
Vol.:(0123456789)1 3

Artificial Life and Robotics (2019) 24:127–134 
https://doi.org/10.1007/s10015-018-0466-6

ORIGINAL ARTICLE

Autonomous task allocation by artificial evolution for robotic swarms 
in complex tasks

Yufei Wei1 · Motoaki Hiraga1 · Kazuhiro Ohkura1 · Zlatan Car2

Received: 13 May 2018 / Accepted: 14 August 2018 / Published online: 17 September 2018 
© ISAROB 2018

Abstract
Swarm robotics is a field in which multiple robots coordinate their collective behavior autonomously to accomplish a given 
task without any form of centralized control. In swarm robotics, task allocation refers to the behavior resulting in robots 
being dynamically distributed over different sub-tasks, which is often required for solving complex tasks. It has been well 
recognized that evolutionary robotics is a promising approach to the development of collective behaviors for robotic swarms. 
However, the artificial evolution often suffers from two issues—the bootstrapping problem and deception—especially when 
the underlying task is profoundly complex. In this study, we propose a two-step scheme consisting of task partitioning and 
autonomous task allocation to overcome these difficulties. We conduct computer simulation experiments where robotic 
swarms have to accomplish a complex collective foraging problem, and the results show that the proposed approach leads 
to perform more effectively than a conventional evolutionary robotics approach.

Keywords  Robotic swarm · Evolutionary robotics · Autonomous task allocation · Task partitioning

1  Introduction

Swarm robotics [1] studies how systems composed of large 
numbers of autonomous robots can be used to accomplish 
tasks that are beyond the capabilities of a single robot. The 
robots are relatively simple compared to the task they are 
dealing with, that their communication is usually local and 
sensory capabilities are limited. A robotic swarm operates in 
a distributed and self-organizing manner, that is, there is nei-
ther a leader dictating to the other robots, nor are the robots 
informed of global information. On the contrary, each robot 
follows simple rules and acts autonomously on the basis of 
local observation. Therefore, the emergence of collective 
behaviors can be regarded as a result of the numerous local 

interactions between the robots and between robots and the 
environment [2].

Designing control software for a robotic swarm is a chal-
lenging task. The difficulty resides in the fact that the rela-
tionship between simple local rules and complex swarm 
behaviors is indirect [3]. One approach to designing a robot 
controller is tuning a finite state machine by trial and error 
until expected collective behaviors are acquired [4]. How-
ever, the design process is guided only by experience and 
intuition, which requires expertise in the undertaken task. A 
promising alternative is evolutionary robotics [5], in which 
the design problem is transformed into an optimization 
problem to reduce human intervention [6]. In evolutionary 
robotics, the control software is conventionally represented 
by a single artificial neural network [7], in which synaptic 
weights are optimized through the use of artificial evolution.

Relative to these design methods, several collective 
behaviors have been developed, such as aggregation [8], 
chain formation [9], collective transport [10] and task alloca-
tion [11]. Among these behaviors, task allocation is the one 
resulting in robots being distributed into different subtasks 
while dealing with a complex task. The allocation changes 
dynamically based on local observations of robots, whose 
goal is to maximize the performance of the whole swarm [1]. 
Conventionally, evolutionary robotics often fails to develop 

 *	 Kazuhiro Ohkura 
	 kohkura@hiroshima‑u.ac.jp

	 Zlatan Car 
	 zlatan.car@uniri.hr

1	 Graduate School of Engineering, Hiroshima 
University, 1‑4‑1 Kagamiyama, Higashi‑Hiroshima, 
Hiroshima 739‑8527, Japan

2	 Faculty of Engineering, University of Rijeka, Vukovarska 58, 
51000 Rijeka, Croatia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-018-0466-6&domain=pdf


128	 Artificial Life and Robotics (2019) 24:127–134

1 3

useful autonomous task allocation mechanisms. The reason 
is that the artificial evolution is more likely to get stalled in 
complex tasks due to two issues: the bootstrapping problem 
[12] and deception [13]. The bootstrapping problem is often 
caused by the gap between the design objective and primi-
tive capabilities of the controller, which makes it a chal-
lenging task to devise fitness functions applying selective 
pressure towards better solutions in early generations, and 
therefore, prevents the evolutionary process from starting. 
Deception is due to the lack of gradient to global optimum, 
resulting in the evolution being trapped in local optima and 
generates uninteresting controllers.

