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Abstract
One of the most common issues addressed by bug report studies is misclassification when identifying and then filtering 
non-bug reports from the bug report repository. Having to filter out unrelated reports wastes time in identifying actual bug 
reports, and this escalates costs as extra maintenance and effort are required to triage and fix bugs. Therefore, this issue has 
been seriously studied and is addressed here. To tackle this problem, this study proposes a method of automatically identi-
fying non-bug reports in the bug report repository using classification techniques. Three points are considered here. First, 
the bug report features used are unigram and CamelCase, where CamelCase words are used for feature expansion. Second, 
five term weighting schemes are compared to determine an appropriate term weighting scheme for this task. Lastly, the 
support vector machine (SVM) family i.e. binary-class SVM, one class SVM based on Schölkopf methodology and support 
vector data description (SVDD) are used as the main mechanisms for modeling non-bug report identifiers. After testing by 
recall, precision, and F1, the results demonstrate the efficiency of identifying non-bug reports in the bug report repository. 
Our results may be acceptable after comparing to the previous well-known studies, and the performance of non-bug report 
identifiers with tf-igm and modified tf-icf weighting schemes for both Scölkopf methodology and SVDD methods yielded 
the best value when compared to others.

Keywords Bug reports · Non-bug report identifier · Text classification · Support vector machine (SVM) · Schölkopf 
methodology · Support vector data description (SVDD)

1 Introduction

Many very large and complex open sources or software 
application projects have been proposed [1–8], but no soft-
ware is completely safe from defects, also known as “bugs” 
[5]. In general, the software testing process locates bugs or 
defects in a program. However, it is impossible to locate all 
the bugs in a piece of software. End users can be employed 
as testers to locate and identify bugs in software. Informa-
tion relating to software problems reported by software test-
ers and end users is termed as a “bug report”. Bug reports 
contain key information for maintaining and enhancing 
software efficiency and quality. Thus, it is not wondering if 

numerous software projects utilizing bug reports as guide-
line for the maintenance task. Consequently, utilizing bug 
reports may have helped to reduce maintenance cost. It is 
well-known that this cost is the highest in software develop-
ment life cycle [2].

Bug tracking systems (BTS) have been developed as a 
bug tracking tool that is used for gathering a large number 
of bug reports, comments, and additional requirements from 
more users [1–10]. Now, many BTSs like Bugzilla, Mantis, 
Redmine, FogBugz, Airbrake, Backlog, Trac, YouTrack, or 
Jira are widely used [1–8]. When a new bug report is sent 
to the bug report repository via the BTS, software experts 
that are called “bug triager” analyze, classify, and prioritize 
the report before assigning suitable developers to fix a bug 
mentioned in the report [2, 3, 5, 7, 8]. Unfortunately, these 
tasks are time-consuming when manually working [1–11]. 
This leads the concept to handle this problem with automatic 
analysis way. As a result, many studies related to bug reports 
have been proposed. These studies can be classified into 
three main areas: bug report optimization, bug report triage, 
and bug fixing [6]. Bug report optimization concentrates to 
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enhance the quality of the report, filtering irrelevant reports, 
and reduce incorrect information. Bug report triage aims 
to reduce duplicate bug report, prioritize bug reports, and 
assign suitable software developer for fixing bugs. At last, 
bug fixing is related to debug and recover links between the 
bug reports and corresponding changes.

One of the most common issues addressed by bug report 
studies is to first identify and then filter non-bug reports 
from the bug report repository. Bug triggers waste time by 
having to filter out unrelated reports and identify actual bug 
reports, and this escalates costs as extra maintenance time 
and effort in triaging and fixing bugs [10, 12–14]. Therefore, 
this issue has been seriously studied. Also, it is a challenge 
for this study.

To tackle this problem, this study aims to propose a 
method of automatically identifying non-bug reports in the 
bug report repository using classification techniques, where 
the main mechanism of this classification is one-class sup-
port vector machines (OC-SVM). The OC-SVM is applied 
with several term weighting schemes.

The rest of this paper is organized as follows. Section 2 
is the literature review, while Sect. 3 describes the datasets 
used in this study and Sect. 4 presents research methodol-
ogy. The experimental results are given in Sect. 5. Finally, a 
conclusion is in Sect. 6.

