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Abstract
In this paper, we consider autonomous navigation of a wheeled mobile robot in a dynamic environment using a 3D point cloud 
map. We consider four kinds of 2D maps: static global map, dynamic global map, global cost map, and local cost map; to 
plan a feasible path of the robot to adapt to a dynamic environment. We consider a mobile robot for plant patrolling in a 3D 
environment with plane slopes but not rough terrain for which a 2D environment map suffices. We propose 2D static global 
map for robot navigation by projecting prior measured 3D point cloud map data on a horizontal plane with considering the 
climbing ability of the robot. We also build a 2D dynamic global map by projecting a real-time 3D point cloud on the 2D 
static global map by SLAM. Accumulated errors of SLAM can be canceled using some landmarks placed in the environ-
ment. A global planner calculates an optimal global path that minimizes the distance from an initial robot pose (position 
and orientation) to a goal pose (position and orientation) by A* algorithm based on the global cost map which is built from 
the dynamic global map. However, this process should take much time. To avoid moving obstacles, the TEB (Timed Elastic 
Band) local planner is used to calculate an optimal local path based on a local cost map which is given by a real-time local 
3D point cloud. To demonstrate the effectiveness of the proposed system, experiments were carried out. In the experiment, 
we use an AR card as a landmark for simplification of implementation. We prove that the robot can navigate in a dynamic 
environment and accumulated errors can be canceled by the AR cards placed in the environment as landmarks.

Keywords  Mobile robot · Point cloud map · SLAM · Path planning · Dynamic environment

1  Introduction

Autonomous mobile robots are expected to be utilized 
for daily monitoring/inspection of plants and emergency 
response to an accident of plants to collect informations. 

Currently, 3D environment point cloud maps of public space 
and an engineering plant have been gaining much attention. 
Decommissioning of a nuclear power plant reactor at Fuku-
shima is one of the most challenging applications of the 
robots. A 3D environment map is useful to an autonomous 
mobile robot in an indoor environment where GPS is not 
available. In this paper, motivated by the above applications, 
we consider a navigation system of an autonomous mobile 
robot for patrolling plants. Unlike the robots which are cus-
tomized for usual living rooms or office environments[1], 
robots for plant patrolling move in a 3D environment with 
plane slopes but not rough terrain. Path planning using a 3D 
point cloud map[2] is not suitable for real-time implementa-
tions, because a long calculation time is needed for real-time 
re-planning in large-scale dynamic environments. For the 
application of navigation of an autonomous mobile robot to 
the patrol of the plant environment with slopes, we produce 
a 2D environment map by two-dimensionalizing a given 3D 
environment map.

This work was presented in part at the 24th International 
Symposium on Artificial Life and Robotics (Beppu, Oita, January 
23-25, 2019).
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Several approaches for a ground robot to navigate in non-
flat environments have been reported. Normally, a prior map 
or a real-time built map is used to localize the robot itself. 
And a dynamic map is built to avoid the prior unknown 
obstacles[3–5]. For an example, BigDog[5] is navigated 
autonomously in an unstructured forest environment by 
localizing itself using VO (visual odometry), building a local 
cost map that includes the obstacle’s position information 
using LiDAR and calculating a path to follow with obstacle 
avoidance. However, in these studies, there are two limita-
tions. First, it is hard to apply the navigation method to a 
large-scale environment because of the accumulated errors 
of the real-time built map. Second, it is hard to avoid mov-
ing obstacles, because a long calculation time is needed for 
updating the dynamic map.

To solve these limitations, we introduce four maps: static 
global map, dynamic global map, global cost map (GCM), 
and local cost map (LCM). In[6], the initialization method of 
the position of a robot by matching a local map from SLAM 
and a static map is proposed to solve the first limitation by 
navigating the robot based on the static map. The localiza-
tion with the static map alleviates the accumulated errors. 
However, it is difficult to apply this method to a dynamic 
environment. In our approach, we first obtain a 2D static 
global map from a prior given 3D point cloud map, and 
then, we update the static global map to a dynamic global 
map using SLAM to reflect the changes in the dynamic envi-
ronment[7]. However, to avoid increasing the calculation 
time of Pose Graph SLAM[8] (used in[7]), we select Fast-
SLAM[10] for patrolling in the large and dynamic environ-
ments. To solve the second limitation, we utilized the global 
and local path planning[9]. The global planner generates the 
shortest path on a global cost map which is updated from 
the dynamic global map. The local planner generates a local 
path based on a local cost map to avoid the moving obstacles 
and consider urgent changes in a dynamic environment.

