
Vol:.(1234567890)

Artificial Life and Robotics (2021) 26:10–20
https://doi.org/10.1007/s10015-020-00617-3

1 3

ORIGINAL ARTICLE

Navigation of a mobile robot in a dynamic environment using a point
cloud map

Xixun Wang1 · Yoshiki Mizukami2 · Makoto Tada1 · Fumitoshi Matsuno1

Received: 17 December 2019 / Accepted: 9 June 2020 / Published online: 26 July 2020
© International Society of Artificial Life and Robotics (ISAROB) 2020

Abstract
In this paper, we consider autonomous navigation of a wheeled mobile robot in a dynamic environment using a 3D point cloud
map. We consider four kinds of 2D maps: static global map, dynamic global map, global cost map, and local cost map; to
plan a feasible path of the robot to adapt to a dynamic environment. We consider a mobile robot for plant patrolling in a 3D
environment with plane slopes but not rough terrain for which a 2D environment map suffices. We propose 2D static global
map for robot navigation by projecting prior measured 3D point cloud map data on a horizontal plane with considering the
climbing ability of the robot. We also build a 2D dynamic global map by projecting a real-time 3D point cloud on the 2D
static global map by SLAM. Accumulated errors of SLAM can be canceled using some landmarks placed in the environ-
ment. A global planner calculates an optimal global path that minimizes the distance from an initial robot pose (position
and orientation) to a goal pose (position and orientation) by A* algorithm based on the global cost map which is built from
the dynamic global map. However, this process should take much time. To avoid moving obstacles, the TEB (Timed Elastic
Band) local planner is used to calculate an optimal local path based on a local cost map which is given by a real-time local
3D point cloud. To demonstrate the effectiveness of the proposed system, experiments were carried out. In the experiment,
we use an AR card as a landmark for simplification of implementation. We prove that the robot can navigate in a dynamic
environment and accumulated errors can be canceled by the AR cards placed in the environment as landmarks.

Keywords  Mobile robot · Point cloud map · SLAM · Path planning · Dynamic environment

1  Introduction

Autonomous mobile robots are expected to be utilized
for daily monitoring/inspection of plants and emergency
response to an accident of plants to collect informations.

Currently, 3D environment point cloud maps of public space
and an engineering plant have been gaining much attention.
Decommissioning of a nuclear power plant reactor at Fuku-
shima is one of the most challenging applications of the
robots. A 3D environment map is useful to an autonomous
mobile robot in an indoor environment where GPS is not
available. In this paper, motivated by the above applications,
we consider a navigation system of an autonomous mobile
robot for patrolling plants. Unlike the robots which are cus-
tomized for usual living rooms or office environments[1],
robots for plant patrolling move in a 3D environment with
plane slopes but not rough terrain. Path planning using a 3D
point cloud map[2] is not suitable for real-time implementa-
tions, because a long calculation time is needed for real-time
re-planning in large-scale dynamic environments. For the
application of navigation of an autonomous mobile robot to
the patrol of the plant environment with slopes, we produce
a 2D environment map by two-dimensionalizing a given 3D
environment map.

This work was presented in part at the 24th International
Symposium on Artificial Life and Robotics (Beppu, Oita, January
23-25, 2019).

 *	 Xixun Wang
	 ojijin93@gmail.com

	 Yoshiki Mizukami
	 mizu@yamaguchi‑u.ac.jp

	 Makoto Tada
	 tada@wbps.jp

	 Fumitoshi Matsuno
	 matsuno@me.kyoto‑u.ac.jp

1	 Kyoto University, Nishikyo Kyoto, Japan
2	 Yamaguchi University, Yamaguchi, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-020-00617-3&domain=pdf

11Artificial Life and Robotics (2021) 26:10–20	

1 3

Several approaches for a ground robot to navigate in non-
flat environments have been reported. Normally, a prior map
or a real-time built map is used to localize the robot itself.
And a dynamic map is built to avoid the prior unknown
obstacles[3–5]. For an example, BigDog[5] is navigated
autonomously in an unstructured forest environment by
localizing itself using VO (visual odometry), building a local
cost map that includes the obstacle’s position information
using LiDAR and calculating a path to follow with obstacle
avoidance. However, in these studies, there are two limita-
tions. First, it is hard to apply the navigation method to a
large-scale environment because of the accumulated errors
of the real-time built map. Second, it is hard to avoid mov-
ing obstacles, because a long calculation time is needed for
updating the dynamic map.

To solve these limitations, we introduce four maps: static
global map, dynamic global map, global cost map (GCM),
and local cost map (LCM). In[6], the initialization method of
the position of a robot by matching a local map from SLAM
and a static map is proposed to solve the first limitation by
navigating the robot based on the static map. The localiza-
tion with the static map alleviates the accumulated errors.
However, it is difficult to apply this method to a dynamic
environment. In our approach, we first obtain a 2D static
global map from a prior given 3D point cloud map, and
then, we update the static global map to a dynamic global
map using SLAM to reflect the changes in the dynamic envi-
ronment[7]. However, to avoid increasing the calculation
time of Pose Graph SLAM[8] (used in[7]), we select Fast-
SLAM[10] for patrolling in the large and dynamic environ-
ments. To solve the second limitation, we utilized the global
and local path planning[9]. The global planner generates the
shortest path on a global cost map which is updated from
the dynamic global map. The local planner generates a local
path based on a local cost map to avoid the moving obstacles
and consider urgent changes in a dynamic environment.