2  Literature review

Bug reports describe problems, especially in open-source 
software. Herzig et al. [12] suggested that an issue can be 
classified as a ‘bug’ or a ‘defect’ if it requires corrective 
code maintenance. However, some bug reports that are clas-
sified as non-bug often mention for perfective and adap-
tive maintenance, commentating, complaining, refactoring, 
discussions, and so on. Therefore, quality of bug reports is 
necessary because the development team used this informa-
tion from bug reports to find and track the issues in a particu-
lar software. Simply speaking, information in ‘actual’ bug 
reports can determine the software maintenance efficiency 
and software fixing time reduction. Previous studies reported 
that researchers spent 90 days manually classifying more 
than 7,000 bug reports as a time-consuming task [10–12]. 
After manual classification, 39% of the bug reports initially 
marked as ‘defective’ never had a bug [12]. This issue was 
termed as a “misclassification” between bug and non-bug 
reports [10, 12, 13]. Consequently, many bug report studies 
have proposed the adoption of automated analysis methods.

The first study of automated bug analysis was conducted 
by Antoniol et al. [10]. They applied machine learning 
algorithms namely Decision Trees (DT), Logistic Regres-
sion (LR), and Naïve Bayes (NB) to develop text classifiers 
that automatically distinguished bug and non-bug reports. 

Their results indicated that the accuracy of classifying bug 
reports from three open sources (i.e. Mozilla, Eclipse, and 
JBoss) was between 0.77 and 0.82.

In 2013, Herzig et al. [12] manually analyzed more than 
7000 bug reports downloaded from Bugzilla and Jira. They 
found that one-third of the bug reports that were analyzed 
as actual-bug reports were non-bugs. As a result, they gen-
erated a standard dataset, called Herzig’s dataset that has 
subsequently been used in many studies [12–16].

Pingclasai et al. [13] proposed a method based on topic 
modeling using Latent Dirichlet Allocation (LDA) to 
find the most efficient models using three open sources 
as HttpClient, Jackrabbit, and Lucene containing 745, 
2402 and 2443 bug reports, respectively (derived from 
Herzig’s analysis). This study compared three classifica-
tion algorithms as DT, LR, and NB. Furthermore, Ping-
clasai et al. also compared the classifying performance 
between a topic-based model and a word-based model. 
Results gave F1 scores between 0.65 and 0.82, with NB 
classifiers determined as the highest performance model.

Limsetho et al. [14] proposed a method to automati-
cally cluster bug reports, and label these clusters based on 
their textual information without the need for training data. 
Two unsupervised learning algorithms namely Expectation 
Maximization (EM) and X-Means were applied. Similar 
bug reports were grouped and automatically given labels 
with meaningful and representative names. This study 
used three bug report datasets namely Lucene, Jackrabbit, 
and HTTPClient from [12]. Experimental results showed 
that this framework achieved performance comparable to 
supervised learning algorithms (i.e. J48 and LR). Lim-
setho et al. concluded that their framework was suitable 
for use as an automated categorization system that could 
be applied without prior knowledge.

In 2017, Terdchanakul et al. [15] proposed a solution 
for the bug report misclassification problem. They used 
N-gram IDF as an extension of IDF to manage terms or 
phrases of different lengths that were used as features of 
the documents using the data set from [12] and applied LR 
and Random Forest (RF) algorithms to model the classifi-
cation. The experiment compared the use of N-gram IDF 
to topic-based models. Their proposed method returned F1 
scores between 0.79 and 0.81, with 10-fold cross valida-
tion in LR and RF techniques, respectively. Furthermore, 
Qin and Sun [16] studied the same problem. They pro-
posed a bug classification method based on a typical recur-
rent neural network (RNN). They performed the existing 
topic-based method and N-gram IDF-based method on 
four datasets, including Herzig’s data set [12]. Results 
showed F1 score at 0.746 and superior to N-gram values. 
They suggested that their research might assist developers 
and researchers to classify bug reports and help to identify 
misclassified bug reports.
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3  Datasets

This study used two datasets. The first was a standard data-
set, called the Herzig’s dataset [12]. We utilized the “bug 
summary” to analyze and classify bug reports into actual-
bug and non-bug classes because this part contained less 
noise [2, 17, 18]. Therefore, many studies related to bug 
reports consider only the summary part. Here, this work 
also uses the summary part. An example of bug reports is 
presented as Fig. 1.