On the other hand, task partitioning is the study of how a 
given task can be decomposed into simpler subtasks, which 
can be used to reduce the complexity of tasks as well as the 
difficulty of designing fitness functions. In this study, we 
propose a two-step scheme which consists of task partition-
ing and autonomous task allocation to address these issues. 
In the first step, the original task is partitioned into sim-
pler subtasks to reduce the complexity of designing fitness 
functions. In the second step, evolutionary approaches are 
adopted to synthesize a composite artificial neural network-
based controller to generate autonomous task allocation for 
the robotic swarm.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews previous studies relative to task allocation 
in robotic swarms, as well as studies that address the boot-
strapping problem and deception. In Sect. 3, we describe 
the proposed two-step scheme and how it can be combined 
with the evolutionary robotics approach. Section 4 explains 
the experimental setting. The performance comparison 
between the proposed approach and a conventional evolu-
tionary robotics approach is analyzed in Sect. 5. Finally, we 
conclude the paper and discuss our future work in Sect. 6.

2 � Related work

In swarm robotics, most task allocation mechanisms are 
developed for scenarios such as foraging [4], transporta-
tion [11] and object clustering [14], in which robots have 
to search for objects scattered in the environment and then 
perform further operations on these objects. Typically, task 
allocation is obtained by either thresholds or probabilistic 
methods. In threshold-based methods, robots change their 
activities when an observed variable exceeds the threshold. 
The observed variable can be either local, e.g., time spent 
on current activity [15], or global, e.g., energy level of the 
nest [16]. The value of thresholds may also change all the 
time based on the perception of the environment [17]. In 
probabilistic-based methods, the activities of robots are 
determined randomly with a probability value relative to 
internal states of robots or environment observations [18].

On the other hand, evolutionary robotics has the advan-
tage to synthesize robot control software given only a fitness 
function based on a high-level description of the task [19]. 
However, researchers have to overcome the bootstrapping 
problem and deception especially when the undertaken task 
is difficult. A typical approach to overcoming these issues is 
to promote diversity of individuals, so that the evolutionary 
process may avoid being deceived by maintaining multi-
ple paths in the search space. In [20], Lehman and Stanley 
proposed a behavior diversity approach—novelty search, 
in which the evolution always searches for novel behaviors 
without an explicit objective describing the quality of behav-
iors. Although a number of studies reported that novelty 
search is less affected by the bootstrapping problem and 
deception [21, 22], defining the behavior characterization 
that indicates the novelty of behaviors is still a challenging 
task.

An alternative solution is to assist the evolutionary pro-
cess directly with human knowledge based on experience. 
In this context, several approaches have been developed, 
including incremental evolution, behavioral decomposition, 
and human-in-the-loop [19]. The key idea of incremental 
evolution is to train the controller in a simplified task first, 
then increase the difficulty gradually until the final objective 
is accomplished. In [23], incremental evolution is applied to 
a highly integrated task where the robots have to search for 
light source while avoiding holes in the environment. The 
evolution is started in an environment with a simple layout 
and few holes, then more holes and different layouts are 
used as the evolution finds high-quality controllers for the 
current stage. Behavioral decomposition focuses on dividing 
the overall behavior of the robot into sub-behaviors which 
are trained sequentially or independently. Togelius [24] 
addressed a goal seeking task, in which three sub-behaviors: 
“conditional phototaxis”, “obstacle avoidance” and “non-
reactive learning” are evolved sequentially. In [25], the 
authors synthesized a hierarchical controller for a rescue task 
in a T-maze environment, where the overall behavior of the 
robot is divided into primitives and arbitrators. The primi-
tives are trained independently, representing basic capabili-
ties of the robot, such as “turn left”, “follow wall”, “turn 
right” and “exit the room”. Then upper arbitrators com-
bine these primitives and lower arbitrators to accomplish 
the given task. Differently, human-in-the-loop requires the 
designer to interact with the evolutionary process, guiding 
the evolution to avoid local optima. In [26], Celis et al. dem-
onstrated this method in a locomotion task with an obstacle, 
results show that the robot successfully avoided the obstacle 
with user demonstration and low-level control.



129Artificial Life and Robotics (2019) 24:127–134	

1 3

3 � The two‑step scheme

In this section, we propose a two-step scheme consisting of 
task partitioning and autonomous task allocation to over-
come the bootstrapping problem and deception, and describe 
how it can be combined with the evolutionary robotics 
approach to synthesize composite controller for robotic 
swarms.

