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Abstract
This paper investigates the stability of underactuated bipedal walking incorporating telescopic-leg actuation. In human 
walking, knee joints of swing and support legs are bent and stretched. The telescopic legs mimic the motion of the center 
of mass of human legs via their telescopic motion during the stance phase. First, underactuated telescopic-legged biped 
robot models are introduced. Second, an output-following control law is applied to the linearized equation of motion of the 
robot, and the controlled robot’s equation is then specified as a linear time-varying system. The error transition equation is 
developed to evaluate the stability during the stance phase. Numerical calculations are performed to show the influences of 
leg telescopic motion on the stability.

Keywords Bipedal locomotion · Stability · Time-varying system · Telescopic legs

1 Introduction

Many researchers have investigated limit cycle walking, 
such as passive dynamic walking [1–3]. In limit cycle 
bipedal walking, when a robot starts to walking from ade-
quate initial conditions, robot’s states converge to that of 
steady-state walking, and hence, the walks are inherently 
stable. However, many limit cycle-walking methods are not 
robust against disturbances. Therefore, robust controllers are 
needed for biped robots to avoid falling down. To do so, we 
should evaluate stability of generated walking and control 
the motion of a biped robot based on its stability. As the first 
step to the goal, we aim to establish the method that evalu-
ates the stability of the steady walking in this paper.

In human walking, knee and elbow joints are often bent 
and stretched. These motions make the center of mass 
(COM) of legs and arms move up and down. Asano and 

Luo have mimicked these motion of a swing leg using a 
telescopic leg and proposed stable gait generation method 
[4]. Hanazawa et al. have focused on up and down motions 
of COM due to swing arms and achieved high-speed walking 
by controlling COM motion [5]. In the previous research, 
the influences of the up and down motions of COM on the 
walking speed and energy efficiency have been shown, but 
its stability has not been investigated.

To determine stability of limit cycle walking, some kinds 
of methods are proposed. Basin of attraction of passive 
dynamic walking is calculated [6], and gait sensitivity norm 
evaluates disturbance rejection ability [7]. Theoretical analy-
ses also performed for the limit cycle walking [8]. Asano [9, 
10] analytically derived the transition function of the state 
error from the linearized equation of motion of walkers.

This paper investigates the stability of underactuated 
bipedal walking incorporating telescopic-leg actuation using 
Asano’s methods [9, 10]. First, underactuated telescopic-
legged biped robot models are introduced and the linearized 
equation of motion is derived. Second, an output-following 
control law is applied to the linearized model, and the con-
trolled robot’s equation is then specified as a linear time-var-
ying system. This causes the difficulty of derivation of the 
transition matrix for the state error. We then use a method 
for approximate calculation to obtain the transition matrix, 
which can evaluate the stability of the stance phase. Our 
approach has the advantage that the scalar transition func-
tion for the state error can be uniquely determined, although 

This work was presented in part at the 2nd International 
Symposium on Swarm Behavior and Bio-Inspired Robotics, 
Kyoto, October 29–November 1, 2017.

 * Yuji Harata 
 y-harata@aitech.ac.jp

1 Aichi Institute of Technology, 1247, Yachigusa, Yakusa-cho, 
Toyota, Aichi 470-0392, Japan

2 Panasonic Smart Factory Solutions Co., Ltd., Osaka, Japan
3 Japan Advanced Institute of Science and Technology, 1-1, 

Asahidai, Nomi, Ishikawa 923-1292, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-018-0492-4&domain=pdf


586 Artificial Life and Robotics (2018) 23:585–592

1 3

numerical integral is partially used. Finally, we show the 
effect of swing-leg/support-leg telescopic motion on the 
stability.

2  Modeling and control

2.1  Model of robots

Figures 1 and 2 show biped robot models. The robots consist 
of two telescopic legs, support and swing legs, with concen-
trated mass m [kg] and the legs are connected on a hip joint. 
The legs have semicircular feet, whose radius is R [m]. A torso 
is replaced by a concentrated mass mH [kg] on the hip joint 
(total mass M ∶= 2m + mH [kg]). The distance between the 
leg’s mass and the edge of the leg is a [m]. The robots have 
actuators on the hip joints and their legs, and their input torque 
and forces are uH [Nm] and ubi [N] (i = p,w) , respectively. The 
actuator on the hip joint swings the swing leg and the actuators 

on the legs control their leg length bi [m] (i = p,w) , where bp 
and bw are the lengths from the hip joints to support-leg and 
swing-leg masses, respectively. When the swing or support leg 
is pumped, the support or swing leg is locked for their length 
to be constant, b [m]. Angular positions of the support and 
swing legs from the vertical axis are designated by �1 [rad] and 
�2 [rad], respectively.

