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Abstract
Supervisory control of swarms is essential to their deployment in real-world scenarios to both monitor their operation and 
provide guidance. We explore mechanisms by which humans can provide supervisory control to swarms to improve their 
performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn 
effective human-readable strategies. Behaviour trees are applied to represent human-readable decision strategies which are 
produced through evolution. These strategies can be thoroughly tested and can provide knowledge to be used in the future 
in a variety of scenarios. A simulated set of scenarios are investigated where a swarm of robots have to explore varying 
environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment 
using different local swarm behaviours. The evolved behaviour trees are examined in detail alongside swarm simulations 
to enable clear understanding of the supervisory strategies. We conclude by identifying the strengths in accelerated testing 
and the benefits of this approach for scenario exploration and training of human operators.
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1 Introduction

Growing interest in the use of swarm systems has led to 
new questions regarding effective design for real-world 
environments [19]. Although their use has great potential in 
areas ranging from search and rescue to automated agricul-
ture, there are still few examples of real-world deployment. 
Human supervision has been proposed to improve the per-
formance of swarming by maintaining the scalability and 
robustness of swarms whilst taking advantage of human 
intelligence [4].

Human swarm interaction (HSI) aims to adapt swarm 
models into hybrid systems which operate with the aid of a 
human operator. The operator can compensate for the limi-
tations of swarming behaviours and increase performance 
by interacting with the swarm. This is achieved through the 

human’s higher-level understanding and reasoning of a task 
that individually, swarm agents cannot perceive. This control 
scheme allows the human to correct for poor performance 
and research has highlighted significant improvements over 
purely autonomous swarms [5].

In HSI, research has investigated ways in which an opera-
tor can infer high-level knowledge to the swarm to improve 
performance. Initial answers have defined methods to 
directly control how the swarm behaves. If the operator has 
information that the swarm cannot perceive, then the opera-
tor can take action to account for the swarm’s lack of knowl-
edge. These types of control have been categorized into four 
different types as discussed in Kolling’s survey on HSI [12].

– Algorithmic: changing emergent behaviour of the swarm 
[10].

– Parametric: adjusting characteristics of behaviour [9].
– Environmental: highlight points of interest [5].
– Agent control: to influence its neighbors [20].

Each control method has shown the ability to positively 
affect the swarms performance in varying scenarios, how-
ever, it is difficult to identify the best choice of control meth-
ods for a given scenario. We need to consider how the type 
of application and conditions should influence the way we 
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choose to control the swarm. Other factors that need con-
sideration include cognitive limitations of the operator [11], 
the optimal timing for human interaction [17], the operators 
knowledge of swarm dynamics [8], and how the level of 
interaction affects the robustness of the swarm [21]. Due to 
the high dimensionality of these scenarios it is difficult to 
understand how HSI systems should be designed.

There is currently no way to explore supervisory control 
of swarms systematically. HSI studies are currently investi-
gated using human trials. This is beneficial for understand-
ing how humans behave when learning to control swarms, 
however, here we focus on exploring the broader context 
of swarm control and how to systematically design HSI 
systems. Rather than having the human guess the rules, we 
propose artificial evolution of decision-making to act as a 
surrogate for the human. In this investigation, we generate 
a swarm supervisor which can view and control the swarm 
at accelerated simulation speed. Using this approach we 
can exploit the ability to test rapidly in different simulated 
conditions to gain a better understanding of HSI strategies. 
Solutions can be used to infer training of human operators 
and also inform our knowledge of swarm control across a 
large set of scenarios.

Behaviour trees (BT) models have been explored to rep-
resent evolved supervisory control strategies. BTs have been 
chosen for their human readability and modularity. Trees 
can be modified and reordered without any need to redesign 
individual nodes, this is useful for artificial evolution where 
structures can be modified through crossover and muta-
tion [7, 14]. A BT is a hierarchical model which consists 
of actions, conditions, and operators connected by directed 
edges[18]. BTs can represent many decision-making sys-
tems, such as finite state automata and subsumption archi-
tectures. An example tree is shown in Fig. 1. These trees 
are modular and can be constructed from a set of action 
and condition functions which are independent of order. 
This makes them well suited to artificial evolution. Refer 

to Colledanchise and Ogren’s book for greater coverage of 
behaviour tree concepts [3].

The following section will explore how artificial evolu-
tion has been applied to produce control strategies with BTs 
to solve a set of coverage based tasks. This problem has pre-
viously been explored using other swarming approaches [15, 
16]. We then analyse and discuss our findings in section 3.