Localization and mapping are important technologies 
for an autonomous mobile robot. Since 3D SLAM methods 
spend too much time to update the map and we consider 
the flat environment with slopes, we employ 2D SLAM 
methods. At the start of processing, we build the 2D static 
global map from a prior measured 3D point cloud map. Dur-
ing the processing, we build 2D point cloud and retain as 
much information as possible from a real-time measured 3D 
point cloud, and then localize the robot and build a 2D map. 
There are three popular 2D SLAM methods: AMCL + map-
ping, Gmapping, and Hector-SLAM in ROS[11]. AMCL 
can localize on a static map, but it cannot edit the map or 
build a new map. Gmapping and Hector-SLAM can per-
form localization and build a new map, as well, but a prior 
given static global map cannot be used as an initial map. For 
our task, although a static global map is given, it should be 
modified, because the environment is dynamically changing 

due to moving obstacles. We use a 2D probability grid map 
SLAM[12] to build a dynamic grid map to compensate for 
the current difference from the static map. We also modified 
the Rao–Blackwellized Particle Filters[13] in[12] to fuse 
other positioning information from landmark and IMU. The 
robot pose (described by particles) is sampled using the 
odometry. The particles are updated when the robot finds a 
landmark using[13]. Besides, we also update the importance 
weight of particles using IMU information which is not used 
in[12, 13]. The detail of using IMU information is explained 
in Sect. 4.1.

In the case of a dynamic environment with moving and 
suddenly appeared objects, it takes much time of generating 
a global map and a global path. From the point of view of 
computational time, we carry out a general idea of a fusion 
of global and local path plannings[9]. Based on the dynamic 
global map, we build the GCM. The LCM is built frequently 
based on GCM and the 2D point cloud in the local region. 
Similarly, we build a rough global path at a low frequency 
based on GCM to get a path to the final goal and then build 
a local path at a high frequency based on a local goal. We 
use A* algorithm[14] for the global planner and TEB[15] for 
the local planner. For local motion planning, both behavior-
based algorithm[16] (such as fuzzy logic[17] or neural net-
work[18]) and the model-based algorithm have a possibility 
that the robot falls into a deadlock. The deadlock means that 
the global planner cannot find a feasible solution to go to the 
goal, initial position, or any exploration goals from the cur-
rent robot pose. To solve it, we design a recovery behavior 
of a backtracking path in which the robot backtracks until 
the robot finds another path for leaving the deadlock area.

2 � System structure

A block diagram of the whole system is shown in Fig. 1. At 
the core of the system, four 2D maps are built to describe 
the dynamical environment as explained in Sect. 3.1. In the 
beginning, the static global map is built from a prior meas-
ured 3D point cloud map, which is explained in Sect. 3.2. 
The projection of real-time 3D points on the local ground as 

Fig. 1   Structure of the navigation system
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2D point cloud data is explained in Sect. 3.3. For initializa-
tion, a rough estimate of the initial pose (position and orien-
tation) of the robot in a form of probabilistic distribution is 
given. The robot then obtains its precise pose by matching 
a real-time 3D point cloud and the prior measured 3D point 
cloud using ICP (Iterative Closest Point). The details are 
explained in Sect. 4.1.

In the dynamic map generator, SLAM is used to calcu-
late the current pose of the robot and the dynamic global 
map is built based on a static global map, odometry, and 
2D point cloud data. The details are explained in Sect. 3.4. 
The dynamic maps generator also builds a global cost map 
(GCM) and local cost map (LCM) explained in Sect. 3.5. 
Then, the path planner calculates the optimal path from 
the current robot pose to the desired goal pose based on 
GCM and LCM, the details of which are explained in 
Sects. 4.2  4.3 and  4.4. Finally, the path following control-
ler generates a velocity command to control the robot as 
explained in Sect. 4.5.