The other dataset was downloaded from Bugzilla 
(https:// www. bugzi lla. mozil la. org/). Bug reports relat-
ing to Mozilla Firefox were downloaded on November 1, 
2019. This dataset consisted of 10,000 bug reports. Then, 
5000 bug reports labeled with “verified” and “closed” 
were selected because they were already confirmed by a 
software development team as actual-bug reports, while 
the other 5000 bug reports were labeled with “invalid” 
status. Finally, this dataset can be summarized and shown 
in Table 1.

4  The methodology

The proposed research methodology consists of three main 
processing steps. They are bug report pre-processing, bug 
report representation and term weighting and non-bug report 
identifier modeling. Each step is presented in more detail 
as follows.

4.1  Bug report pre‑processing

First, the training set separates text into words using word 
delimiters (e.g. white space), and then the stop-words are 
removed. In this study, the bug report features (or words) 
used are a combination of unigram and CamelCase. In [10, 

Fig. 1  An example of bug report

Table 1  Summary of the datasets

Dataset Software Bug Non-bug

Herzig’s dataset Jackrabbit 937 1464
Real-world dataset Firefox 5000 5000

https://www.bugzilla.mozilla.org/
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19–21], they demonstrated that the use of unigram and 
CamelCase return satisfactory results in the study of bug 
reports. This is because unigram words can generally be 
found in any bug report, while the CamelCase words indi-
cate the specificity of the software. Using CamelCase, this 
is to expand keywords and helps to increase the search effi-
ciency [22].

Later, the process of stop-word removal takes place. 
After removing the stop-words, punctuation is removed, and 
some word forms are changed into proper ones as shown in 
Table 2.

It is noted that bug report featured are also selected by 
using information gain (IG) with threshold as 0.2. Simply 
speaking, if a term weight score is less than 0.2, that term 
should be ignored. After ranking the IG scores, the keywords 
in the top 20, 50, 100, and 150 are selected as the bug report 
features.

4.2  Bug report representation and term weighting

After pre-processing, the bug reports are expressed as a vec-
tor representation, called a bag-of-words (BoW). A BoW is 
used to describe the occurrence of words within a textual 
document. After transforming the text into a BoW, the next 
process is to calculate various measures to characterize the 
text, called term weighting. Here, five term weighting meth-
ods are compared to obtain the most suitable.

These term weighting schemes are tf (term frequency), 
tf-idf (term frequency-inverse document frequency), tf-igm 
(term frequency-inverse gravity moment), tf-icf (term-fre-
quency inverse class frequency) and modified tf-icf.

4.2.1  Term‑frequency (tf)

tf shows how frequently a term-word occurs in a bug report. 
In general, it is often useful to skew normalization using a 
logarithmic scale. The formula for tf is represented as:

The tf weighting scheme is often used in the context of bug 
reports because it has been mentioned that it returns satisfac-
tory analysis results [10].

(1)tf = log(1 + ft,d)

4.2.2  Term frequency‑inverse document frequency (tf‑idf)

tf-idf consists of local weigh (tf) and global weight (idf) [23]. 
The formula of tf-idf is represented as:

where N is the whole number of bug reports appearing in 
the dataset and dft is the number of bug reports containing 
term t.

4.2.3  Term frequency‑ inverse gravity moment (tf‑igm)

The third term weighting scheme is tf-igm introduced by 
Chen et al. [24] as a supervised term weighting scheme. It 
modifies and improves tf-idf. The tf-igm can calculate the 
distinguishing class of a term precisely. Its formula is:

where tt,d is the frequency of term t occurring in document d, 
and � (Lambda) is defined as an adjustable coefficient factor 
used to achieve relative balance between tt,d and igm factors 
in the weight of term t. The default value of � is 7.0 but it 
can be set as a value between 5.0 and 9.0 [24]. For igm factor 
is used to calculate the inter-class distribution concentration 
of a term. The igm formula is:

where fk1 represents the frequency of term tk in the class in 
which it occurs most often, while fk,r (r = 1, 2, ...,m) are the 
frequencies of tk that occur in different classes in descend-
ing order, with r defined as the rank. Simply speaking, the 
frequency fkr refers to the class-specific document frequency 
(df). It is the number of documents in the r-th class that 
contain the term tk and it is denoted as dfk,r.