Localization and mapping are important technologies
for an autonomous mobile robot. Since 3D SLAM methods
spend too much time to update the map and we consider
the flat environment with slopes, we employ 2D SLAM
methods. At the start of processing, we build the 2D static
global map from a prior measured 3D point cloud map. Dur-
ing the processing, we build 2D point cloud and retain as
much information as possible from a real-time measured 3D
point cloud, and then localize the robot and build a 2D map.
There are three popular 2D SLAM methods: AMCL + map-
ping, Gmapping, and Hector-SLAM in ROS[11]. AMCL
can localize on a static map, but it cannot edit the map or
build a new map. Gmapping and Hector-SLAM can per-
form localization and build a new map, as well, but a prior
given static global map cannot be used as an initial map. For
our task, although a static global map is given, it should be
modified, because the environment is dynamically changing

due to moving obstacles. We use a 2D probability grid map
SLAM[12] to build a dynamic grid map to compensate for
the current difference from the static map. We also modified
the Rao–Blackwellized Particle Filters[13] in[12] to fuse
other positioning information from landmark and IMU. The
robot pose (described by particles) is sampled using the
odometry. The particles are updated when the robot finds a
landmark using[13]. Besides, we also update the importance
weight of particles using IMU information which is not used
in[12, 13]. The detail of using IMU information is explained
in Sect. 4.1.

In the case of a dynamic environment with moving and
suddenly appeared objects, it takes much time of generating
a global map and a global path. From the point of view of
computational time, we carry out a general idea of a fusion
of global and local path plannings[9]. Based on the dynamic
global map, we build the GCM. The LCM is built frequently
based on GCM and the 2D point cloud in the local region.
Similarly, we build a rough global path at a low frequency
based on GCM to get a path to the final goal and then build
a local path at a high frequency based on a local goal. We
use A* algorithm[14] for the global planner and TEB[15] for
the local planner. For local motion planning, both behavior-
based algorithm[16] (such as fuzzy logic[17] or neural net-
work[18]) and the model-based algorithm have a possibility
that the robot falls into a deadlock. The deadlock means that
the global planner cannot find a feasible solution to go to the
goal, initial position, or any exploration goals from the cur-
rent robot pose. To solve it, we design a recovery behavior
of a backtracking path in which the robot backtracks until
the robot finds another path for leaving the deadlock area.

2 � System structure

A block diagram of the whole system is shown in Fig. 1. At
the core of the system, four 2D maps are built to describe
the dynamical environment as explained in Sect. 3.1. In the
beginning, the static global map is built from a prior meas-
ured 3D point cloud map, which is explained in Sect. 3.2.
The projection of real-time 3D points on the local ground as

Fig. 1   Structure of the navigation system

12	 Artificial Life and Robotics (2021) 26:10–20

1 3

2D point cloud data is explained in Sect. 3.3. For initializa-
tion, a rough estimate of the initial pose (position and orien-
tation) of the robot in a form of probabilistic distribution is
given. The robot then obtains its precise pose by matching
a real-time 3D point cloud and the prior measured 3D point
cloud using ICP (Iterative Closest Point). The details are
explained in Sect. 4.1.

In the dynamic map generator, SLAM is used to calcu-
late the current pose of the robot and the dynamic global
map is built based on a static global map, odometry, and
2D point cloud data. The details are explained in Sect. 3.4.
The dynamic maps generator also builds a global cost map
(GCM) and local cost map (LCM) explained in Sect. 3.5.
Then, the path planner calculates the optimal path from
the current robot pose to the desired goal pose based on
GCM and LCM, the details of which are explained in
Sects. 4.2 4.3 and 4.4. Finally, the path following control-
ler generates a velocity command to control the robot as
explained in Sect. 4.5.

3 � Maps for dynamic environment

3.1 � Four maps

We assume that a mobile robot moves on an environment
consists of slopes and is almost flat. We consider that a 2D
map is sufficient for the robot navigation in such an envi-
ronment. SLAM, path planning, and control are carried
out based on the 2D map. Four examples of four maps are
shown in Fig. 2. Figure 2a shows a prior given static global
map. Figure 2b shows a dynamic global map. It is updated
based on current obstacle information. Some new obstacles
are added and parts of the disappeared obstacles are erased.
Figure 2c is a global cost map which is built based on the
dynamic global map with consideration of the robot’s size
and exclusion of points corresponding to the bar whose
height is bigger than the robot height. Figure 2d is a local
cost map which is cut out from the global cost map and also

considers the current changes of the dynamic environment
nearby the robot’s current pose.