3 � Maps for dynamic environment

3.1 � Four maps

We assume that a mobile robot moves on an environment 
consists of slopes and is almost flat. We consider that a 2D 
map is sufficient for the robot navigation in such an envi-
ronment. SLAM, path planning, and control are carried 
out based on the 2D map. Four examples of four maps are 
shown in Fig. 2. Figure 2a shows a prior given static global 
map. Figure 2b shows a dynamic global map. It is updated 
based on current obstacle information. Some new obstacles 
are added and parts of the disappeared obstacles are erased. 
Figure 2c is a global cost map which is built based on the 
dynamic global map with consideration of the robot’s size 
and exclusion of points corresponding to the bar whose 
height is bigger than the robot height. Figure 2d is a local 
cost map which is cut out from the global cost map and also 

considers the current changes of the dynamic environment 
nearby the robot’s current pose.

The involved time-scale for generating the maps is shown 
in Fig. 3. 2D point cloud data are built from a real-time 
3D point cloud every Δt s. It takes T1 s to create a dynamic 
global map based on the 2D static global map and the cur-
rent 2D point cloud data. The initial dynamic global map is 
set as a static global map. By cutting out a part of the built 
global cost map around the current robot position which is 
updated every T2 s and adding a real-time 2D point cloud 
data with a sampling time of 1∕Δt Hz, a local cost map is 
built every Δt s. Δt , T1 , and T2 are the parameters, which 
satisfy T1 > T2 >> Δt , depending on the map settings and 
PC performance.

3.2 � Conversion of 3D point cloud map into 2D static 
global map

We build the static global map from a 3D point cloud map 
off-line with considering the robot climbing ability. We 
assume that the ground planes are flat surfaces and a prior 
measured 3D point cloud map is given. We detect the points 
of ground planes and extract the points of obstacles included 
slopes whose elevation angles are bigger than the climbable 
angle of the robot. The extracted points corresponding to the 
obstacles are projected on a plane of a grid map. Then, we 
build the static global map.

The procedure to obtain the 2D static global map from 
the 3D point cloud off-line is as follows. First, using robust 
segmentation[19], the 3D point cloud is segmented into sev-
eral point groups and a plane is extracted from each point 
group. The normal vector of each plane is calculated and if 
the angle difference between the normal vector of the plane 
and the gravity vector is smaller than the maximum slope 
angle of robot climbing ability � , the points of the planes are 
regarded as the ground plane points and are not projected on 
the plane of a temporary 2D static global map, as shown in 
Fig. 4a. Second, points which are between a ground plane 
and the height of the robot are considered as obstacle points 
and projected on the plane of the temporary 2D static global 
map, as shown in Fig. 4b. Finally, the 2D position (x, y) of 
all obstacle points is added to the temporary 2D static global 

Fig. 2   Four grid maps a static global map, b dynamic global map, c 
global cost map, and d local cost map: the black line represents the 
object. The gray area represents the area where the robot can not 
move in

Fig. 3   Time-scale of updating maps: T1,T2,Δt are parameters of time 
which satisfy T1 > T2 >> Δt
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map and this processing is executed for all points, and then, 
we obtain the 2D static global map.

3.3 � Conversion of real‑time 3D point cloud into 2D 
point cloud to generate dynamic global map

To generate the dynamic global map, a 2D point cloud is 
extracted from a real-time measured 3D point cloud with 
consideration of the robot’s climbing ability.

After receiving a 3D point cloud measured by a sen-
sor (3D LiDAR or stereo camera), a local ground plane is 
extracted from the points1. The points on the local ground 
plane are regarded as ground points. Then, we calculate 
the angle �P of the point P, as shown in Figs. 5 and  6. If 
the angle �P is bigger than the maximum slope angle � cor-
responding to the robot’s climbing ability, we remove the 
point P from a set of the ground points. Then, we project the 
points, which do not belong to the set of the ground points 

and exist between the local ground plane and the height of 
the robot, into a plane of grid map to obtain 2D point cloud.