4.2.4  Term frequency‑ inverse class frequency (tf‑icf)

tf-icf is a modification of tf-idf proposed by Lertnattee and 
Leuviphan [25]. They replaced the idf factor by icf, where icf 
might represent importance of information among classes. 
The tf-icf can be formulated as:

where tf is the frequency of term t found in a document d, 
while |C| is the whole number of classes and cft is the num-
ber of classes that include the term t.

(2)tf -idf = log(1 + ft,d) × log
(
1 +

N

dft

)

(3)tf -igmt,d = ft,d × (1 + � × igm(tk))

(4)igm(tk) =
fk1∑m

r=1
fkr × r

(5)tf−icf = ft,d × log2

(
|C|
cft

)
Table 2  Examples of word normalization

Original form 
in bug report

Normalized Form Original form 
in bug report

Normalized form

Didn’t Did not Can’t Can not
Don’t Do not ’s Is
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4.2.5  Modified tf‑icf

A term may occur in many classes, but the importance of that 
term may be different in each class. Therefore, it was modi-
fied here, where the modified tf-icf is able to measure the class 
distinguishing power of a term. The formula is defined as:

where Nc is the whole number of bug reports in class c, and 
dft,c is the number of bug reports in class c containing the 
term t. This may help to measure the importance of each 
word in the distinguishing class.

4.3  Non‑bug report identifiers modeling

To model a non-bug report identifier, we applied the support 
vector machines (SVM) family. This is because SVM works 
relatively well and uses memory efficiently. This algorithm 
maximizes the margin of the decision boundary using quad-
ratic optimization techniques to find the optimal hyperplane. 
This algorithm is more effective in high-dimensional feature 
spaces [26]. However, The SVM algorithm is not suitable for 
large datasets and does not work well if the dataset has exces-
sive noise. SVM algorithm was chosen because its limitations 
are relevant to the characteristics of our datasets used in this 
study. These bug report datasets are quite small, and each bug 
report contains less text because only the ‘summary part’ of 
the bug report was used. Although this part contains less text, 
it has been confirmed by many previous studies that it may 
contain less noise [2, 17, 18]. Therefore, we expected the SVM 
family to work well in this study.

4.3.1  Traditional binary‑class SVM

The fundamental of SVM is to create a function that takes 
the value +1 in a “relevant” region capturing most of the data 
points (called support vectors) that are closer to the hyper-
plane, and -1 elsewhere [26]. Learning can be regarded as find-
ing the maximum margin separating the hyperplane between 
two classes of points. Suppose that a pair (w, b) defines a 
hyperplane which has the following formula [26].

Then, a normalization is chosen such that w > x+ + b = +1 
and w > x− + b = −1 for the positive and negative support 
vectors, respectively. The margin can be given by:

(6)modified tf -icf = ft,d × log2

(|Nc|
dft,c

)

(7)f (x) = wx + b

(8)
w

‖w‖
(x+ − x−) =

wT (x+ − x−)

‖w‖
=

2

‖w‖

Learning the SVM can be defined as a following 
optimization:

Subject to:

Many datasets cannot be separated linearly. Hence, there 
is no way to satisfy all the constraints in Eq. 10. Therefore, 
slack variables (�i) are introduced to loosen some constraints 
in such datasets and still construct useful classifiers. In gen-
eral, these variables are used for the optimization problem in 
two ways. First, they help to handle the degree to which the 
constraint on the i-th datapoint can be violated. Second, by 
adding the slack variable to the energy function, it aims to 
simultaneously minimize the use of the slack variables. The 
mathematical optimization problem formula can be modi-
fied as:

such that, for all i,

The slack variables are denoted as � , with 𝜉i > 1 for misclas-
sified points and 0 < 𝜉i ≤ 1 for points close to the decision 
boundary, which is a margin violation.