2  Methodology

The following section will detail how artificial evolution 
has been applied to develop swarm control strategies for a 
search and rescue (SAR) scenario. In this work, we use BTs 
to represent a particular strategy to control the swarm that 
is evolved to increase task performance.

2.1  Simulation architecture

A custom simulator built-in Python is used to explore 2-D 
environments with a specified swarm size, and areas of inter-
est to explore. The agents are modelled as particles which 
can move in any direction with a degree of random motion, 
and thus, the swarm’s behaviour is not deterministic. Each 
agent follows a trajectory which is dependant on the emer-
gent behaviour of the swarm. Potential field forces act as 
additional vectors to avoid obstacles and the bounds of the 
environment. The agents travel at a speed of 0.5 m/s. This 
framework has been deployed on a super-computer cluster 
which has allowed us to evaluate many scenarios in paral-
lel. This system is beneficial as we can rapidly assess new 
conditions simultaneously.

2.2  Scenario

A swarm of ten agents is tasked to search an environment 
to find a set of objectives as quickly as possible. We investi-
gate performance over a range of environments and objective 
positions as shown in Fig. 2. For each map, we test for each 
different set of objective positions, resulting in a total set of 
15 unique scenarios. This task is challenging as the total area 
is sufficiently large in relation to the swarm size and will 
require efficient coverage to find the objectives quickly. The 
swarm supervisor has no knowledge of where the objectives 
are located or the shape of the environment. This will require 
the swarm supervisor to identify the prior knowledge of the 
objective positions and nature of the environment. For each 
evaluation the swarm is initialized in a random starting posi-
tion within a 3 m × 3 m area at the origin.

The task of the supervisor is to utilize a set of emergent 
behaviours based on the observation of the swarm state to 
efficiently search for the objectives. We will now discuss the 
design of the supervisor in greater detail.

Fig. 1  An example behaviour tree. Numbering shows the order in 
which the tree is ticked
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2.3  Swarm supervisor

To produce control strategies, a set of actions and decisions 
need to be defined that will allow the supervisor to interact 
with the swarm.

2.3.1  Actions

The actions allow the swarm supervisor to change the 
swarms behaviour. Only forms of algorithmic control are 
considered which are commonly used in HSI systems as it is 
easy for untrained operators to understand and enables effec-
tive control of the swarm without reducing swarm autonomy 
[1].

The first behaviour available is dispersion. When initially 
clustered together, agents are repelled by an exponential 
force from one another to spread into open spaces. Each 
agent is repelled from every other agent by an exponential 
force represented as a vector. The sum of these vectors deter-
mines the direction of travel. When significantly spread out 
agents will travel with a random walk [6, 16]. Dispersion 
was chosen as a natural means for spreading out and filling 
an area which is suitable for a SAR based task.

The remaining set of actions are defined as directed 
fields which cause the swarm to disperse in a specific 
direction. The swarm will travel in the specified direc-
tion whilst avoiding obstacles and repelling from nearby 
agents. We enable eight forms of this behaviour such that 
the swarm can be directed north, south, east, and west. As 
well as, north west, north east, south west, and south east. 

These behaviours can be used to direct the swarm to par-
ticular regions. The operator may have better knowledge 
of the area to cover and decide to direct the swarm using 
this behaviour. Good use of these behaviours relies on the 
correct choice of the direction of travel.

2.3.2  Conditions

In order for the swarm supervisor to decide on which 
action to take, knowledge of the swarm state is required. 
The swarm supervisor can observe the center of mass and 
spread of the swarm to understand it’s approximate loca-
tion and a sense of formation through its spread. Using 
the center of mass the supervisor can direct the swarm to 
specific regions where objectives are located. Understand-
ing spread will enable solutions which promote the swarm 
to spread out to gain greater coverage.

This high level representation means we don’t need 
knowledge of the whole swarm to enable control. This 
may be more suitable for human control by reducing cog-
nitive load and scenarios where we don’t have complete 
swarm visibility [22]. The center of mass of the swarm is 
calculated as the average over all agent positions in the x 
direction �x and y direction �y , where n is the total num-
ber of agents. Each agent ordinate is defined as xn and yn . 
Spread, � , is defined as the average distance from agent 
to agent as shown.

Fig. 2  Environments and objectives under investigation. The starting position for the swarm is shown in blue. Objectives are shown in red. The 
area of each environment is 40 m × 40 m
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Decisions can be constructed using these metrics with 
respect to defined thresholds shown in Table 1. We enable 
simple decisions to be made by comparing the real-time 
metric value to a set threshold. The thresholds that can be 
selected for the center of mass are bounded within the size 
of the environment, and similarly, the spread is limited up 
to the highest level that they can disperse.