The involved time-scale for generating the maps is shown
in Fig. 3. 2D point cloud data are built from a real-time
3D point cloud every Δt s. It takes T1 s to create a dynamic
global map based on the 2D static global map and the cur-
rent 2D point cloud data. The initial dynamic global map is
set as a static global map. By cutting out a part of the built
global cost map around the current robot position which is
updated every T2 s and adding a real-time 2D point cloud
data with a sampling time of 1∕Δt Hz, a local cost map is
built every Δt s. Δt , T1 , and T2 are the parameters, which
satisfy T1 > T2 >> Δt , depending on the map settings and
PC performance.

3.2 � Conversion of 3D point cloud map into 2D static
global map

We build the static global map from a 3D point cloud map
off-line with considering the robot climbing ability. We
assume that the ground planes are flat surfaces and a prior
measured 3D point cloud map is given. We detect the points
of ground planes and extract the points of obstacles included
slopes whose elevation angles are bigger than the climbable
angle of the robot. The extracted points corresponding to the
obstacles are projected on a plane of a grid map. Then, we
build the static global map.

The procedure to obtain the 2D static global map from
the 3D point cloud off-line is as follows. First, using robust
segmentation[19], the 3D point cloud is segmented into sev-
eral point groups and a plane is extracted from each point
group. The normal vector of each plane is calculated and if
the angle difference between the normal vector of the plane
and the gravity vector is smaller than the maximum slope
angle of robot climbing ability � , the points of the planes are
regarded as the ground plane points and are not projected on
the plane of a temporary 2D static global map, as shown in
Fig. 4a. Second, points which are between a ground plane
and the height of the robot are considered as obstacle points
and projected on the plane of the temporary 2D static global
map, as shown in Fig. 4b. Finally, the 2D position (x, y) of
all obstacle points is added to the temporary 2D static global

Fig. 2   Four grid maps a static global map, b dynamic global map, c
global cost map, and d local cost map: the black line represents the
object. The gray area represents the area where the robot can not
move in

Fig. 3   Time-scale of updating maps: T1,T2,Δt are parameters of time
which satisfy T1 > T2 >> Δt

13Artificial Life and Robotics (2021) 26:10–20	

1 3

map and this processing is executed for all points, and then,
we obtain the 2D static global map.

3.3 � Conversion of real‑time 3D point cloud into 2D
point cloud to generate dynamic global map

To generate the dynamic global map, a 2D point cloud is
extracted from a real-time measured 3D point cloud with
consideration of the robot’s climbing ability.

After receiving a 3D point cloud measured by a sen-
sor (3D LiDAR or stereo camera), a local ground plane is
extracted from the points1. The points on the local ground
plane are regarded as ground points. Then, we calculate
the angle �P of the point P, as shown in Figs. 5 and 6. If
the angle �P is bigger than the maximum slope angle � cor-
responding to the robot’s climbing ability, we remove the
point P from a set of the ground points. Then, we project the
points, which do not belong to the set of the ground points

and exist between the local ground plane and the height of
the robot, into a plane of grid map to obtain 2D point cloud.

We now explain how to calculate the angle �P of point P.
Let us define a sensor coordinate frame O − XYZ , as shown
in Fig. 5. The origin O is set as a sensor origin. The yaw
angle �P and pitch angle �P are calculated using the position
data of the point P from the sensor. P is a function of �P and
�P , and let us donate P(�P, �P) . We consider a vertical plane
SP that the line OP is included. We define a neighbor point
Pi(�Pi

, �Pi
)(i = 1,… ,N) , which satisfies the condition:

where �′
�
 and �′

�
 are minimum optical resolutions of the sen-

sor. �� and �� are region limitations. Let us define the projec-
tion point P′

i
 on the plane SP corresponding to Pi . And let Q

and Qi be the foot point of perpendicular line corresponding
to P and P′

i
 , respectively. We define the nearest neighbor

point Pn corresponding to P which attains minimum distance
of QQi(i = 1,… ,N) . These definitions are shown in Fig. 5.
The definition of the angle �P of the point P is shown in
Fig. 6. The angle �P is defined as:

Using this angle �P of the point P and the maximum slope
angle � , we can select a 2D point which is included on a
dynamic global map.

3.4 � Dynamic global map

The dynamic global map is built based on the static global
map explained in Sect. 3.2, and 2D point cloud explained in
Sect. 3.3 and odometry using SLAM[12], while considering
the blind area of the sensor.

We explain the procedure to obtain the dynamic global
map. In the beginning, the occupancy grid map of SLAM is
built based on the static global map. The occupancy prob-
ability of a grid cell is set as 1 if the area is occupied by an
obstacle on the static global map. The occupancy probability

(1)
{

𝜀�
𝜓
< |𝜓P − 𝜓Pi

| < 𝜀𝜓
𝜀�
𝜃
< |𝜃P − 𝜃Pi

| < 𝜀𝜃 ,

(2)�P = tan−1
|PQ − P�

n
Qn|

QQn

.

Fig. 4   Conversion of 3D point cloud into 2D static global map

Fig. 5   Definitions of neighbor points

Fig. 6   Definition of angle of point

1  The method[19] can be also applicable to project the points into a
local ground. It can segment multiple planes. However, it requires a
higher density 3D point cloud and takes much time for processing. In
this phase, we consider a local area and can assume that there is only
one ground plane around the robot roughly. We can apply faster algo-
rithm to segment one plane such as[20, 21].