In addition, the Lagrangian (L) is also used for transform-
ing the SVM problem in a manner that is conducive to pow-
erful generalization. In this case, it assumes that the dataset 
is linearly separable, and so the slack variables are dropped. 
The Langrangian enables us to re-express the constrained 
optimization problem (shown as Eq. 10) as an unconstrained 
problem. Finally, when the Lagrangian is introduced, the 
SVM objective function shown as Eq. 10 with Lagrange 
multipliers 𝛼i > 0 , then becomes:

Consider Eq. 13. The minus sign is used for the second term 
because this must be minimized with respect to the first term 
but maximize with respect to the second. Using these con-
straints on the solution, w becomes:

Afterwards, we can replace w (shown as Eq. 14) in Eq. 13. 
Then, the next constraint, called dual Lagrangian, is applied. 
The following modified formula is shown as Eq. 15.

(9)max
w

2

‖w‖

(10)
wTxi + b ≥ +1 if yi = +1 for i = 1, 2, ...,N

wTxi + b ≤ +1 if yi = −1 for i = 1, 2, ...,N

(11)min
w,b,�i∶N

�

i

�i + �
1

2
‖w‖2

(12)yi(w
T�(xi) + b) ≥ 1 − �i and �i ≥ 0

(13)L(w, b, �i∶N) =
1

2
‖w‖2 −

�

i

�i(yi(w
T�(xi) + b) − 1)

(14)w =
∑

i

�iyi�(xi), where
∑

i

yi�i = 0
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where k(xi, xj) is a kernel function that is used to perform 
non-linear mapping of feature space in which the training 
set will be classified. Selection of a suitable kernel func-
tion is very important for SVM classification performance. 
Therefore, different SVM algorithms may require diverse 
types of kernel functions (Figs. 2, 3, 4).

However, the number of examples in each class can be 
different. Some classes can be sampled very sparsely or 
even be totally absent. A different number of examples in 
each class makes it very difficult to use the existing sam-
ples to create a model of binary classes prediction. Conse-
quently, one-class SVM (OC-SVM) algorithms were pro-
posed. A classifier model based on OC-SVM is trained on 
data that has only one class, called the target class, while 
the other class that may be very sparsely sampled or even 
entirely absent is called the outlier class. The characteristic 
of OC-SVM can be useful for anomaly detection since the 
insufficiency of training examples may characterize these 
anomalies.

Two well-known OC-SVM algorithms are Schölkopf 
methodology [27] and support vector data description 
(SVDD) [28]. The Schölkopf methodology separates all the 
data points from the origin (in feature space) and maximizes 
the distance from the origin to the hyperplane, while SVDD 
assumes a spherical boundary in feature space around the 
data and reduce the effect of incorporating outliers in the 
solution by minimizing the volume of the hypersphere.

4.3.2  Schölkopf methodology

The Schölkopf methodology is used to adapt the original 
SVM to a one-class classification problem [27]. Essentially, 

(15)L(�i∶N) =
∑

�i −
1

2

∑

i

∑

j

�i�jyiyjk(xi, xj)

after transforming the feature using a kernel, the origin is 
treated as the only member of the second class. Then, data 
of the one class are separated from the origin using “relaxa-
tion parameters”.

Let x1, x2, , xl be bug reports used as a training set 
belonging to one class X, where X is a compact subset of 
ℜN , while � ∶ X → H is a kernel map used to transform the 
training set to another space. Then, the following quadratic 
programming problem is solved to separate the data set from 
the origin.

Subject to:

When w and � are used to solve this problem, the decision 
function will be positive for most examples of xi found in 
the training set of bug reports.

(16)min
1

2
‖w‖2 + 1

vl

l�

i=1

�i − �

(17)(w × �(xi)) ≥ � − �i, where i = 1, 2, ...N and �i ≥ 0

Fig. 2  Overview of traditional binary-class SVM

Fig. 3  Overview of Schölkopf methodology

Fig. 4  Overview of SVDD
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4.3.3  Support vector data description (SVDD)

SVDD relies on the identification of the smallest hypersphere 
consisting of all data points, with r and c denoted as radius and 
center, respectively [28]. Mathematically, the problem can be 
expressed by following constrained optimization form.

Subject to:

Consider above formulation. It is highly restrictive and sen-
sitive to the presence of outliers. Therefore, a flexible formu-
lation that allows for the presence of outliers is formulated 
as follows.