3.1 � Task partitioning

Task partitioning is a topic highly related to task allocation, 
which studies how a given task can be decomposed into mul-
tiple subtasks. While task allocation studies the dynamics of 
robots over different subtasks, task partitioning focuses on 
the way of how the task itself is organized. Applying task 
partitioning to a complex task benefits the robotic swarm 
at both individual-level and collective-level. At individual-
level, the partitioned subtasks are easier for the robots to 
achieve, which also reduce the complexity of designing fit-
ness functions. At collective-level, decomposing the given 
task into simpler subtasks reduces the difficulty of manage-
ment, allowing the adoption of task allocation mechanisms 
to improve the performance of the whole swarm.

It is worthy to note the relation between behavior decom-
position and task partitioning. In behavior decomposition, 
the target of decomposition is the behavior of a single robot, 
that is, since the task is too difficult to develop a simplex 
controller exhibiting all required behaviors, one may divide 
and achieve these individual-level behaviors separately. 
However, in most cases of swarm robotics, the relation-
ship between individual-level behaviors and the resulting 
collective-level behavior is not straightforward. By con-
trast, task partitioning works on the task itself rather than 
robots, in which the designer performs the decomposition 
given only task description. Task partitioning and behavior 
decomposition are not exclusive alternatives, that behavior 
decomposition can be applied to the robots while executing 
partitioned tasks.

Conventionally, task partitioning is conducted by a 
human designer based on his expertise [11, 25]. Although 
progress on the management of partition [27] and automatic 
task partitioning [28] has been reported, the results are con-
fined to specific tasks, and a generalized guideline for task 
partitioning is still missing. In this study, we perform task 
partitioning manually in a recursive and hierarchical manner, 
where the given task is divided into subtasks which can be 
organized as a tree-like graph of which the root node repre-
sents the original task, the internal nodes are intermediate 
subtasks that can be further divided, and the leaf nodes stand 
for the simplest subtasks that should be solved directly.

3.2 � Autonomous task allocation

To accomplish the given task, a robot controller that gen-
erates autonomous task allocation behavior over the parti-
tioned subtasks is required. In this work, we propose a com-
posite controller architecture in which sub-controllers are 
organized similarly to the subtasks, where the sub-controller 
on the top selects and activates one of its lower sub-con-
troller recursively until it reaches a leaf node sub-controller 
which takes control of the robot. Therefore, the sub-control-
lers can be divided into two types: sub-controllers in the root 
node and internal nodes act as “arbitrator”, deciding which 
subtask to perform; leaf node sub-controllers act as “primi-
tive”, controlling the robot to accomplish the corresponding 
subtask with the others cooperatively.

The development of the controller follows a bottom-up 
procedure, in which related sub-controllers in lower level 
must be evolved first before developing an upper sub-con-
troller. This process is repeated until the root node sub-con-
troller is obtained. Importantly, task partitioning reduces the 
interference between design objectives of the partitioned 
tasks, allowing the designer to develop sub-controllers with 
different fitness functions.

4 � Experiments

In this section, the proposed approach is examined in a 
complex variation of a typical collective foraging problem.1 
We also perform comparison experiments with different fit-
ness function settings, in which a conventional evolutionary 
robotics approach is adopted.

4.1 � A complex collective foraging problem

To demonstrate the effectiveness, the proposed approach is 
applied to a complex collective foraging problem in which 
robots have to search the field for resources and transport 
them back to the nest as many as possible. Figure 1 shows 
the experiment environment, which contains three areas: 
the nest, the resource field, and the decomposition area. 
Resources of two types can be found on the field: individual 
resource and resource package. An individual resource is 
light enough to be transported back to the nest by a single 
robot. By contrast, each resource package contains seven 
individual resources, which is so heavy that the cooperation 
among robots is required to move it. Furthermore, resource 
packages cannot be transported to the nest directly due to 
the barriers at the nest entrance. Instead, these resource 

1  All experiments are conducted with an open-source 2D physics 
engine—Box2D, http://box2d​.org.

http://box2d.org


130	 Artificial Life and Robotics (2019) 24:127–134

1 3

packages should be moved to the decomposition area first, in 
which they will be unpacked into seven individual resources 
automatically. At the beginning of the task, there are thirty 
robots placed in the nest with random position and direc-
tion. Ten individual resources and five resource packages 
are randomly located in the resource field.

The specification of robots is as shown in Fig. 2. Each 
robot is composed of an Omni-camera, eight IR sensors, a 
gripper, two motors and a composite artificial neural net-
work-based controller. The range of the Omni-camera is set 
to 8 m, gathering information in its sight, including (1) the 
number of robots, individual resources and resource pack-
ages, and (2) the distance and direction of the nearest robot, 
the nearest individual resource, and the nearest resource 
package. The robots are also informed of the direction of the 
nest and the decomposition area. IR sensors are set to detect 
the distance between the robot and other objects within 2 m 
in eight directions. The gripper is a pre-programmed compo-
nent, which can be turned on to catch an individual resource 
in front of it, or turned off to drop the catching resource. The 
max speed of two motors is limited to 5 m/s.