14	 Artificial Life and Robotics (2021) 26:10–20

1 3

is set as 0 for empty areas of the static global map. The ele-
ment of a grid cell in the unknown area is set as NaN (Not a
Number). During the movement of the robot, the current 2D
point cloud gives information of the new obstacles measured
by the sensor in the dynamic environment. The occupancy
grid map is renewed by updating the occupancy probability
of each cell when it receives a 2D point cloud data. In[12], if
a cell has a prior occupancy probability between 0 to 1, the
cell updates its occupancy probability using Bayes’ theorem.
If the sensor measures data corresponding to the cell with
an NaN element, the cells update its occupancy probability
to its measured value. The dynamic global map is built from
the occupancy grid map. Normally, a grid whose probability
is larger than 0.5 is regarded as an obstacle area and a prob-
ability smaller than 0.5 as an empty area. Some obstacles
might not be marked on the dynamic global map, because
they have a probability lower than 0.5. Although the global
planner might not be able to avoid those uncharted obstacles
on the dynamic global map, the global planner explained in
Sect. 4.2 is more likely to find a feasible global path. And the
obstacles can still be marked on the local cost map and be
further avoided using a local planner explained in Sect. 4.3.

However, one limitation of 2D SLAM compared to 3D
mapping is that low height obstacles are removed by 2D
SLAM. The sensor cannot detect, such as the low height
obstacles that lie in the sensor’s blind area, as shown in
Fig. 7. To solve it, an obstacle in a part of the past dynamic
global map corresponding to the sensor’s blind area is not
erased.

3.5 � Cost maps

The global cost map is built based on the dynamic global
map to plan a global optimal path to the goal. Around an
obstacle on the dynamic global map, a prohibited area is
built with respect to robot footprint size when the global
cost map is created from the global map. The 3D shape of
the robot is simplified into an inscribed circle of RI radius
and a circumscribed circle RC radius in 2D projection for the
purpose of computational efficiency. Then, we determine the
cost of the cells of the global cost map using the two circles

and the dynamic global map with a value between 0 and 1
or NaN. We define a set D as a set of all cells with value 1,
which means the cells of obstacles, on the dynamic global
map. Let us define Di as a cell with its center Pi in the set D
and Sj as a cell in the global cost map. For every position Pi
of Di , we draw a circle CI of RI radius and a circle CC of RC
radius whose centers are Pi on the global cost map. If Sj is
overlapped with the circle CI , the cost of Sj is set as a maxi-
mum value 255 (the cost is defined as an integer value from
0 to 255). If Sj is outside the circle CC , the cost of Sj is set
to the minimum value 0. If there are some cells between the
two circles, the cost of the cells increases linearly between
the inscribed radius RI and the circumscribed radius RC . If
Sj has several costs corresponding to different cells in D,
the highest cost is set as the cost of the cell on the global
cost map.

The local cost map in this study is a small size grid map
around the robot. As shown in Fig. 2, the position of a mov-
ing obstacle is updated every T1 s on the dynamic global
map from the input 2D point cloud data, and it also takes
another T2 s to build the global cost map from the dynamic
global map. It is hard to include the moving obstacle in the
dynamic global map in real-time. Therefore, the robot uses
the local cost map that is built every Δt s in a local area.

4 � Navigation

In this section, we describe the localization of the robot
pose, the global and local path planner algorithm shown in
Fig. 8, and the path following control to generate velocity
commands to lead the robot to the given local path.

4.1 � Calculation of the robot pose

We have two ways, ICP matching and landmark matching, to
generate the robot pose on the static global map.

For ICP matching, the real-time 3D point cloud is
matched with the prior measured 3D point cloud map by
ICP method. To avoid the incorrect result of ICP matching,
we randomize the process by performing the ICP matching
for each sampled particles, and then, the best ICP matching
result is selected by updating the particle weight. The initial
pose for the iteration is taken as position/orientation with a
probability distribution of Gaussian. In the beginning, we

Fig. 7   Blind area of the robot

Fig. 8   The structure of path planning[9]

15Artificial Life and Robotics (2021) 26:10–20	

1 3

initialize N particles by sampling the pose randomly using
the given distribution. Then, after the robot moves and
receives the first point cloud data, a local 3D point cloud
is built. Based on a pose of each particle and odometry of
the robot, the ICP searches a robot for each particle pose by
minimizing the difference between the local 3D point cloud
and the prior measured 3D point cloud map. We obtain an
error value as a result of ICP matching, it is regarded as the
particle weight. The current robot pose is given by the best
particle which has the lowest weight. Finally, the 2D poses
of particles are copied to SLAM and the inner map of SLAM
is refreshed as the static global map.

For the landmark matching, a robot saves the extracted
landmarks’ features and poses in the database. In real-time
processing, the robot uses a sensor to detect a landmark and
carries out the matching of those landmarks’ features. When
the robot detects a landmark around itself, a relative pose
between the landmark and the robot is calculated. Then, a
current robot pose is refreshed based on the relative pose
from the landmark absolute pose.