We can represent these actions and conditions in node 
form that can be executed within a BT. At each time step 
within the simulation, the BT is ticked such that new 
decisions and actions can be made on the updated swarm 
state. Evolution will aim to find the optimal combination 
of decisions and actions for each of the scenarios in our 
investigation.

2.4  Evolving the swarm supervisor

This section will further detail the design of the swarm 
supervisor and the evolutionary algorithm used to explore 
possible solutions within the problem space.

2.4.1  Genetic programming

We use Genetic programming (GP) to evolve BTs [7, 14]. 
The methodology of GP is to evolve the structure of com-
puter programs represented in the form of hierarchies [13]. 
We apply common practices in GP to evolve BTs in this 
investigation. As BTs are modular, we can modify the tree 
structure using GP and still produce a valid tree. This makes 
them applicable to evolution which is reliant on random 
manipulation of genomes. Here we apply the use of sin-
gle-point crossover, node mutations, and random sub-tree 
growth.
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We define certain constraints on the types of trees that can 
be generated as well as bounds for mutation. Trees generated 
for the initial population have a maximum depth of two lev-
els down from the root of the tree. We also limit the number 
of possible children that an operator may have between 2 
and 5. Given the complexity of this search scenario and the 
number of node choices, we expect that the sizes of trees 
evolved should match these constraints. Despite this, trees 
can grow to further depths through crossover and random 
sub-tree growth. Table 1 represents the available nodes to 
construct trees and the limits that the conditional statements 
can take. The evolution is bounded to these limits when gen-
erating random trees and performing mutations.

2.4.2  Evolutionary algorithm

We evaluate the fitness of individuals based on the number 
of objectives that are found and the time taken to find them. 
An objective is classified as found when an agent falls into 
a 5 m radius of its position. The maximum reward when 
detected is 1 point which decays over the duration of the 
search. The reward decay function is defined by Eq. 3 where, 
t is the current time-step and dist, is the distance between the 
objective position and the origin.

This decay function reduces the reward associated with 
each individual objective over time, therefore, promoting 
fast search strategies. The rate of decay is dependent on 
the distance of the objective from the starting position of 
the swarm. This means that objectives that are easy to find 
and require less exploration have a faster decay. Similarly, 
objectives that are further from the origin decay slower. The 
individual fitness is defined as the summation of all objective 
rewards collected over each search normalized against the 
total number of objectives as shown by Eq. 4. This fitness is 
averaged over 5 attempts for each individual. We also add a 

(3)Objective reward = 0.95t/dist

(4)Fitness =
1

total objectives

∑

objective rewards

Table 1  The limits defined by 
the GP algorithm for the types 
of nodes that can be selected to 
produce BTs

Node type Selection choices

Operator Selector/Sequence (Between 2–5 children)
Action node Dispersion/North/South/East/West/North East/North West/South East/South 

West
Condition node 𝜇

x
>-18, 𝜇

x
>-16, 𝜇

x
>-14, ... increment by 2 ..., 𝜇

x
>14, 𝜇

x
>16, 𝜇

x
>18

𝜇
x
<-18, 𝜇

x
<-16, 𝜇

x
<-14, ... increment by 2 ..., 𝜇

x
<14, 𝜇

x
<16, 𝜇

x
<18

𝜇
y
>-18, 𝜇

y
>-16, 𝜇

y
>-14, ... increment by 2 ..., 𝜇

x
>14, 𝜇

y
>16, 𝜇

y
>18

𝜇
y
<-18, 𝜇

y
<-16, 𝜇

y
<-14, ... increment by 2 ..., 𝜇

x
<14, 𝜇

y
<16, 𝜇

y
<18

𝜎 > 1, 𝜎 > 2, 𝜎 > 3, ... increment by 1 ..., 𝜎 >14, 𝜎 >15, 𝜎 >16
𝜎 < 1, 𝜎 < 2, 𝜎 < 3, ... increment by 1 ..., 𝜎 <14, 𝜎 <15, 𝜎 <16



573Artificial Life and Robotics (2020) 25:569–577 

1 3

condition that limits tree size to contain at most 35 nodes. In 
this case, evolution aims to maximize fitness.

Tournament selection is used for groups of three indi-
viduals followed by single-point crossover, single-point 
mutation, and sub-tree growth with probabilities shown in 
Table 2. Elitism is used to save the best 10 individuals from 
each generation of 100 individuals. For each individual, we 
set a time limit of 800 seconds. This time limit is signifi-
cantly long to allow the swarm to fully explore the area.

