieve sus-
tainable growth for businesses. In existing distribution ware-
houses that do not support automation, distribution lines 
are set up in relatively small spaces for people to work. To 

create a fully autonomous warehouse, a substantially large 
space is necessary. Therefore, a semi-automated logistics 
system that can adopt existing facilities will be required in 
the future in terms of cost. This study aims to develop a 
robot that can assist in transporting goods in a warehouse, 
thereby semi-automating the logistics system that carries 
baggage. Several robots that provide services via autono-
mous navigation have been developed (e.g., [1–3]). How-
ever, it is difficult to provide all the control rules for these 
autonomous mobile robots, and if the robots fall into unan-
ticipated conditions, they cannot be correctly operated. In 
addition, these robots cannot handle friction, vibration, and 
noise, which are parameters that humans do not completely 
understand. To address this problem, this study utilizes a 
method called reinforcement learning [4], which can handle 
complex environments with unknown parameters, as well 
as achieve the goal, regardless of the problems, provided 
the agent is given a goal state and a reward. Reinforcement 
learning is also beneficial for mobile robot tasks, such as 
avoiding unknown obstacles and finding the shortest path to 
target position, although they might have several paths to the 
target [5]. In this study, we adopt reinforcement learning to 
enable the robot acquire behavioral control and reach a goal 
while avoiding obstacles. The robot used in this study is an 
Omni-wheel robot that can be rotated on the spot and moves 
in all directions such that it can be operated in a confined 
space made for workers.
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In general, when reinforcement learning is used to control 
an real robot, a state-action policy is obtained in a simula-
tion environment and the policy is used to control the robot. 
However, a challenge exists as the state and behavior of the 
simulator do not always match those of the real world owing 
to friction and sensor noise that exist in an real environ-
ment. Therefore, we proposed a method [6] that utilizes 
transfer learning to address this problem in our previous 
study. However, the study did not sufficiently consider the 
environmental differences between the simulation and real 
environments, and it also did not verify the effect exerted by 
the number of times of transfer learning. In this study, we 
verify the accuracy of the real robot control by learning with 
more randomness in the simulation environment and then 
compare the path finding performance between different 
number of times of transfer learning in an real environment.

The remainder of this paper is organized as follows. In 
Sect. 2, to realize robot control in the real environment, as 
a preliminary learning, we perform reinforcement learning 
in a simulation environment under conditions that consider 
environmental errors in correlation with an real environ-
ment. In the simulation environment, we introduce random-
ness to the learning by randomizing the initial position for 
more robustness in the real environment. In Sect. 3, the pol-
icy learned in the simulation environment is only used for 
the real robot, and the accuracy of the real robot control is 
measured. In Sect. 4, we adapt the policy to an real environ-
ment via transfer learning, control the real robot, and meas-
ure the accuracy of the real robot control. We also verify the 
control accuracy of the real robot depending on how many 
times the transfer learning was performed. In Sect. 5, we 
summarize this study and discuss future prospects.

2 � Learning in the simulator

In this section, a robot model learns in a simulation environ-
ment. In this section, a robot model is learned in a simulation 
environment. The robot is modelled as an omni-wheel robot, 
which can move in all directions while rotating on the spot to 
operate in a limited space for workers. We adopt Q-learning 
[7] as a reinforcement learning algorithm, which has the 
advantage of learning convergence. Algorithm 1 presents 
Q-learning algorithm. 

Algorithm 1 Q-Learning algorithm
Algorithm parameters: step size α ∈ (0,1], small ε > 0
Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily ex-
cept that Q(terminal, ∗) = 0
for episode = 1, M do

Initialize S
for step = 1, N do

Choose A from S using policy derived from Q(e.g., ε−
greedy)
Take action A, observe R,S′

Q(S,A) ← Q(S,A) + α[R+ γmaxaQ(S,a)−Q(S,A)]
S ← S′

end for
end for

Learning in the simulation environment was conducted 
in two phases. First, the robot learns from a fixed start 
point in 1000 episodes. Second, the robot learns from a 
random start point in 2000 episodes. We expect this phas-
ing to make the robot more robust in real environments. In 
addition, the action-value function Q(s, a) in Q-learning 
has been updated in the following equation:

where � , � , st , at , and rt denote the learning rate, discount 
rate, state, action, and reward, respectively. In this experi-
ment, the training parameters � and � were set to 0.2 and 
0.8, respectively. The state of the robot model in the experi-
ment was defined using the value of a LiDAR sensor. The 
robot model adopted in the experiments is an Omni-wheel 
robot with a LiDAR sensor. Figure 1 illustrates the system 
configuration of the learning experiment conducted in the 
simulation environment. The experiment adopts a robot 
operating system (ROS) as the control system for the robot 
model. Gazebo, a 3D simulator, simulates a mobile robot 
with a 270 degree LiDAR sensor. OpenAI supports the learn-
ing calculation and generates the policy to be applied in the 
actual wheeled robot.

(1)
Q(st, at) ← (1 − �)Q(st, at)

+ �(rt + �maxaQ(st+1, at+1)).