Dynamics of the robot consists of the equation of motion 
during the stance phase and impact equation at heel strike. 
Since it has already shown that the heel strike always becomes 
stable in [9], in this paper, we focus on stability of the stance 
phase in biped robots with telescopic legs.

The equation of motion of the robots is given by

where x =
[
�1 �2 bi

]T is a generalized coordinate vector.
Next, we explain impact equation. A completely inelastic 

collision is assumed to occur at heel strike and the hip joint and 
telescopic-leg length are mechanically locked at heel strike, 
that is �H ∶= �1 − �2 = 2� [rad] and bi = b [m]. Then, angular 
velocities of the swing and support legs are identical, that is, 
�̇�
−
1
= �̇�

−
2
∶= �̇�

− , �̇�+
1
= �̇�

+
2
∶= �̇�

+ , where superscripts “−” and 
“ + ” represent states immediately before and after heel strike, 
respectively. In these assumptions, impact equation is given by

2.2  Linearized system and its control

The bookkeeping parameter � is introduced, and the unknown 
variables are assumed as

Expanding sin �j and cos �j in Eq. (1) into Maclaurin series, 
we can obtain Eq. (1) under the order assumption Eq. (3) 
within the accuracy of O(�) as

Let leg length bi and hip joint angle �H be control outputs. 
Then, output vector is given by

The second-order derivative of y with respect to time 
becomes

We assume that postures of the robots at heel strike are 
constant. Then, the controller to track desired trajectories 
yd(t) ∶=

[
�Hd(t) bid(t)

]T strictly are given by

(1)M(x)ẍ + h(x, ẋ) =

⎡
⎢⎢⎣

1 0

−1 0

0 1

⎤
⎥⎥⎦

�
uH
ubi

�
∶= Su,

(2)ẋ+ = Hẋ−.

(3)𝜃j, �̇�j, �̈�j, ḃi, b̈i ∈ O(𝜖) (j = 1, 2).

(4)M0(bi)ẍ + h0(x, ẋ) = Su.

(5)y = STx =
[
�H bi

]T
.

(6)ÿ = STẍ = STM−1
0

(
Su − h0

)
.

Fig. 1  Model of biped robot with telescopic swing leg

Fig. 2  Model of biped robot with telescopic support leg
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Substituting Eq. (7) into Eq. (4) and multiplying the result-
ing equation by M−1

0
 from the left side, we can obtain

The third row of Eq. (8) is rearranged as

If bi = bid(0) and ḃi = ḃid(0) are satisfied immediately after 
heel strike, the input (7) achieves bi = bid(t) . Note that time 
t is reset at every heel strike.

Subtracting the second row from the first row in Eq. (8), 
we can obtain

In the same way as the leg length, the input (7) achieves 
�H = �Hd(t).

2.3  Desired trajectories

2.3.1  Trajectory for leg length

The desired trajectory for the leg length, bi , is given by

where bl [m] is telescopic distance, t1 = t − td1 [s], td1 [s] is 
the starting time of telescopic motion, and Tset 1 [s] is the set-
tling time of the motion. Minus-plus sign of bl correspond 
to the swing-leg/support-leg telescopic motion. Coefficients 
cn(n = 0, 1,… , 8) are determined so that bid and the time 
derivatives satisfy the following initial, middle, and terminal 
conditions:

2.3.2  Trajectory for hip angle

The desired trajectory for the hip joint angle, �H , is given by

where t2 = t − td2 [s], td2 [s] is the starting time of swing-
ing a leg, Tset 2 [s] is the settling time of swing-leg motion, 

(7)u =
(
STM−1

0
S
)−1(

ÿd(t) + STM−1
0
h0.

)

(8)
ẍ +M−1

0

(
I − S

(
STM−1

0
S
)−1

STM−1
0

)
h0

= M−1
0
S
(
STM−1

0
S
)−1

ÿd(t).

(9)b̈1 = b̈1d(t).

(10)�̈�1 − �̈�2 = �̈�Hd(t).