3  Findings and analysis

We have evolved control strategies in 15 different scenarios 
based on all pairwise combinations of environments and 
objective sets (Fig. 2). We will discuss the fittest individu-
als evolved for each scenario (Fig. 3) and their approach to 
each problem (Fig. 4). We represent the behaviours through 
trails formed by the swarm agents as they search the envi-
ronment. The colour of the points indicate the position in 
time, initially plotted as blue and shifting over time towards 
red when reaching the time limit. Objectives that have been 
detected are indicated by green crosses and red circles when 
undetected.

In all cases, the evolved solutions use combinations of 
different swarm behaviours whilst observing the swarms 
state to maximize performance. In no case were single 
behaviours used. When compared to a baseline of the swarm 
performing the dispersion behaviour under no supervision, 
the addition of evolved supervision provided a significant 
increase in performance (Fig. 5). For the majority of solu-
tions, the directed field behaviours were favoured over the 
use of pure dispersion which was shown to be less effective. 
Solutions used combinations of center of mass and spread to 
control the swarm whilst in some, using only one of the met-
rics. For each scenario, we see that solutions are correctly 
specializing to each task and achieving high performance. 
Differences in strategies are largely dependant on the type 
of environment used, with additional influence based on the 
objective sets.

3.1  Scenario specific solutions

For open environment X, all solutions scored highly. We 
see that solutions b and c formed similar strategies to sweep 
across the entirety of the environment to find all objectives. 
Both solutions used spread to control the swarm and their 
behaviours are the same despite the direction of the sweep 
and tree structure. For objective sets d and e, we see the solu-
tions direct the swarm specifically to the corners where the 
objectives are located rather than performing a full sweep. 
Because of this, they score highly by directing the swarm 
along the shortest path to the objectives and using center of 
mass to change directions. For objective set a, not all of the 
objectives are found and a similar behaviour to d and e is 
formed rather than a complete sweep to find all objectives.

For map Y we see more complicated behaviours with up 
to 4 phases of movement. In scenarios a through to c, we 
see very good performance as full coverage of the environ-
ment is achieved. Each of these behaviours have 3–4 phases 

Table 2  Evolutionary parameters

Parameter Value

Population size 100
Test limit 800 s
Elitism size 10
Tournament size 3
Single point mutation probability 0.1
Sub-tree growth probability 0.05

Fig. 3  The fittest individuals evolved in each scenario. We show condensed versions of the trees by removing redundant parts which are not acti-
vated. This is a common issue in GP and will be addressed in future work
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of movement and use a combination of center of mass and 
spread to direct the swarm. Solution b sends the swarm west, 
east, south, and finally west to maneuver around the walls. In 
cases d and e, the swarm is directed to the corners where the 
objectives are placed but don’t attempt to reach both corners, 
subsequently achieving lower scores.

In map Z, we see that the solutions score lower overall 
than the previous map due to further increased difficulty. In 
scenarios a to c, good coverage is formed but some objec-
tives are not found. Solution e again only attempts to reach 
one objective as appose to both. However, solution d gener-
ates very good coverage and is able to reach both ends of 

the environment. We also see interesting behaviour where 
the swarm is split between the walls to reach each end of 
the map faster. This approach is seen across many solutions 
in map Y and Z and highlights that these are useful, non-
obvious solutions.

3.2  Human understandable strategies

In addition to observing the control of the swarm, we can 
track the states of each BT and learn how the behaviour is 
formed. We have the ability to animate these BTs in real-
time to quickly identify when nodes are triggered. Figure 6 

Fig. 4  Trails of the fittest solutions under their trained scenarios. The colour of the points represents the position in time. Initially blue, and shift-
ing to red when approaching the time limit. Detected objectives are highlighted with green crosses, red circles indicate undetected objectives

Fig. 5  Performance of the evolved solutions across each map and target set. A baseline of dispersion under no supervision is also presented. 
Each point represents the mean fitness produced over 300 trial runs
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shows the key states of the BT that controls the swarm in 
scenario Y-b. The colours of the nodes indicate the state 
of the node, green for success, red for failure, and white if 
they have not been triggered.

With this visualization, we can break the strategy down 
into easy to understand key stages of commands. Initially, 
the swarm is directed west until the center of mass is 
greater than 2 in the y direction. This enables the swarm 
to access the upper corridor. Using the y center of mass, 
the tree observes when the swarm reaches the end wall 
and has caused some agents to head north. Once triggered, 
the swarm heads east in phase 2, leaving some agents in 
the top corridor and some in the central corridor. This is 
an interesting approach to reach the top corridor whilst 
simultaneously getting reading to explore the bottom cor-
ridor. Once the center of mass is greater than 14 in the x 
direction and the swarm is at the right-hand side wall, the 
tree directs the swarm south in phase 3 to enter the bot-
tom corridor. Finally, when the spread is no longer greater 
than 15, the swarm heads west in phase 4 to travel down 
the last corridor. This visualization makes it very easy to 
understand the key decisions that are made to change the 
swarms movement.