We now explain how to calculate the angle �P of point P. 
Let us define a sensor coordinate frame O − XYZ , as shown 
in Fig. 5. The origin O is set as a sensor origin. The yaw 
angle �P and pitch angle �P are calculated using the position 
data of the point P from the sensor. P is a function of �P and 
�P , and let us donate P(�P, �P) . We consider a vertical plane 
SP that the line OP is included. We define a neighbor point 
Pi(�Pi

, �Pi
)(i = 1,… ,N) , which satisfies the condition:

where �′
�
 and �′

�
 are minimum optical resolutions of the sen-

sor. �� and �� are region limitations. Let us define the projec-
tion point P′

i
 on the plane SP corresponding to Pi . And let Q 

and Qi be the foot point of perpendicular line corresponding 
to P and P′

i
 , respectively. We define the nearest neighbor 

point Pn corresponding to P which attains minimum distance 
of QQi(i = 1,… ,N) . These definitions are shown in Fig. 5. 
The definition of the angle �P of the point P is shown in 
Fig. 6. The angle �P is defined as:

Using this angle �P of the point P and the maximum slope 
angle � , we can select a 2D point which is included on a 
dynamic global map.

3.4 � Dynamic global map

The dynamic global map is built based on the static global 
map explained in Sect. 3.2, and 2D point cloud explained in 
Sect. 3.3 and odometry using SLAM[12], while considering 
the blind area of the sensor.

We explain the procedure to obtain the dynamic global 
map. In the beginning, the occupancy grid map of SLAM is 
built based on the static global map. The occupancy prob-
ability of a grid cell is set as 1 if the area is occupied by an 
obstacle on the static global map. The occupancy probability 

(1)
{

𝜀�
𝜓
< |𝜓P − 𝜓Pi

| < 𝜀𝜓
𝜀�
𝜃
< |𝜃P − 𝜃Pi

| < 𝜀𝜃 ,

(2)�P = tan−1
|PQ − P�

n
Qn|

QQn

.

Fig. 4   Conversion of 3D point cloud into 2D static global map

Fig. 5   Definitions of neighbor points

Fig. 6   Definition of angle of point

1  The method[19] can be also applicable to project the points into a 
local ground. It can segment multiple planes. However, it requires a 
higher density 3D point cloud and takes much time for processing. In 
this phase, we consider a local area and can assume that there is only 
one ground plane around the robot roughly. We can apply faster algo-
rithm to segment one plane such as[20, 21].



14	 Artificial Life and Robotics (2021) 26:10–20

1 3

is set as 0 for empty areas of the static global map. The ele-
ment of a grid cell in the unknown area is set as NaN (Not a 
Number). During the movement of the robot, the current 2D 
point cloud gives information of the new obstacles measured 
by the sensor in the dynamic environment. The occupancy 
grid map is renewed by updating the occupancy probability 
of each cell when it receives a 2D point cloud data. In[12], if 
a cell has a prior occupancy probability between 0 to 1, the 
cell updates its occupancy probability using Bayes’ theorem. 
If the sensor measures data corresponding to the cell with 
an NaN element, the cells update its occupancy probability 
to its measured value. The dynamic global map is built from 
the occupancy grid map. Normally, a grid whose probability 
is larger than 0.5 is regarded as an obstacle area and a prob-
ability smaller than 0.5 as an empty area. Some obstacles 
might not be marked on the dynamic global map, because 
they have a probability lower than 0.5. Although the global 
planner might not be able to avoid those uncharted obstacles 
on the dynamic global map, the global planner explained in 
Sect. 4.2 is more likely to find a feasible global path. And the 
obstacles can still be marked on the local cost map and be 
further avoided using a local planner explained in Sect. 4.3.

However, one limitation of 2D SLAM compared to 3D 
mapping is that low height obstacles are removed by 2D 
SLAM. The sensor cannot detect, such as the low height 
obstacles that lie in the sensor’s blind area, as shown in 
Fig. 7. To solve it, an obstacle in a part of the past dynamic 
global map corresponding to the sensor’s blind area is not 
erased.

3.5 � Cost maps

The global cost map is built based on the dynamic global 
map to plan a global optimal path to the goal. Around an 
obstacle on the dynamic global map, a prohibited area is 
built with respect to robot footprint size when the global 
cost map is created from the global map. The 3D shape of 
the robot is simplified into an inscribed circle of RI radius 
and a circumscribed circle RC radius in 2D projection for the 
purpose of computational efficiency. Then, we determine the 
cost of the cells of the global cost map using the two circles 