(11)bid(t1) =

⎧⎪⎨⎪⎩
b ∓ bl

8∑
n=0

cnt
n
1

(0 ≤ t1 ≤ Tset1),

b (Tset1 < t1),

(12)
bid(0) = b, ḃid(0), b̈id(0) = 0,

bid(Tset1∕2) = b ∓ bl, ḃid(Tset 1∕2), b̈id(Tset1∕2) = 0,

bid(Tset1) = b, ḃid(Tset1), b̈id(Tset1) = 0.

(13)𝜃H d(t2) =

�
−2𝛼 +

∑5

n=0
dnt

n
2
(0 ≤ t2 ≤ Tset 2)

2𝛼 (Tset 2 < t2),

and 2� [rad] is the hip angle at heel strike. Coefficients 
dn(n = 0, 1, ..., 5) are determined so that �Hd and the time 
derivatives satisfy the following initial and terminal 
conditions:

2.4  Linear time‑varying system

The state vector X =
[
𝜃1 𝜃2 �̇�1 �̇�2

]T is introduced, and it is 
assumed that bl is much less than b. Substituting input (7) into 
Eq. (4), the first and second rows of the resulting equation can 
be rearranged as

where the above equation is linearly approximated for 
bl . Note that the third rows of the resulting equation is 
b̈i = b̈id(t) . The system represented by Eq. (15) is time-var-
ying. The matrix A(t) ∈ ℝ

4×4 is given by

where A2 is constant.

3  Error transition equation

In this section, error transition equation similar to reference 
[9] is derived to evaluate the stability during the stance phase.

3.1  Transition matrix

The system represented by Eq. (15) is time-varying and its 
solution can be obtained as

where �(t, �) ∈ ℝ
4×4 is transition matrix given by

Note that when A(t) = A2 , the transition matrix is given by

3.2  Derivation of error transition equation

The solutions of the system represented by Eq. (15) are dif-
ference depending on the values of td1 , td2 , Tset 1 + td1 and 

(14)
𝜃Hd(0) = −2𝛼, �̇�Hd(0) = 0, �̈�Hd(0) = 0,

𝜃Hd(Tset2) = 2𝛼, �̇�Hd(Tset2) = 0, �̈�Hd(Tset2) = 0.

(15)Ẋ = A(t)X + B(t)�̈�Hd(t),

(16)A(t) =

{
A1(t) (0 ≤ t1 ≤ Tset1),

A2 (Otherwise),

(17)X(t) = �(t, t0)X0 + ∫
t

t0

�(t, 𝜏)B(𝜏)�̈�Hd(𝜏)d𝜏,

(18)

�(t, t0) = I4 + ∫
t

t0

A(�1)d�1

+ ∫
t

t0

A(�1)∫
�1

t0

A(�2)d�2d�1 +⋯ .

(19)�2(t, Tset1) = eA2(t−Tset1).
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Tset 2 + td2 . However, error transition equations in all the 
cases have the same form, which can be derived by subtract-
ing steady state immediately before heel strike from that at the 
k + 1 th step as follows:

where Te = Tset 1 + td1 . State at the kth step Xk and the period 
Tk are defined as Xk = Xeq + �Xk and Tk = T∗ + �Tk , where 
T∗ and Xeq are step period and state of steady walking, 
respectively. Equation (20) is linearly approximated for �Tk 
and �X.

From the assumption that the posture at heel strike is con-
stant, multiplying p =

[
1 1 0 0

]
 from left side, we can obtain

and then

Note that the vector p is not uniquely determined. Substitut-
ing �Tk+1 into Eq. (20), we can obtain

It is assumed that the posture is constant and the hip joint 
angular velocity equals to zero at heel strike, and hence

Therefore, the state error vector �X±
k
 has following form:

and the relation

holds. Then, Eq. (23) can be rewritten as

The value of Q̄ represents error convergence property dur-
ing the stance phase. If the value of |Q̄| is less than one, the 

(20)
�X−

k+1
= eA2(T

∗−Te)�(Te, td1)e
A2td1�X+

k

+ A2X
−
eq
�Tk+1,

(21)

p�X−
k+1

= ��1 + ��2 = 0

= peA2(T
∗−Te)�(Te, td1)e

A2td1�X+
k

+ pA2X
−
eq
�Tk+1,

(22)�Tk+1 = −
peA2(T

∗−Te)�(Te, td1)e
A2td1

pA2X
−
eq

�X+
k
.