Subject to:

Later, by using the optimality conditions of the Karush-
Kuhn-Tucker (KKT), this can be defined as:

where �i is the solution to the following optimization 
problem:

Subject to:

Then, the kernel function provides additional flexibility to 
the OC-SVM algorithm. Then, this work applies.

This work applies the linear kernel function, where it works 
well with linearly separable data and most of the text classi-
fication problems are linearly separable. This kernel function 
is faster. In addition, it may be good when there is a lot of 
features. Definitely, text may have a lot of features.

(18)min
r,c

r2

(19)‖�(xi) − c‖2 ≤ r2 + �i, for all i = 1, 2, ..., l

(20)min
r,c

r2 +
1

vl

l∑

i=1

�i

(21)‖�(xi) − c‖2 ≤ r2 + �i, for all i = 1, 2, ..., l

(22)c =

l∑

i=1

�i�(xi)

(23)max
�

l∑

i=1

�ik(xi, xj) −

l∑

i,j

�i�jk(xi, xj)

(24)
l∑

i=1

�i = 1 and 0 ≤ �i ≤
1

vl
for all i = 1, 2, ..., l

5  Results and discussion

5.1  The experimental results

This study conducts experiments using two datasets as 
Herzig’s dataset and a real-world dataset relating to Fire-
fox. Experimental results are presented as recall (R) [29], 
precision (P) [29], and F1 [29] values over different data-
sets with methods based on the SVM algorithm in Tables 3 
and 4.

Table 3 presents experimental results using Herzig’s 
dataset. We applied a feature selection algorithm (i.e. 
information gain) to select subsets of the features (words) 
with numbers of 25, 50, 75 and 100. Finally, we trained 
the classification models as non-bug report identifiers with 
the SVM family (i.e. binary-class SVM, Schölkopf meth-
odology, and SVDD) before evaluating the performance 
of each model. Table 3 shows performance comparisons 
among the non-bug report identifiers. The performance of 
non-bug report identifiers with tf-igm and modified tf-icf 
weighting schemes for both Schölkopf methodology and 
SVDD methods slightly outperformed when compared to 
others, while when using 100 features, the performance 
of all non-bug report identifiers reduced, and using 75 
features gave better results than using 25, 50, and 100 
features.

In Table 3, using 75 features for non-bug report identi-
fier modeling based on binary-class SVM improved aver-
age scores of F1 compared to 25, 50, and 100 features by 
5.29%, while using 75 features for non-bug report identi-
fier modeling based on Schölkopf methodology improved 
average scores of F1 compared to 25, 50, and 100 features 
by 4.82%. Finally, using 75 features for non-bug report 
identifier modeling based on SVDD improved average 
scores of F1 compared to 25, 50, and 100 features by 
4.71%. Thus, using 75 features may be suitable for in this 
study when working on the Herzig’s dataset.

Consider Table 4. The numbers of features used are 75, 
150, and 225, with results similar to those in Table 3. Non-
bug report identifiers performance performed with tf-igm 
and modified tf-icf weighting schemes for both Schölkopf 
methodology and SVDD yielded higher values when com-
paring to the others, while using 150 features gave better 
results than using 75 and 225 features.

In Table 4, using 150 features for non-bug report iden-
tifier modeling based on binary-class SVM, improved 
average scores of F1 compared to 75 and 225 features by 
4.25%, while using 75 features for non-bug report identi-
fier modeling based on Schölkopf methodology improved 
average scores of F1 compared to 75 and 225 features by 
3.05%. Finally, using 75 features for non-bug report identi-
fier modeling based on SVDD improved average scores of 
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F1 compared to 75 and 225 features by 4.61%. Thus, using 
150 features may be suitable for this study when working 
on the Firefox dataset.