and the dynamic global map with a value between 0 and 1 
or NaN. We define a set D as a set of all cells with value 1, 
which means the cells of obstacles, on the dynamic global 
map. Let us define Di as a cell with its center Pi in the set D 
and Sj as a cell in the global cost map. For every position Pi 
of Di , we draw a circle CI of RI radius and a circle CC of RC 
radius whose centers are Pi on the global cost map. If Sj is 
overlapped with the circle CI , the cost of Sj is set as a maxi-
mum value 255 (the cost is defined as an integer value from 
0 to 255). If Sj is outside the circle CC , the cost of Sj is set 
to the minimum value 0. If there are some cells between the 
two circles, the cost of the cells increases linearly between 
the inscribed radius RI and the circumscribed radius RC . If 
Sj has several costs corresponding to different cells in D, 
the highest cost is set as the cost of the cell on the global 
cost map.

The local cost map in this study is a small size grid map 
around the robot. As shown in Fig. 2, the position of a mov-
ing obstacle is updated every T1 s on the dynamic global 
map from the input 2D point cloud data, and it also takes 
another T2 s to build the global cost map from the dynamic 
global map. It is hard to include the moving obstacle in the 
dynamic global map in real-time. Therefore, the robot uses 
the local cost map that is built every Δt s in a local area.

4 � Navigation

In this section, we describe the localization of the robot 
pose, the global and local path planner algorithm shown in 
Fig. 8, and the path following control to generate velocity 
commands to lead the robot to the given local path.

4.1 � Calculation of the robot pose

We have two ways, ICP matching and landmark matching, to 
generate the robot pose on the static global map.

For ICP matching, the real-time 3D point cloud is 
matched with the prior measured 3D point cloud map by 
ICP method. To avoid the incorrect result of ICP matching, 
we randomize the process by performing the ICP matching 
for each sampled particles, and then, the best ICP matching 
result is selected by updating the particle weight. The initial 
pose for the iteration is taken as position/orientation with a 
probability distribution of Gaussian. In the beginning, we 

Fig. 7   Blind area of the robot

Fig. 8   The structure of path planning[9]
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initialize N particles by sampling the pose randomly using 
the given distribution. Then, after the robot moves and 
receives the first point cloud data, a local 3D point cloud 
is built. Based on a pose of each particle and odometry of 
the robot, the ICP searches a robot for each particle pose by 
minimizing the difference between the local 3D point cloud 
and the prior measured 3D point cloud map. We obtain an 
error value as a result of ICP matching, it is regarded as the 
particle weight. The current robot pose is given by the best 
particle which has the lowest weight. Finally, the 2D poses 
of particles are copied to SLAM and the inner map of SLAM 
is refreshed as the static global map.

For the landmark matching, a robot saves the extracted 
landmarks’ features and poses in the database. In real-time 
processing, the robot uses a sensor to detect a landmark and 
carries out the matching of those landmarks’ features. When 
the robot detects a landmark around itself, a relative pose 
between the landmark and the robot is calculated. Then, a 
current robot pose is refreshed based on the relative pose 
from the landmark absolute pose.

We use IMU to correct the estimation errors of the robot 
direction by updating the importance weight w of parti-
cles. The Rao–Blackwellized Particle Filter has N parti-
cles. Each particle stores a different gaussian distribution 
of robot pose (mean vector s = [xs, ys,�s]

T and a variance 
matrix �s ) and an importance weight w. The data of IMU are 
described as �imu . Then, we update the importance weight as 
w = w ∗ N(�imu|�s,�s[3, 3]) , where the function N(�imu|�s 
�s[3, 3]) represents the probability density at the orientation 
�imu using orientation distribution �s and �s[3, 3] ( �s[3, 3] 
represents the element at 3rd row and 3rd column of the 
matrix �s).

4.2 � Global planner

The global planner generates a global path based on a global 
cost map. If we do not have a feasible path by considering 
only empty grids with 0 value, an unknown grid with NaN 
element is considered as an empty grid and an optimal path 
is calculated. The shortest path from the current robot pose 
to the goal pose is calculated by A* algorithm without con-
sidering the robot’s mobility. The global cost map is built 
from the dynamic global map explained in Sects. 3.4 and 
3.5. When the dynamic global map is updated, the global 
planner recalculates a new desired path. Although A* has a 
concern of efficiency, it is applicable to our system, because 
the calculation of the global path by A* algorithm is much 
faster than the generation of the global cost map.