(23)

�X−
k+1

=

(
I4 −

A2X
−
eq
p

pA2X
−
eq

)
eA2(T

∗−Te)

×�(Te, td1)e
A2td1�X+

k

∶=Q�X+
k
,

𝛥X± =
[
𝛥𝜃1 𝛥𝜃2 𝛥�̇�

±
1
𝛥�̇�

±
2

]T
=
[
0 0 𝛥�̇�

±
1
𝛥�̇�

±
i

]T
.

(24)𝛥X±
k
= 2v𝛥�̇�±

k
, v ∶=

[
0 0 1∕2 1∕2

]T

(25)𝛥�̇�
±
k
= vT𝛥X±

k

(26)𝛥�̇�
−
(k+1)

= Q̄𝛥�̇�+
k
, Q̄ ∶= 2vTQv.

stance phase is stable in the sense that error from steady 
walking decreases during the stance phase. In addition, if 
the value of |Q̄| is smaller, the walking state converges to the 
steady one more quickly.

Our approach needs to numerically calculate step period 
and steady state immediately before heel strike. The method 
using Poincáre map also needs numerical calculation and 
eigenvalues determined by Poincáre map depend on the val-
ues of perturbation. Our approach, however, has the advan-
tage that the scalar transition function for the state error can 
be uniquely determined.

4  Numerical results

We evaluated the gait efficiency in terms of the stability of 
hybrid zero dynamics (the convergence speed, Q̄ ) and walk-
ing speed. Note that, we calculate and show the stability 
( ̄Q ) and the walking period only in the case that the stable 
walking is generated.

4.1  Approximation of transition matrix

The transition matrix Eq. (18) is approximately determined 
as follows:

where

In numerical simulations, we set N to 16, because �i(Te, td1) 
is almost converging to a constant value more than N = 16.

4.2  Typical walking

Figures 3 and 4 are the stick diagrams of steady walking 
with swing-leg and support-leg telescopic motion. The val-
ues of the parameters of the robots and desired trajectory are 
listed in Tables 1 and 2, and the hip joint angle at heel strike 
is set to 2� = �∕10 [rad].

It can be seen that introducing the starting time of the 
telescopic motion of the swing and support legs is contracted 
and expanded in the latter half. The generated walking 

(27)�(Tset, 0) = I4 +

N∑
i=1

�i(Tset, 0),

(28)�i(t, t0) = ∫
t

t0

dt1 ⋯∫
ti−1

t0

dtiA1(t1)⋯A1(ti).

Table 1  Physical parameters of 
biped robots

a = b 0.5 m R 0.3 m

m 5.0 kg m
H

10.0 kg
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motion has small step length, and hence, the effect of non-
linearity is comparatively small if the influences of the tel-
escopic motion on the nonlinearity are also small.

4.3  Effect of swing‑leg telescopic motion

Figure 5 plots Q̄ and the walking period Teq for three values 
of � with respect to bl for swing-leg telescopic motion. The 
values of the desired trajectory are listed in Table 2 except 
for bl and � . The hip joint angles at heel strike are set to 
2� = �∕12,�∕11 , and �∕10 [rad], which are represented by 
triangle, cross, and circle, respectively. It can be seen that 
Q̄ monotonically decreases and the step period increases as 
bl increases. The hip joint angles at heel strike are constant, 
and the walking speed is inversely proportional to the step 
period. Therefore, the walking speed decreases as the step 
period increases.

In [9, 10], it was shown that the deadbeat modes, where 
the state error is settled to zero through a single step, tends 
to appear in the case that the robot marginally overcomes the 
potential barrier. If the kinetic energy after heel strike is suf-
ficiently large, that is, the walking speed of the robot is large, 
the robot easily overcomes the potential barrier. These results 
mean that slower walking is more stable, and are consistent 
with the above results.

The effect of the telescopic motion on the mechanical 
energy of the robot is given by

(29)Ed = ∫
Tset1

td1

ubiḃidt.

Table 2  Parameters of desired 
trajectory

|b
l
| 0.1 m 2� �∕10 rad

T
set 1

0.2 s t
d1

0.3 s
T
set 2

0.5 s t
d2

0.0 s

Fig. 3  Stick diagrams of typical walking via swing-leg telescopic 
motion

Fig. 4  Stick diagrams of typical walking via support-leg telescopic 
motion

(a)

(b)

Fig. 5  Effect of b
l
 on Q̄ and step period in swing-leg telescopic 

motion
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We expected that the telescopic motions increase the 
mechanical energy of the robots like parametric excita-
tion walking [4], that is Ed > 0 . If Ed > 0 , as the telescopic 
distance bl increases the walking speed of the robot may 
increases, that is, the step period decreases. However, the 
step period increases as bl increases. It is considered that the 
motions decrease mechanical energy in this paper. There-
fore, the walking approaches to that the robot marginally 
overcomes the potential barrier as bl increases.