We use IMU to correct the estimation errors of the robot
direction by updating the importance weight w of parti-
cles. The Rao–Blackwellized Particle Filter has N parti-
cles. Each particle stores a different gaussian distribution
of robot pose (mean vector s = [xs, ys,�s]

T and a variance
matrix �s ) and an importance weight w. The data of IMU are
described as �imu . Then, we update the importance weight as
w = w ∗ N(�imu|�s,�s[3, 3]) , where the function N(�imu|�s
�s[3, 3]) represents the probability density at the orientation
�imu using orientation distribution �s and �s[3, 3] ( �s[3, 3]
represents the element at 3rd row and 3rd column of the
matrix �s).

4.2 � Global planner

The global planner generates a global path based on a global
cost map. If we do not have a feasible path by considering
only empty grids with 0 value, an unknown grid with NaN
element is considered as an empty grid and an optimal path
is calculated. The shortest path from the current robot pose
to the goal pose is calculated by A* algorithm without con-
sidering the robot’s mobility. The global cost map is built
from the dynamic global map explained in Sects. 3.4 and
3.5. When the dynamic global map is updated, the global
planner recalculates a new desired path. Although A* has a
concern of efficiency, it is applicable to our system, because
the calculation of the global path by A* algorithm is much
faster than the generation of the global cost map.

4.3 � Local planner

The local planner is necessary to avoid moving obstacles
and to compensate for the difference between a calculated

dynamic global map at the last sampling time and the current
environment. Because the size of the global map is much
bigger than that of the local map, there is a big delay in
constructing the global map (see Fig. 3). On the other hand,
the local map is easily modified based on the real-time infor-
mation. It is suitable to plan a local path to avoid moving
obstacles based on the current local map. Besides, the local
planner can consider the limitation of the mobility of the
robot by introducing the corresponding cost function.

The local planner generates a local path based on a local
cost map, explained in Sect. 3.5, that the robot should fol-
low. We apply TEB local planner[15]. It simulates the robot
motion and finds several feasible paths on the local map
based on a cost function considering the current robot pose
and the given global path. It computes the distance to the
nearest obstacle, the error of the local path from the global
path, error of the attitude of the robot from the desired one,
velocity limit, and acceleration limit of the robot[15]. Fig-
ure 9 shows the simulation results for the generation of the
global path on the local cost map in (a) and the local path
in (b) in a dynamic environment. We can see that the local
planner generates a feasible path to avoid both static and
moving obstacles.

4.4 � Backtracking planner

The backtracking planner provides a recovery behavior when
the planner cannot calculate any feasible path. When the
environment is changed drastically, moving obstacles some-
times block the local path to the current goal. In this case,
the local planner cannot find a feasible solution using the
local map, then a backtracking path is built to move the robot
backward. When the local planner falls into failure, the robot
goes backward on its trajectory as the backtracking action.
The recovery behavior is finished when the planner can find

Fig. 9   Simulation results of generation of a feasible path to avoid
moving obstacles by the local planner: an arrow represents an attitude
of the robot. A broken line and a solid line are global path and local
path, respectively. A black area represents the area where the robot
cannot move in

16	 Artificial Life and Robotics (2021) 26:10–20

1 3

a new feasible path due to the change of the local map of the
dynamic environment.

4.5 � Path following control

A path following control is designed as a point-to-point con-
trol in 2D map. In Fig. 10, the control purpose is to make the
robot reach the current goal point pi from the current robot
point pr . The logic to decide the current goal is as follows.
The desired path based on the local map is given as a set of
points. In the beginning, the nearest point on the desired path
from the current robot position pr is set as the current goal
pi . The next nearest point of pi on the path is set as the next
goal pi+1 . If the distance from pr to pi is smaller than 0.1 m,
the next goal pi+1 is set as the current goal pi in our experi-
ment unless the pi is the final point on the path.

In Fig. 10, r is the distance from the current robot position
pr to the current goal pi , l is the distance from the robot to
the nearest point of the obstacle, � is the angle between the
robot moving direction and the direction from the robot to
the current goal, � is the angle between ������⃗prpi (the direction
from the robot to the current goal), and ���������⃗pipi+1 (the direction
from current goal to the next goal). Let � be the current
angular velocity of the robot. The reference of the transla-
tional velocity vref and that of the angular velocity �ref for
the robot are given as follows:

where kv , kp , k�t
 , k� , and k� are positive coefficients.

The first term on the right side of the top of (3) has an
effect to slow down the robot when it is close to the cur-
rent goal or the obstacle. The second term has an effect to

(3)

⎧⎪⎨⎪⎩

vref = kv(1 − 0.9
kp

l + kp
)r − k𝜔t

abs(𝜔), if vref > 0

vref = 0, if vref < 0

(4)�ref = k�� +
k�

r + k�
�,

slow down the robot when it is rotating. The first term on
the right-hand side of (4) leads the robot to the direction of
the current goal pi . The second term has an effect that the
robot faces to the next goal pi+1 when it comes close to the
current goal pi.