Fig. 1   System configuration of the simulator
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2.1 � Simulation conditions

2.1.1 � Map

Figure 2 shows a map used in the learning. The white and 
the blue circles in a map show the start and the goal points, 
respectively, of the simulation. The map is 3 m squared, 
with the goal points of 0.25 m radius.

2.1.2 � Robot

In this study, we develop policies in a simulator, which 
will be later transferred to an real robot (Fig. 3). Therefore, 
we need to create a 3D model robot that mimics the char-
acteristics of a real robot. The simulator robot is illustrated 
in Fig. 4. The specifications of the real robot are presented 
in Table 1, while Fig. 3 shows the real robot.

The robot works with Arduino 328, a microcontroller 
with an I/O extension board for sensors and motors. The 
robot also uses a LiDAR sensor as a distance sensor, and 
its specifications are presented in Table 2.

The LiDAR sensor is mounted on the upper center of the 
robot, with a scanning angle of 270 degrees and a maxi-
mum range of 30 m. Based on these characteristics of the 
robot and the LiDAR sensor, a 3D model of the robot was 
created in the simulator.

2.1.3 � States

Figure  5 presents the five ranges of LiDAR as states: 
0–1[deg], 66.5–68.5[deg], 134–136[deg], 201.5–203.5[deg], 
and 269–270[deg]. The states used for learning take the 
median of these ranges and are discretized by 0.25 m in 
each of the five directions from 0 to 4.25 m. The states for 
the Q-learning are the combination of the five discretized 
data presented below the data. When the sensor data are 0.25 
m, the discretized value is considered 0.5 m, and the value 
on the dividing line is rounded up.

2.1.4 � Actions

The robot has four actions: front, back, right, and left 
actions, and the speed is set to 0.25 m/s. In one action, the 
robot moves for 0.5 ± 0.01 s of the simulator time.

2.1.5 � Rewards

The robot gets a reward for every step presented in Table 3. 
This experiment has four reward conditions in the learn-
ing. For the first one, if the robot model hits the wall, it 

(2)Discretizeddata = {0.0, 0.25, 0.5, ..., 3.75, 4.0, 4.25}

Fig. 2   Simulator map

Fig. 3   A real robot

Table 1   Omnidirectional mobile robot specifications

Robot name NEXUS 
robot 
(4WD)

Maximum length 402 mm
Height 100 mm
Maximum motor velocity 0.6 m/s
Power consumption 17 W
Weight 4 kg
Maximum load 5 kg

Table 2   LiDAR sensor specifications

Sensor name LiDAR 
Hokuyo 
UTM-30LX

Scanning range 0.1 ∼ 30 m
Scanning angle 270◦

Scanning time 25 ms/scan
Power source 12 VDC ±10%
Current consumption 700 mA
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receives −106 reward points. Second, if the robot model 
is in the same distance as before or moves further from 
the goal point, it receives -10 reward points. Third, if the 
robot model moves closer to the goal point, it receives -1 
reward points. Fourth, if the robot model reaches the goal, 
it receives 0 reward points.

2.2 � Result of the simulator

Table 4 presents the results obtained from the learning 
experiment in the simulator. Figure 6 illustrates one of the 
fewest actions in the entire experiments in the map. Based 
on these results, we can infer that by adopting Q-learning, 
which is one of the basic types reinforcement learning, a 

Fig. 4   3D model of the omnidi-
rectional mobile robot

Fig. 5   LiDAR data used for the robot state

Table 3   Rewards

Condition Reward

Contact the wall − 1,000,000
Same distance to the goal − 10
Away from the goal − 10
Close to the goal − 1
Arrive at the goal 0

Table 4   Learning

Initial position Number of episodes success rate

Fixed + random 1000 + 2000 96.6 [%]
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mobile robot can determine a path to the goal while avoid-
ing static obstacles.

3 � Real‑world application

The learning results obtained from the simulator are applied 
to the actual omni-wheel robot presented in Fig. 4. The 
LiDAR measurements are adopted as the real-world condi-
tions, shown in Fig. 5, as well as the simulator learning. 
A LiDAR sensor, UTM-30LX [8], illustrated in Fig. 7, is 
mounted on the robot. The real robot selects an action whose 
value is maximum in a given state. It selects action randomly 
when the robot reaches an inexperienced state. Figure 8 pre-
sents a system configuration of the experiment conducted in 
the real environment.

3.1 � Map

Figure 9 presents a real-world map corresponding to the 
map shown in Fig. 2. The map is 3 m square environment. 
The robot started at 1.5 m from the leftmost wall and 0.75 
m from the wall behind.

3.2 � Naive transfer results

First, we simply applied the policy from the simulator to the 
real robot and tested the success rate with 30 trials for the set-
ting. Accordingly, the robot achieved a success rate of 40.0 [%] 
of dropping 56.6 [%] from the result of the simulator experi-
ment, and this result was completely unacceptable.