4.2 � Experimental setting

To synthesize the composite robot controller, we perform 
task partitioning in the first step. As discussed in the last 
section, resources of two types exist and need to be operated 
separately. Considering the fact that the range of sensory 

components of the robots is limited compared with the size 
of the field, robots also have to explore the environment. 
Therefore, we divide the complex collective foraging prob-
lem into three subtasks: exploration, decomposition, and 
transportation. The partitioned subtasks and the correspond-
ing robot controller architecture are as shown in Fig. 3.

In the second step, we develop sub-controllers for the 
partitioned subtasks first and then combine these sub-con-
trollers together by evolving the autonomous task alloca-
tion sub-controller in the upper layer. All sub-controllers 
are trained in the same environment as shown in Fig. 1, and 
are represented by typical three-layered artificial neural net-
works of which the hidden layer is recurrent (see Fig. 4). The 
details of the development of sub-controllers are described 
as below.

Exploration Since the experiment field is large compared 
with the range of sensory components, the robots have to 
explore the field for resources collectively. Additionally, to 
mitigate the congestion in the environment while performing 
exploration, the robots should also be capable of avoiding 
other objects. The inputs of the sub-controller include the 
distance information from eight IR sensors, as well as the 
distance and direction of the nearest robot. The hidden layer 
has ten nodes (the same setting is adopted for the decompo-
sition, transportation, and autonomous task allocation sub-
controller). The outputs control two motors of the robot.

The sub-controller gets reward proportionated to the cov-
erage rate of the robots in the field, and is punished if the 

Fig. 1   A complex collective foraging problem

Fig. 2   Specification of the robots

Fig. 3   Partitioned subtasks (blue part) and robot controller (orange 
part). (Color figure online)

Fig. 4   Artificial neural network architecture, which is adopted for all 
sub-controllers



131Artificial Life and Robotics (2019) 24:127–134	

1 3

robots collide with other objects. To calculate the coverage 
rate, we randomly sample 100 positions in the field at each 
time-step and count how many positions are in at least one 
robot’s sight. The fitness function is defined as Eq. (1):

where Ps is the number of positions covered by the robots in 
the sth time-step, M denotes the max time-step of the simula-
tion, and C is the number of collisions during the simulation.

Decomposition Due to the existence of the barriers, the 
robots have to cooperatively move the resource packages to 
the decomposition area first to unpack them. Since we want 
to concentrate on the development of behaviors related to the 
decomposition subtask, the robots are set to work in the fol-
lowing manner: activates the decomposition sub-controller 
if there is at least one resource package in the sight of the 
robot, otherwise performs exploration using the sub-con-
troller obtained in the last section. The inputs consist of the 
distance information from eight IR sensors, the direction of 
the decomposition area, and the distance and direction of the 
nearest resource package and the nearest robot. Similarly, the 
outputs of the sub-controller control the two motors.

Equation (2) shows the fitness function which rewards 
the sub-controller for moving resource packages towards the 
decomposition area. Additionally, there is a bonus encour-
aging the robots to achieve the subtask as fast as possible.

where Dj
rp is the distance shortened between the jth resource 

package and the decomposition area, and R is the remaining 
time-steps after all resource packages are unpacked.

Transportation An individual resource is light enough for 
a single robot to transport to the nest. As with the develop-
ment of the decomposition sub-controller, the robots per-
form exploration if no individual resource can be observed, 
and switch to train the transportation behavior after they find 
an individual resource. The gripper of the robot is turned 
on only when performing this subtask. The inputs of the 
sub-controller include the distance information from eight 
IR sensors, the direction of the nest, and the distance and 
direction of the nearest individual resource, as well as the 
status of the gripper (catching an individual resource or not). 
The outputs control the two motors.

The evaluation of the sub-controller is based on the dis-
tance reduced between individual resources and the nest. 
The sub-controller will also get a bonus proportionated to 
the remaining time-steps after the subtask is accomplished. 
The fitness function is illustrated in Eq. (3).

(1)Fex =

∑

Ps

M
− C,

(2)Fde =
∑

Dj
rp
+ R,

(3)Ftr =
∑

Di
ir
+ R,

where Di
ir
 is the distance reduced between the ith individual 

resource and the nest, and R is the time-steps left when no 
individual resource exists in the field.