4.3 � Local planner

The local planner is necessary to avoid moving obstacles 
and to compensate for the difference between a calculated 

dynamic global map at the last sampling time and the current 
environment. Because the size of the global map is much 
bigger than that of the local map, there is a big delay in 
constructing the global map (see Fig. 3). On the other hand, 
the local map is easily modified based on the real-time infor-
mation. It is suitable to plan a local path to avoid moving 
obstacles based on the current local map. Besides, the local 
planner can consider the limitation of the mobility of the 
robot by introducing the corresponding cost function.

The local planner generates a local path based on a local 
cost map, explained in Sect. 3.5, that the robot should fol-
low. We apply TEB local planner[15]. It simulates the robot 
motion and finds several feasible paths on the local map 
based on a cost function considering the current robot pose 
and the given global path. It computes the distance to the 
nearest obstacle, the error of the local path from the global 
path, error of the attitude of the robot from the desired one, 
velocity limit, and acceleration limit of the robot[15]. Fig-
ure 9 shows the simulation results for the generation of the 
global path on the local cost map in (a) and the local path 
in (b) in a dynamic environment. We can see that the local 
planner generates a feasible path to avoid both static and 
moving obstacles.

4.4 � Backtracking planner

The backtracking planner provides a recovery behavior when 
the planner cannot calculate any feasible path. When the 
environment is changed drastically, moving obstacles some-
times block the local path to the current goal. In this case, 
the local planner cannot find a feasible solution using the 
local map, then a backtracking path is built to move the robot 
backward. When the local planner falls into failure, the robot 
goes backward on its trajectory as the backtracking action. 
The recovery behavior is finished when the planner can find 

Fig. 9   Simulation results of generation of a feasible path to avoid 
moving obstacles by the local planner: an arrow represents an attitude 
of the robot. A broken line and a solid line are global path and local 
path, respectively. A black area represents the area where the robot 
cannot move in
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a new feasible path due to the change of the local map of the 
dynamic environment.

4.5 � Path following control

A path following control is designed as a point-to-point con-
trol in 2D map. In Fig. 10, the control purpose is to make the 
robot reach the current goal point pi from the current robot 
point pr . The logic to decide the current goal is as follows. 
The desired path based on the local map is given as a set of 
points. In the beginning, the nearest point on the desired path 
from the current robot position pr is set as the current goal 
pi . The next nearest point of pi on the path is set as the next 
goal pi+1 . If the distance from pr to pi is smaller than 0.1 m, 
the next goal pi+1 is set as the current goal pi in our experi-
ment unless the pi is the final point on the path.

In Fig. 10, r is the distance from the current robot position 
pr to the current goal pi , l is the distance from the robot to 
the nearest point of the obstacle, � is the angle between the 
robot moving direction and the direction from the robot to 
the current goal, � is the angle between ������⃗prpi (the direction 
from the robot to the current goal), and ���������⃗pipi+1 (the direction 
from current goal to the next goal). Let � be the current 
angular velocity of the robot. The reference of the transla-
tional velocity vref and that of the angular velocity �ref for 
the robot are given as follows:

where kv , kp , k�t
 , k� , and k� are positive coefficients.

The first term on the right side of the top of (3) has an 
effect to slow down the robot when it is close to the cur-
rent goal or the obstacle. The second term has an effect to 

(3)

⎧⎪⎨⎪⎩

vref = kv(1 − 0.9
kp

l + kp
)r − k𝜔t

abs(𝜔), if vref > 0

vref = 0, if vref < 0

(4)�ref = k�� +
k�

r + k�
�,

slow down the robot when it is rotating. The first term on 
the right-hand side of (4) leads the robot to the direction of 
the current goal pi . The second term has an effect that the 
robot faces to the next goal pi+1 when it comes close to the 
current goal pi.