If the next desired direction ���������⃗pipi+1 is opposite to the cur-
rent desired direction ������⃗prpi , � and r are modified as follows:

5 � Experiment

5.1 � Platform

Experiments in this paper are performed with a mobile
wheeled robot, as shown in Fig. 11. It is a double-wheeled
robot with a 70 kg payload and its maximum speed is 3
(m/s). The size of the robot is W600×D500×H1050 mm and
the total weight is 40 kg. It can go up and down a hill whose
slope angle is less than 15 ( ◦ ) ( � = 15 ( ◦)). Each wheel has
an encoder and we can measure the velocity. A 360 ( ◦ )
LiDAR sensor (VLP-16) is mounted at the center of the
mobile base. A stereo camera ZED is attached in front of the
mobile base to detect landmarks. An IMU sensor (LPMS-
CU2) is mounted on the robot to measure the attitude of
the robot. The PC (Thinkpad P50 (Intel I7 2.7 GHz), 32 G)

(5)

⎧⎪⎨⎪⎩

r = −r

𝛽 = 𝛽 + 𝜋

𝛼 = 𝛼 + 𝜋

, if ������⃗prpi ⋅ ���������⃗pipi+1 < 0

Fig. 10   Generation of a velocity command using a desired path: dots
are the points on the desired path for a robot. Triangle is a footprint of
the robot. A hatching area is an obstacle

Fig. 11   A mobile robot used in our experiments

17Artificial Life and Robotics (2021) 26:10–20	

1 3

is mounted on the robot. In Eqs.(3) and (4), we set kv = 3 ,
kp = 0.6 , k�t

= 0.4 , k� = 1.5, and k� = 0.25.

5.2 � Conversion of real‑time 3D data into 2D

The purpose of the experiment is to demonstrate that the
method introduced in Sect. 3.3 can recognize whether the
points belong to obstacles or not in a 3D environment with
two slopes.

The experiment field, shown in Fig. 12, consists of two
slopes A  , B on the ground and four objects 1 – 4  . The
robot can climb the slope A with a slope angle of 11◦ . On
the other hand, the robot cannot climb up on the steep slope
B whose angle is 23◦ , because the robot’s climbing abil-
ity is 15◦ . The object 1 is the side edge of the slope A  .
The object 2 is a low height obstacle on the gentle slope
A  . The object 3 is a lower gate whose height is 85 cm.
The object 4 is a higher gate whose height is 110 cm. The
objects 1 2 3 are obstacle, while the bar of the object 4
is not an obstacle for the robot whose height is 105 cm.

The result is shown in Fig. 13. By comparing Fig. 13a
and b, the ground and the gentle slope A were removed,
and the steep slope B and objects 1 – 4 were preserved.
In Fig. 13c, it can be observed that the objects 1 - 3 were
correctly preserved, and the bar of object 4 was removed
as an obstacle considering the height of the robot.

5.3 � Positioning by landmarks

The purpose of the experiment is to demonstrate that the
localization accuracy can be increased using landmark
matching. We use AR cards as landmarks to initialize the
robot pose and update the robot pose.

In the experiment, we compare localizing accuracy for
four cases: (1) SLAM without a static global map and
AR card; (2) SLAM without a static global map but with
AR card; (3) SLAM with a static global map but without
AR card; (4) SLAM with both static global map and AR
card. In the beginning, we place the robot at the assigned
position, facing to the wall, as shown in Fig. 14. The robot
rotates 90 ◦ , and then, it drives forward 10 m. We have two
AR cards with an unique number in the environment as
landmarks. The size of each AR card is 24× 24 cm.

Experiments for the above four cases are carried out
three times. The recorded maximum position errors are
shown in Table 1. Using the landmark information, the
errors for both with and without a static global map are
decreased.

Fig. 12   Experiment field: A B are slopes. 1 – 4 are objects

Fig. 13   Real-time 3D and 2D point cloud data: a 3D point cloud from
a LiDAR, b 3D point cloud after removing the points corresponding
to ground planes and slopes, and c 2D point cloud data by project-
ing the remaining 3D point cloud onto the local ground: A B are
slopes. 1 – 4 are objects

Fig. 14   Experimental setup for canceling of accumulated errors by
detecting AR cards

Table 1   Experimental result of maximum error of each case

Case X (cm) Y (cm) Yaw ( ◦)

(1) No map, no AR cards 6 12 3.5
(2) No map, AR cards 2.5 2.7 2.8
(3) Map, no AR cards 2.5 3.1 2.7
(4) Map, AR cards 1.5 0.9 2.6

18	 Artificial Life and Robotics (2021) 26:10–20

1 3

5.4 � Indoor experiment

The purpose of the experiments is to demonstrate that the
proposed navigation method can avoid different kinds of
obstacles, the SLAM can update the dynamic global map
based on the static global map, and the robot can accomplish
self-localization in a dynamic environment.