Results in Tables 3 and 4 show that the first experiments 
returned the best results using 75 features (Table 3), while 
the second experiments return the best results using 150 

features (Table  4). This occurred because IG was applied to 
select the most suitable features. Using this technique helps 
to select a subset of the most relevant features for the bug 
report dataset. Consequently, fewer features allow machine 
learning algorithms such as SVM to run more efficiently 
and more effectively because this algorithm is sensitive to 

Table 3  Experimental results 
using Herzig’s dataset

Number of 
Features used

Term weighting schemes Binary-class SVM 
(%)

Schölkopf (%) SVDD (%)

R P F1 R P F1 R P F1

25 tf 69 67 68 71 67 69 71 67 69
tf-idf 68 65 66 70 65 67 70 65 67
tf-igm 74 73 73 73 72 72 73 72 72
Original tf-icf 71 67 69 71 68 69 71 67 69
Modified tf-icf 74 73 73 73 72 72 73 72 72

50 tf 71 69 70 72 70 71 72 70 71
tf-idf 70 68 69 72 69 70 72 70 71
tf-igm 76 75 75 78 75 76 78 76 77
Original tf-icf 74 72 73 75 73 74 75 74 74
Modified tf-icf 76 75 75 78 75 76 78 76 77

75 tf 73 71 72 73 71 72 73 71 72
tf-idf 72 70 71 72 70 71 72 70 71
tf-igm 78 75 76 80 75 77 80 76 78
Original tf-icf 75 73 74 75 73 74 75 73 74
Modified tf-icf 79 76 77 80 76 78 80 76 78

100 tf 68 66 67 71 67 69 71 67 69
tf-idf 67 64 65 69 66 67 69 66 67
tf-igm 73 70 71 73 71 72 73 71 72
Original tf-icf 70 69 69 71 68 69 72 68 70
Modified tf-icf 73 71 72 73 71 72 73 71 72

Table 4  Experimental results 
using Firefox dataset

Number of 
features used

Term weighting schemes Binary-class SVM 
(%)

Schölkopf (%) SVDD (%)

R P F1 R P F1 R P F1

75 tf 72 69 70 75 72 73 75 72 73
tf-idf 71 69 70 75 71 73 75 71 73
tf-igm 75 72 73 77 74 75 77 75 76
Original tf-icf 74 71 72 75 72 73 76 73 74
Modified tf-icf 76 72 74 78 74 76 77 74 75

150 tf 76 74 75 79 74 76 78 74 76
tf-idf 76 72 72 79 74 76 79 75 77
tf-igm 82 78 79 84 83 83 85 83 84
Original tf-icf 79 77 78 80 79 73 79 78 78
Modified tf-icf 82 79 79 85 82 83 86 82 84

225 tf 75 73 74 77 75 76 77 75 76
tf-idf 75 72 73 77 74 75 77 74 75
tf-igm 79 76 77 81 79 80 81 79 80
Original tf-icf 76 74 75 79 78 78 79 78 78
Modified tf-icf 79 76 77 81 79 80 81 79 80
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irrelevant input features, resulting in reduced predictive 
performance.

5.2  Comparison of the best proposed model 
against two baselines

We compared the best models of non-bug report identifiers 
based on the proposed method against two baselines pro-
posed by Pingclasai et al. [13] and Terdchanakul et al. [15]. 
Then, we compared all methods under the same environmen-
tal setting. The experimental results are shown in Table 5.

When using Herzig’s dataset, our non-bug report identi-
fier was better than the results from the method proposed by 
[13] but gave the slightly lower results than the results from 
the method proposed by [15]. However, surprisingly, when 
experimenting with a bug report dataset related to Mozilla 
Firefox, as a real-world dataset, our model based on the 
proposed method returned better results than the baseline 
methods with improved scores of F1 at 9.09% for [13] and 
6.33% for [15].

5.3  Discussion

Consider the results shown in Tables 3 and 4. All results 
were satisfactory, although different methods were used. 
Three main points are discussed as follows.

First, using CamelCase together with unigram should 
improve the search and may help to increase the scores of 
recall, precision and F1 because CamelCase words indicate 
the specificity of the software. Using CamelCase along with 
unigram keywords may help to increase search efficiency 
[22]. However, some bug reports contain slang as a version 
of the language that depicts informal conversation or text 
that has a different meaning. These words can cause prob-
lems during the execution of pre-processing steps and affect 
the accuracy and efficiency of the text analysis domain. It 
would be better if these words are converted to formal lan-
guage in the pre-processing stage before the subsequent 
processing steps. This point may require consideration in 
future studies.