If the next desired direction ���������⃗pipi+1 is opposite to the cur-
rent desired direction ������⃗prpi , � and r are modified as follows:

5 � Experiment

5.1 � Platform

Experiments in this paper are performed with a mobile 
wheeled robot, as shown in Fig. 11. It is a double-wheeled 
robot with a 70 kg payload and its maximum speed is 3 
(m/s). The size of the robot is W600×D500×H1050 mm and 
the total weight is 40 kg. It can go up and down a hill whose 
slope angle is less than 15 ( ◦ ) ( � = 15 ( ◦)). Each wheel has 
an encoder and we can measure the velocity. A 360 ( ◦ ) 
LiDAR sensor (VLP-16) is mounted at the center of the 
mobile base. A stereo camera ZED is attached in front of the 
mobile base to detect landmarks. An IMU sensor (LPMS-
CU2) is mounted on the robot to measure the attitude of 
the robot. The PC (Thinkpad P50 (Intel I7 2.7 GHz), 32 G) 

(5)

⎧⎪⎨⎪⎩

r = −r

𝛽 = 𝛽 + 𝜋

𝛼 = 𝛼 + 𝜋

, if ������⃗prpi ⋅ ���������⃗pipi+1 < 0

Fig. 10   Generation of a velocity command using a desired path: dots 
are the points on the desired path for a robot. Triangle is a footprint of 
the robot. A hatching area is an obstacle

Fig. 11   A mobile robot used in our experiments
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is mounted on the robot. In Eqs.(3) and (4), we set kv = 3 , 
kp = 0.6 , k�t

= 0.4 , k� = 1.5, and k� = 0.25.

5.2 � Conversion of real‑time 3D data into 2D

The purpose of the experiment is to demonstrate that the 
method introduced in Sect. 3.3 can recognize whether the 
points belong to obstacles or not in a 3D environment with 
two slopes.

The experiment field, shown in Fig. 12, consists of two 
slopes A  , B  on the ground and four objects 1 – 4  . The 
robot can climb the slope A  with a slope angle of 11◦ . On 
the other hand, the robot cannot climb up on the steep slope 
B  whose angle is 23◦ , because the robot’s climbing abil-
ity is 15◦ . The object 1  is the side edge of the slope A  . 
The object 2  is a low height obstacle on the gentle slope 
A  . The object 3  is a lower gate whose height is 85 cm. 
The object 4  is a higher gate whose height is 110 cm. The 
objects 1 2 3  are obstacle, while the bar of the object 4  
is not an obstacle for the robot whose height is 105 cm.

The result is shown in Fig. 13. By comparing Fig. 13a 
and b, the ground and the gentle slope A  were removed, 
and the steep slope B  and objects 1 – 4  were preserved. 
In Fig. 13c, it can be observed that the objects 1 - 3  were 
correctly preserved, and the bar of object 4  was removed 
as an obstacle considering the height of the robot.

5.3 � Positioning by landmarks

The purpose of the experiment is to demonstrate that the 
localization accuracy can be increased using landmark 
matching. We use AR cards as landmarks to initialize the 
robot pose and update the robot pose.

In the experiment, we compare localizing accuracy for 
four cases: (1) SLAM without a static global map and 
AR card; (2) SLAM without a static global map but with 
AR card; (3) SLAM with a static global map but without 
AR card; (4) SLAM with both static global map and AR 
card. In the beginning, we place the robot at the assigned 
position, facing to the wall, as shown in Fig. 14. The robot 
rotates 90 ◦ , and then, it drives forward 10 m. We have two 
AR cards with an unique number in the environment as 
landmarks. The size of each AR card is 24× 24 cm.

Experiments for the above four cases are carried out 
three times. The recorded maximum position errors are 
shown in Table  1. Using the landmark information, the 
errors for both with and without a static global map are 
decreased.

Fig. 12   Experiment field: A B  are slopes. 1 – 4  are objects

Fig. 13   Real-time 3D and 2D point cloud data: a 3D point cloud from 
a LiDAR, b 3D point cloud after removing the points corresponding 
to ground planes and slopes, and c 2D point cloud data by project-
ing the remaining 3D point cloud onto the local ground: A B  are 
slopes. 1 – 4  are objects

Fig. 14   Experimental setup for canceling of accumulated errors by 
detecting AR cards

Table 1   Experimental result of maximum error of each case

Case X (cm) Y (cm) Yaw ( ◦)

(1) No map, no AR cards 6 12 3.5
(2) No map, AR cards 2.5 2.7 2.8
(3) Map, no AR cards 2.5 3.1 2.7
(4) Map, AR cards 1.5 0.9 2.6
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5.4 � Indoor experiment

The purpose of the experiments is to demonstrate that the 
proposed navigation method can avoid different kinds of 
obstacles, the SLAM can update the dynamic global map 
based on the static global map, and the robot can accomplish 
self-localization in a dynamic environment.