The experiments are carried out in an indoor environ-
ment of a building of Kyoto Univ. The robot moves from
the corridor into a room of our laboratory. The experiment
field is about 20 m × 15 m. The sizes of the static global
map, dynamic global map, and global cost map are set as
200 m ×200 m each with a resolution of 0.05 m for the plant
patrolling objective. Since the indoor environment for the
experiment is small and the SLAM does not generate obvi-
ous accumulated errors, the localization using landmarks is
not needed. The size of the local cost map is 5 m × 5 m with a
resolution of 0.05 m. Considering the size of the maps (200
m ×200 m), the parameters of the time-scale are set as T1 = 4
s, T2 = 2 s, and Δt = 0.1 s. An initial pose, a static global
map and a goal pose are given. In the corridor, we placed
four kinds of obstacles: small bottles, chairs, slender pipes
that block the robot, and the slender pipes whose height
is more than the height of the robot, as shown in Fig. 15.
Inside the laboratory, the environment is drastically changed
in comparison with the given static global map by placing
tables, chairs, and other things. Since free space inside the
room is narrow, the robot has to avoid the suddenly observed
obstacles in the blind area using the local planner.

It is observed that the robot detected all obstacles in
the dynamic environment and avoided all of them. In
the experiments, the robot built a map by SLAM and
could reach the goal successfully, as shown in Fig. 16.
In Fig. 16, black spots mean obstacles. Figure 16a illus-
trates the prior given static global map, Fig. 16b shows a
global path based on a dynamic global map corresponding

to the initialization of the robot pose at the start point,
and Fig. 16c shows the final dynamic global map built by
SLAM when the robot reached the final goal. By compar-
ing the prior given map shown in Fig. 16a and the final
generated map shown in Fig. 16c, we can infer that the
robot detected the changes of the environment, especially
inside of the room and built a new map. Figure 16d shows
a global path and a local path in the dramatically changed
region. From this figure, we can find that the robot can
avoid suddenly observed obstacles by the local planner in
real time. Measured linear speed and travel length of the
robot are shown in Fig. 17.

We measured the average calculation times. The calcula-
tion times of updating the global dynamic map, global cost
map, and local cost map are 1.49 s ( < T1 ), 1.06 s ( < T2 ), and
0.061 s ( < Δt ), respectively. The calculation times of global
path planner (A*) and local path planner (TEB) are 0.82 s
and 0.056 s, respectively. It can be seen that the calculation
times are smaller than the parameters of the time-scale ( T1 ,
T2 , and Δt ), which means that the parameters of the time-
scale met the requests of the calculation time.

6 � Conclusion

We developed a navigation system for an autonomous
mobile robot based on static global 3D environment data.
We proposed four grid maps: static global map, dynamic
global map, global cost map, and local cost map. We built a
2D static global map from a prior given 3D point cloud map
for the robot navigation. The global and local path planners
are applied to obtain an optimal behavior of the robot in a
dynamic environment based on the global and local cost
maps. To demonstrate the effectiveness of the developed sys-
tem, indoor experiments are carried out. The experimental
results show that the robot detects the objects on the slope,
builds a dynamic map based on a static map, and localizes
itself even in the case that the environment is drastically
changed. The error of localization decreases when the robot
detects the landmarks.

Although AR cards are used as the landmarks in our
experiment, for application in the real environment, the
landmarks can be replaced with other features which can
be extracted from the prior 3D point cloud. And reconstruc-
tion of the real-time 3D environment using a real-time 3D
point cloud from a sensor has not been accomplished yet.
Finally, since we think that the difference of the travel dis-
tances between a slope of 15[deg] and flat ground is not so
big, in our approach, we calculate the shortest path based
on a 2D map. We do not consider the difference of the travel

Fig. 15   Indoor environment field: multiple objects are prior unknown

19Artificial Life and Robotics (2021) 26:10–20	

1 3

distance between 2D and 3D, and the calculated path might
not be the shortest in 3D. One probable solution is to build
another global grid map to describe the travel distance in 3D.
These problems should be further investigated in the future.

Acknowledgements  A part of this study was carried out as a collabora-
tive research with BESTERRA Co., Ltd.

References

	 1.	 Eitan M, Eric B, Tully F, Brian G, Kurt K (2010) The office
marathon: robust navigation in an indoor office environment. In:
Proceedings in IEEE international conference on robotics and
automation, pp 300–307

	 2.	 Ellips M, Golnaz H (2007) Robot path planning in 3D space using
binary integer programming. J Comput Inf Eng 1(5):1255–1260

	 3.	 Andrew J. D, Nobuyuki K, (2001) 3D simultaneous localisation
and map-building using active vision for a robot moving on undu-
lating terrain. In: Proceedings of IEEE international conference
on computer vision and pattern recognition, pp 394–391

	 4.	 Konstantinos C, Ioannis K, Antonios G (2015) Thorough robot
navigation based on SVM local planning. J Robot Auton Syst
70(1):166–180

Fig. 16   Result of navigating the robot and mapping prior unknown
object on the dynamic global map. a The static global map and the
given initial information: the blue arrow represents the rough initial
robot pose given by an operator. The green arrow is the goal pose.
The white line/dots represents the 2D point cloud. b The dynamic
global map, the global path, and the precise initial robot pose using
ICP in the beginning: the blue arrow represents the precise initial

robot pose. The yellow line represents the global path. c The final
dynamic global map and the robot trajectory that were generated by
SLAM when the robot reached the goal: the green line represents
the robot trajectory. d The global path and the local path: the yellow
line represents the global path. The blue line represents the local path
(color figure online)