Figure  6 plots Q̄ and the walking period Teq , for three 
values of � with respect to Tset 1 . Here, Tset 1 + td1 = 0.5 [s]. It 
can be seen that Q̄ decreases until optimal value of Tset1 and 
then increases. At the optimal values of Tset1 , the step period 
is near maximum value. Similar to Fig. 5, slower walking 
is more stable.

Figure  7 plots Q̄ and the walking period Teq , for three 
values of � with respect to R. It can be seen that Q̄ and 
the step period monotonically decrease as R increases. In 
this case, faster walking is more stable, and this result is 
inconsistent with above results. This is because semicir-
cular feet stabilize bipedal locomotion. Especially, when 
the foot radius increases, the support leg may avoid falling 
down like a tumbler toy. The foot effects are greater than 
disturbance rejection during the stance phase, and hence, 
Q̄ decreases as R increases.

(a)

(b)

Fig. 6  Effect of T
set 1

 on Q̄ and step period in swing-leg telescopic 
motion

(a)

(b)

Fig. 7  Effect of R on Q̄ and step period in swing-leg telescopic 
motion
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4.4  Effect of support‑leg telescopic motion

Figure 8 plots Q̄ and walking period Teq for three values of � 
with respect to bl for support-leg telescopic motion. The val-
ues of the desired trajectory are listed in Table 2 except for 
bl and � . It can be seen that Q̄ monotonically decreases and 
the step period increases as bl increases. These results are 
similar to those in the swing-leg telescopic motion, although 
the influences of the support-leg motion are less than those 
of the swing-leg motion.

Figure 9 plots Q̄ and walking period Teq , for three values 
of � with respect to Tset 1 . Here, Q̄ decreases until optimal 
value of Tset1 and then increases. At the optimal values of 
Tset1 , the step period is near maximum value.

The results in Figs. 8 and 9 are similar to those in Figs. 5 
and 6. The influences of the desired trajectories of the 
support-leg motion on the stability are less than that of the 
swing-leg motion.

Figure  10 plots Q̄ and walking period Teq , for three val-
ues of � with respect to R. It can be seen that Q̄ decreases 
and turns to increase as R increases, while the step period 
monotonically decreases as R increases. Therefore, Q̄ has the 
optimal value. Due to the telescopic motion of the support 
leg, COM of the support leg comes from and goes inside 
of the center of the semicircular foot, and the stability of 
the support leg like a tumbler toy is fluctuated. In addition, 
in the case of the support-leg telescopic motion, the robot 
kicks the ground by pumping the support legs, and hence, 
the effect of the semicircular foot is more complicated than 

(a)

(b)

Fig. 8  Effect of b
l
 on Q̄ and step period in support-leg telescopic 

motion

(a)

(b)

Fig. 9  Effect of T
set 1

 on Q̄ and step period in support-leg telescopic 
motion



592 Artificial Life and Robotics (2018) 23:585–592

1 3

in the case of the swing-leg telescopic motion. In addition, 
the range of the foot radius of the biped with the swing-leg 
telescopic motion is wider than that with the support-leg 
telescopic motion. This means that the biped with the swing-
leg telescopic motion can walk for wider range of the foot 
radius in these parameters.

5  Conclusion

Stability of the biped robots with telescopic legs was inves-
tigated. The linearized equations of the robots were derived, 
and the error transition equations during the stance phase 
were uniquely determined. The results can be summarized 
as follows:

– Slower walking are more stable, because the error from 
steady walking gradually decreases during the stance 
phase.

– Walking using the swing-leg motion is more stable than 
that using the support-leg motion.

– The influences of the desired trajectories of the swing-leg 
motion on the stability is larger than that of the support-
leg motion.

When bl is large the linear approximation Eq. (15) is inac-
curate. In the future, we need to compare the difference 
between the linearized model and nonlinear model using 
numerical integration to verify the validity of the linear 
approximation. In addition, numerical calculations are 
needed to determine the stability of steady walks. In the 
future, high accurate and analytical method to determine the 
stability will be developed.
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