Second, when considering term-word weighting schemes, 
tf and tf-idf returned satisfactory results but these were lower 
when compared with tf-igm, original tf-icf, and modified 
tf-icf. This occurred because the rareness of a term is not 

considered for tf, and rare words may not show as important 
in a specific class for tf-idf. As a result, these rare words 
may sometimes be overlooked during training and predicting 
bug reports. By contrast, tf-igm and modified tf-icf returned 
the most satisfactory results because these schemes meas-
ure the class distinguishing power of a term by combining 
term frequency with igm and icf measures, respectively. 
These schemes may be able to indicate differences of word 
scores for words in disparate classes. Therefore, tf-igm and 
modified tf-icf may return better results than tf and tf-idf. 
Similarly, tf-icf improves the efficiency of tf-idf by not over-
looking rare words in each class because the original tf-icf 
represents the level of those words, although rare words 
occur in a few documents. As a result, the results of tf-icf 
are better than tf and tf-idf.

Third, this study applied the SVM family i.e. binary-
class SVM, Schölkopf methodology and SVDD as the main 
mechanisms for modeling non-bug report identifiers. Results 
in Tables 3, 4 and 5 show that non-bug report identifiers 
based on these algorithms are acceptable compared to [13, 
15]. However, results of binary-class SVM were lower than 
Schölkopf methodology and SVDD because of a class imbal-
ance. Although the same number of documents was used in 
each class, the number of features in each class may not be 
the same, and this may reduce classification performance.

In addition, when considering the results shown in 
Table 5, our proposed model returned the slightly better 
results than the baseline methods if looking at the overall 
picture. The reasons for this performance are described 
above.

6  Conclusions

Bug reports offer important information for improving soft-
ware quality. To facilitate the collection of large bug reports 
from more users, many bug tracking systems (BTS) have 
been proposed and developed. These systems allow users 
around the world to report, describe, track, classify and com-
ment on their bug reports. Unfortunately, non-bug reports 
can also be submitted. Therefore, a process of filtering non-
bug reports is required. In general, this task is performed 
manually by bug triagers who are software development 
experts. However, this process is time-consuming and errors 

Table 5  Comparison of the 
best-proposed model against 
two baselines

Method Herzig’s dataset Firefox dataset

R P F1 R P F1

Pingclasai et al. [13] 76 78 77 76 78 77
Terdchanakul et al. [15] 78 80 79 78 80 79
The proposed method based on SVDD 

with tf-igm term weighting
77 80 78 85 83 84
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in bug report analysis often occur. Thus, the challenge here 
was to present a method of automatically filtering non-bug 
reports from the BTS. The outcomes are summarized as fol-
lows. Firstly, unigram and CamelCase may be suitable for 
bug report studies. Unigram words are easy to generate and 
can be found in any bug report, while CamelCase words 
indicate the specificity of the software. Secondly, the tf-igm 
and tf-icf family are supervised weighting schemes that give 
better results than tf and tf-idf because they indicate different 
scores for words in different classes. Simply speaking, they 
can measure the class distinguishing power of a term and 
this helps to increase the classification performance. Finally, 
the SVM family works well for this problem. OC-SVM algo-
rithms may be better than binary-class SVM that often face 
a problem of class imbalance that reduces classification 
performance. Our results proved acceptable compared with 
well-known base-line studies. The performance of non-bug 
report identifiers with tf-igm and modified tf-icf weighting 
schemes for both Schölkopf methodology and SVDD meth-
ods yielded the best values compared to other methods.

Furthermore, we also selected the best models of non-bug 
report identifiers based on the proposed method and used 
these models to compare with the two baselines proposed by 
Pingclasai et al. [13] and Terdchanakul et al. [15].

Results show that our method improved F1 scores over 
the baseline by 9.09% for [13] and 6.33% for [15] when 
experimenting on the open-source bug report dataset related 
to Mozilla Firefox. However, when using Herzig’s dataset, 
our model performed better than the method proposed by 
[13] but gave slightly lower results than achieved by [15]. 
When looking at the overall picture, our proposed model 
returned slightly better results than the baseline methods for 
the reasons mentioned earlier. Findings demonstrate that our 
proposed method may improve the chances of obtaining bet-
ter performance for non-bug report identification. Therefore, 
our proposed method is a good option for non-bug report 
identification.

However, no method can work well with every data-
set; therefore, and we cannot guarantee that our proposed 
method will work well for other datasets.
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