3.3  Scenario coverage

Based on the behaviours of the evolved solutions we see 
that strategies specialize to their trained scenarios. We also 
assessed each solution in all other scenarios to see whether 
solutions could generalize to other scenarios. We summarize 
the performance of all solutions in Fig. 7. The trained solu-
tions are shown by rows and the columns denote which sce-
nario they were tested against. Each tile shows the average 
performance of each evolved solution in a given scenario. 
Each tile represents the fitness of the individual averaged 
over 300 trial runs.

We observe that for map X it is easy to achieve high 
scores where as for maps Y and Z the scores decline due to 
increasing difficulty whilst still performing well. Similarly, 
the performance declines when moving from objective set 
a towards e. If we consider the performance of solutions 
in different maps we see the expected trend that solutions 
trained in map X do not perform well when assessed in maps 
Y and Z. However, solutions trained in maps Y and Z perform 
far better when applied to other environments. Because of 
this, we see that overall higher fitness falls under the leading 
diagonal of the heat map.

Fig. 6  The 4 stages of decision 
making in solution Y-b. This is 
achieved in real-time with tools 
we have created to animate the 
states of the BT
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We also identify a number of solutions that generalize 
well across many scenarios. In particular, Y-a, Y-b, and Z-d. 
We see that a solution trained on scenario Y-a performs well 
on all map X and Y scenarios, with a slight decline in map Z. 
Alternatively, Y-b struggles in map X but performs very well 
in map Y and map Z. Y-b does not perform well in map X as 
the first decision making step is fitted to the fact that there 
are walls in environment Y. The tree directs the swarm west 
and waits for the condition, 𝜇y > 2, to trigger before moving 
to the next action. Without a wall, �y will approximate to 
zero when heading west and reaching the wall. Hence no 
further action will be triggered resulting in low performance 
when executed in map X. Alternatively, Y-a similarly sweeps 
east and west but relies only on observing when the swarm 
reaches each end wall using �x to decide when to change 
direction. This means that the strategy relies on the directed 
field behaviours and the autonomous nature of the swarm to 
navigate around any obstacles rather than creating a special-
ized strategy that learns the nature of the environment. This 
approach is a good balance of supervisory control whilst 
taking advantage of the emergent properties of the swarm.

From this finding, we can also identify that spread is more 
affected by different environments in comparison to center of 
mass. We see similar sweeping behaviours evolved in map X 
as those created by Y-a but using spread as the main decision 
metric, however, these kinds of strategies perform poorly in 
the walled environments. This is because the swarms spread 

is dependent on the shape of the environment whilst certain 
conditions using center of mass are less effected such as those 
in Y-a. Therefore to produce solutions that generalize, center 
of mass is a more suitable metric in comparison to spread.

4  Conclusion and future work

Our results showed that we could produce strategies which 
generated systematic environment coverage and specialized 
to their scenarios. This was achieved through observation 
of the swarm state and identifying the prior knowledge of 
the objective locations. In this case, we were able to explore 
a wide set of conditions that could be used to control the 
swarm and explore how this affects the types of strategies 
that are evolved. Because of this, we were able to identify a 
number of solutions that generalize as an outcome of these 
scenarios. The ability to continuously develop swarm control 
strategies through artificial evolution makes this explora-
tion of many different scenarios and constraints rapid and 
systematic.

We expect that the evolution of supervisory strategies 
will be a useful tool to help train human operators by infer-
ring potential solutions and predicting the best approach for 
certain scenarios. It has been highlighted that an operators 
understanding of swarm dynamics and time spent control-
ling swarms can have significant affects on the swarms 

Fig. 7  We evaluate each evolved 
solution (rows) against all sce-
narios investigated (columns). 
High performance is associated 
with higher fitness
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performance [8]. By presenting solutions that we have artifi-
cially evolved, operators can use these solutions as a starting 
strategy and if needed, make adjustments if improvements 
can be made. We also consider that the summarised swarm 
view in this investigation could be useful to further reduce 
cognitive load for operators. This idea has been explored in 
Becker’s work on HSI using crowd-sourcing techniques [2].

Future work will aim to explore more complex indoor 
environments which could accurately represent real-world 
problems. Further to this, we will implement other forms 
of swarm control present in HSI to observe how an evolved 
supervisor can use varying forms of interaction to produce 
novel solutions.
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