The experiments are carried out in an indoor environ-
ment of a building of Kyoto Univ. The robot moves from 
the corridor into a room of our laboratory. The experiment 
field is about 20 m × 15 m. The sizes of the static global 
map, dynamic global map, and global cost map are set as 
200 m ×200 m each with a resolution of 0.05 m for the plant 
patrolling objective. Since the indoor environment for the 
experiment is small and the SLAM does not generate obvi-
ous accumulated errors, the localization using landmarks is 
not needed. The size of the local cost map is 5 m × 5 m with a 
resolution of 0.05 m. Considering the size of the maps (200 
m ×200 m), the parameters of the time-scale are set as T1 = 4 
s, T2 = 2 s, and Δt = 0.1 s. An initial pose, a static global 
map and a goal pose are given. In the corridor, we placed 
four kinds of obstacles: small bottles, chairs, slender pipes 
that block the robot, and the slender pipes whose height 
is more than the height of the robot, as shown in Fig. 15. 
Inside the laboratory, the environment is drastically changed 
in comparison with the given static global map by placing 
tables, chairs, and other things. Since free space inside the 
room is narrow, the robot has to avoid the suddenly observed 
obstacles in the blind area using the local planner.

It is observed that the robot detected all obstacles in 
the dynamic environment and avoided all of them. In 
the experiments, the robot built a map by SLAM and 
could reach the goal successfully, as shown in Fig. 16. 
In Fig. 16, black spots mean obstacles. Figure 16a illus-
trates the prior given static global map, Fig. 16b shows a 
global path based on a dynamic global map corresponding 

to the initialization of the robot pose at the start point, 
and Fig. 16c shows the final dynamic global map built by 
SLAM when the robot reached the final goal. By compar-
ing the prior given map shown in Fig. 16a and the final 
generated map shown in Fig. 16c, we can infer that the 
robot detected the changes of the environment, especially 
inside of the room and built a new map. Figure 16d shows 
a global path and a local path in the dramatically changed 
region. From this figure, we can find that the robot can 
avoid suddenly observed obstacles by the local planner in 
real time. Measured linear speed and travel length of the 
robot are shown in Fig. 17.

We measured the average calculation times. The calcula-
tion times of updating the global dynamic map, global cost 
map, and local cost map are 1.49 s ( < T1 ), 1.06 s ( < T2 ), and 
0.061 s ( < Δt ), respectively. The calculation times of global 
path planner (A*) and local path planner (TEB) are 0.82 s 
and 0.056 s, respectively. It can be seen that the calculation 
times are smaller than the parameters of the time-scale ( T1 , 
T2 , and Δt ), which means that the parameters of the time-
scale met the requests of the calculation time.

6 � Conclusion

We developed a navigation system for an autonomous 
mobile robot based on static global 3D environment data. 
We proposed four grid maps: static global map, dynamic 
global map, global cost map, and local cost map. We built a 
2D static global map from a prior given 3D point cloud map 
for the robot navigation. The global and local path planners 
are applied to obtain an optimal behavior of the robot in a 
dynamic environment based on the global and local cost 
maps. To demonstrate the effectiveness of the developed sys-
tem, indoor experiments are carried out. The experimental 
results show that the robot detects the objects on the slope, 
builds a dynamic map based on a static map, and localizes 
itself even in the case that the environment is drastically 
changed. The error of localization decreases when the robot 
detects the landmarks.

Although AR cards are used as the landmarks in our 
experiment, for application in the real environment, the 
landmarks can be replaced with other features which can 
be extracted from the prior 3D point cloud. And reconstruc-
tion of the real-time 3D environment using a real-time 3D 
point cloud from a sensor has not been accomplished yet. 
Finally, since we think that the difference of the travel dis-
tances between a slope of 15[deg] and flat ground is not so 
big, in our approach, we calculate the shortest path based 
on a 2D map. We do not consider the difference of the travel 

Fig. 15   Indoor environment field: multiple objects are prior unknown
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distance between 2D and 3D, and the calculated path might 
not be the shortest in 3D. One probable solution is to build 
another global grid map to describe the travel distance in 3D. 
These problems should be further investigated in the future.
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