Fig. 17   The travel speed (measured by encoder) and travel distance
(measured by SLAM) of the robot in the experiment

20	 Artificial Life and Robotics (2021) 26:10–20

1 3

	 5.	 David W, Matthew M, Kevin B, Andrew H, Alfred AR, Marc R
(2010) Autonomous navigation for BigDog. In: Proceedings of
IEEE international conference on robotics and automation, pp
4736–4741

	 6.	 Malcolm M, Martin M, Henrik A, Achim JL (2017) SLAM auto-
complete: completing a robot map using an emergency map. In:
Proceedings of IEEE international symposium on safety, security
and rescue robotics, pp 35–40

	 7.	 John M, Michael K, Cesar C, Jose N, John JL (2013) Real-time
6-DOF multi-session visual SLAM over large-scale environments.
J Robot Auton Syst 61(10):1144–1158

	 8.	 Aisha W.B, Michael K, Hordur J, John J.L (2012) Dynamic pose
graph SLAM: long-term mapping in low dynamic environments.
In: Proceedings of IEEE/RSJ international conference on intel-
ligent robots and systems, pp 1871–1877

	 9.	 Pablo M, Ahmed H, David M, de la Arturo E (2018) Global and
local path planning study in a ROS-based research platform for
autonomous vehicles. J Adv Transp 2018:1–10

	10.	 Michael M, Sebastian T, Daphne K, Ben W (2003) FastSLAM 2.0:
an improved particle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges. In: Proceedings of the
international conference on artificial intelligence, pp 1151–1156

	11.	 Morgan Q, Brian G, Ken C, Josh F, Tully F, Jeremy L, Eric B, Rob
W, Ng A (2009) ROS: an open-source robot operating system.
In: Proceedings of IEEE international conference on robotics and
automation, open-source software workshop

	12.	 Giorgio G, Cyrill S, Wolfram B (2005) Improving grid-based slam
with Rao-Blackwellized particle filters by adaptive proposals and
selective resampling. In: Proceedings of IEEE international con-
ference on robotics and automation, pp 2443–2448

	13.	 Arnaud D, Nando de F, Kevin M, Stuart R (2000) Rao-Black-
wellized partcile filtering for dynamic bayesian networks. In: Pro-
ceedongs of conference on uncertainty in artificial intelligence, pp
176–183

	14.	 Kurt K (2000) A gradient method for realtime robot control. In:
Proceedings of IEEE/RSJ international conference on intelligent
robots and systems, pp 639–646

	15.	 Rösmann C, Hoffmann F, Bertram T (2015) Planning of multi-
ple robot trajectories in distinctive topologies. In: Proceedings of
IEEE European conference on mobile robots, pp 1–6

	16.	 Watanabe M, Onoguchi E, Kweon I, Kuno Y (1992) Architec-
ture of behavior-based mobile robot in dynamic environment. In:
Proceedings of IEEE international conference on robotics and
automation, pp 2711–2718

	17.	 Zhu A, Yang SX (2007) Neurofuzzy-based approach to mobile
robot navigation in unknown environments. IEEE Trans Syst
37(4):610–621

	18.	 Engedy I, Horvath G (2010) Artificial neural network based local
motion planning of a wheeled mobile robot. In: Proceedings of
IEEE international conference on computational intelligence and
informatics, pp 213–218

	19.	 Abdul N, David B, Geoff W (2016) Robust segmentation for large
volumes of laser scanning three-dimensional point cloud data.
IEEE Trans Geosci Remote Sens 54(8):4790–4805

	20.	 Dimitris Z, Izzat I, Nikolaos P (2017) Fast segmentation of 3D
point clouds: a paradigm on LiDAR data for autonomous vehicle
applications. In: Proceedings of IEEE international conference on
robotics and automation, pp 5067–5073

	21.	 Ahmed H, Pablo M, David M, Arturo E, Jose M (2016) Autono-
mous off-road navigation using stereo-vision and laser-rangefinder
fusion for outdoor obstacles detection. In: Proceedings of IEEE
international conference on intelligent vehicles symposium, pp
104–109

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Navigation of a mobile robot in a dynamic environment using a point cloud map
	Abstract
	1 Introduction
	2 System structure
	3 Maps for dynamic environment
	3.1 Four maps
	3.2 Conversion of 3D point cloud map into 2D static global map
	3.3 Conversion of real-time 3D point cloud into 2D point cloud to generate dynamic global map
	3.4 Dynamic global map
	3.5 Cost maps

	4 Navigation
	4.1 Calculation of the robot pose
	4.2 Global planner
	4.3 Local planner
	4.4 Backtracking planner
	4.5 Path following control

	5 Experiment
	5.1 Platform
	5.2 Conversion of real-time 3D data into 2D
	5.3 Positioning by landmarks
	5.4 Indoor experiment

	6 Conclusion
	Acknowledgements
	References