4 � Transfer learning

Transfer learning is a framework in which knowledge learned 
by the source agent is reused by the destination agent. 
Recently, it has been applied to machine learning and rein-
forcement learning with good results. In transfer learning 
within the framework of reinforcement learning, a reinforce-
ment learning agent learns and acquires a policy at the source. 
Then, in the same or similar environment, the same or similar 
agent can reuse the policy acquired at the source to speed up 
the acquisition of the solution at the destination [9]. Taylor 
et al. defined transfer learning in reinforcement learning in 
[10, 11].

where Qs(�s(s),�a(a)) is the policy transferred from the 
source, Qd(s, a) is the policy used by the agent at the desti-
nation, and the action values learned in the new environment 
are also updated here. Further, Qc(s, a) denotes the policy 
that combines the transferred policy and the policy acquired 

(3)Qc(s, a) = Qd(s, a) + Qs(�s(s),�a(a)),

Fig. 6   One of the fewest actions

Fig. 7   A sensor (UTM-30LX)

Fig. 8   System configuration of the real environment

Fig. 9   Real map
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at the destination, and the action is selected at the destination 
using the policy Qc(s, a) . The function �x(x) is an Inter-task 
mapping that describes the correspondence of x between 
sources and destination. In this study, for a policy adaptation 
using transfer learning, an real robot can reuse the policy 
acquired by robot model in the simulator environment, by 
defining �x(x) = x , that is, considering same dimensions 
between simulation and real world for states and actions.

This transfer learning is used to address the problem 
that the policy learned in the simulator cannot be used 
effectively owing to unexpected uncertainties under the 
simulation environment, and the effectiveness of transfer 
learning in the real operation of reinforcement learning 
was verified. In this study, we performed transfer learn-
ing up to 50 episodes using Eq. 3 to improve the policy 
learned under simulation. After learning, we conducted 
experiments in real environments using the refined policy 
at different episodes to measure the success rate of reach-
ing the goal. Subsequently, we verified the effectiveness of 
the transfer learning by comparing the success rates using 
policy refined at the 0th, 10th, 20th, 30th, 40th, and 50th 
episodes. We also examined the changes that occurred as 
the transfer learning progressed by comparing the robot’s 
trajectory with the unlearned position. The learning rate 
� , in Eq 3 was set to 0.1.

4.1 � Application results

Figure 10 presents the success rate for each of the 0th, 
10th, 20th, 30th, 40th, and 50th episodes of transfer learn-
ing. The results indicate that the success rate is improved 
by up to 50 points through transfer learning. Figure 11 
shows the number of learned positions each of the 0th, 
10th, 20th, 30th, 40th, and 50th episodes of transfer learn-
ing. Figures 12(a)-(f) present the trajectories of the robot 
that moved according to the policy, each of the 0th, 10th, 
20th, 30th, 40th, and 50th episodes of transfer learning.

4.2 � Discussion

Even if randomness is introduced to the learning in the simu-
lation environment, the real robot may reach an inexperi-
enced state, provided that it uses the policy learned in the 
simulation environment. In this study, we used the policy 
acquired by adding randomness to learning in the simulation 

Fig. 10   Results of transfer learning

Fig. 11   Number of learned positions

(a) without (b) 10 episodes

(c) 20 episodes (d) 30 episodes

(e) 40 episodes (f) 50 episodes

Fig. 12   Trajectories of the real robot using policy refined by transfer 
learning
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environment, such as randomizing the initial position, and 
conducted transfer learning in the real environment. Accord-
ingly, the behavioral trajectories shown in from Figs. 12(a)-
(c) and Fig. 10 indicate that learning progressed smoothly up 
to 20 episodes of transfer learning, with the highest success 
rate at the 20th episode. We believe that the reason for this 
improved success rate is that transfer learning reduced the 
number of inexperienced states that could not be considered 
in the simulation environment. In contrast, the observation 
of the entire behavioral trajectory shown in Figs. 12(a)-(f) 
and  Fig. 10 suggested that learning stuck after the 20th 
episode of transfer learning and may start to find a shorter 
path. Figure 11 indicates that the number of learned posi-
tions increases linearly. However, the transition in success 
rate shown in Fig. 10 is not monotonic, as increasing the 
number of learned positions.

5 � Conclusion

To develop a working robot in warehouses by adopting rein-
forcement learning, it is necessary to reduce the environ-
mental error between the simulation environment and the 
real environment. This paper proposed a method of sim-to-
real transfer learning to close gaps between simulation and 
real environments. In this study, we verified the accuracy 
of the real robot control by learning with more randomness 
in the simulation environment and then compared the path 
finding performance between different number of episodes 
of transfer learning in the real environment. Accordingly, the 
accuracy of behavioral control of the real robot was greatly 
improved by transfer learning compared to the case without 
transfer learning, and the difference in the success rate of 
reaching the goal was verified depending on the number of 
episodes of transfer learning. However, because the experi-
ments in this study have only verified the effectiveness of 
transfer learning in one environment, it is necessary to verify 
the effectiveness of transfer learning in more complex envi-
ronments in the future.

In this study, the simulator environment did not model 
any type of noise in the real environment, such as friction 
and sensor noise. To address this problem in the future, we 
will focus on introducing this type of noise to the state and 
control values in the learning in the simulation environment 
to consider the environmental error between the real and 
simulation environments, as well as focus on sophisticated 
inter-task mapping �x(x) (see Eq. 3).
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