Autonomous task allocation After the sub-controllers 
above have been evolved, we combine them together by 
evolving the autonomous task allocation sub-control-
ler. The sub-controller takes the number of individual 
resources, resource packages and robots in the range of 
the Omni-camera, and its outputs in the last time-step as 
inputs. The outputs indicate the “necessity” of perform-
ing each subtask, and the sub-controller corresponding to 
the subtask with the highest output is activated and takes 
control of the robot at each time-step.

To examine the evolvability, we perform two experi-
ments with different fitness function settings. In the first 
experiment, we concentrate on the original objective, 
where the sub-controller is only rewarded for transport-
ing individual resources to the nest. By contrast, the sub-
controller is also rewarded for exploring the field and for 
decomposing resource packages in the second experiment 
to help bootstrap the artificial evolution. Equations (4) and 
(5) show the fitness functions.

where 
∑

Di
ir
 is the reward for achieving the original objec-

tive—transporting individual resources to the nest. 
∑

Ps∕M 
and 

∑

D
j
rp are bootstrapping rewards for exploring the field 

and decomposing resource packages, respectively. The 
meaning of each notation is as described in the previous 
sections.

4.3 � Comparison experiments

To make a comparison, we also perform experiments 
in which a conventional evolutionary robotics approach 
is adopted, where the controllers are based on a single 
artificial neural network. We develop robot controllers 
of two types, namely SingleA and SingleB. Both types 
adopt the architecture illustrated in Fig. 4, with the same 
inputs including all inputs used in the previous sections. 
The hidden layers of SingleA and SingleB have 20 nodes. 
The outputs of SingleA only control the two motors, and 
the gripper is set to be turned on all the time. In SingleB, 
the two motors and the gripper are all controlled by the 
outputs. For each type, we perform two experiments with 
Eqs. (4) and (5).

(4)F1 =
∑

Di
ir

(5)F2 =
�

Di
ir
+ 0.1 ⋅

∑

Ps

M
+ 0.1 ⋅

�

Dj
rp
,



132	 Artificial Life and Robotics (2019) 24:127–134

1 3

4.4 � Evolutionary algorithm settings

Considering the fact that synaptic weights of artificial neural 
networks are represented by real-value vectors, the (�, �) evo-
lution strategy [29] is adopted. Taking into account the fact 
that the single artificial neural network controllers approxi-
mately have four times as many weights as the sub-controllers 
have, we evolved SingleA and SingleB controllers with four 
times larger population size. Table 1 illustrates the parameter 
settings, where the proposed approach employ Set 1 and the 
conventional evolutionary robotics approach adopt Set 2. Each 
candidate sub-controller (or controller) is evaluated with the 
average of five simulation runs because the task difficulty 
might be greatly changed by the randomly allocated resources. 
The simulation lasts for 3000 time-steps (of length 0.02 s each, 
henceforth) for the exploration, decomposition and transporta-
tion sub-controllers, and 6000 time-steps for the autonomous 
task allocation sub-controller and the controllers in the com-
parison experiments.

5 � Results and discussion

The left part of Fig. 5 shows the fitness trajectories of the 
single artificial neural network controllers (the conventional 
approach) and autonomous task allocation sub-controllers 
(the proposed approach). As it can be observed in the figure, 
the proposed approach achieved much higher fitness than 
the conventional evolutionary robotics approach. All experi-
ments of the conventional evolutionary robotics approach 
reached lower fitness plateaus within 150 generations, which 
can be considered that they were trapped in local optima. 
Additionally, as the fitness trajectories of the proposed 
approach show, compared to the fitness function concen-
trating on the final objective (see F1 ), adding a bootstrapping 
part (see F2 ) helped the fitness to grow smoothly and achieve 
the fitness plateau with fewer generations. It is worthy to 
note that the weight of the bootstrapping part in F2 was 
selected through preliminary experiments, and we believe 
that better results can be obtained by careful fine-tuning.

Since the experiments had different fitness scale, we 
examined the performance quantitatively in terms of the 
number of individual resources collected and resource 
packages unpacked. As it can be seen in the middle and 
right part of Fig. 5, all controllers developed by the con-
ventional evolutionary robotics approach obtained similar 
results where nearly ten individual resources were collected 
and no resource package was unpacked, which implies that 
the conventional evolutionary robotics approach failed to 
develop behaviors decomposing the resource packages. On 
the contrary, the composite controllers developed by the 
proposed approach with F1/F2 collected 22.96/25.64 indi-
vidual resources, and unpacked 2.32/2.62 resource packages 
in average, respectively.

Table 1   Parameters for the (�, �) evolution strategy

Parameter Set 1 Set 2

Parent � 15 60
Offspring � 100 400
Max generation 500
Synaptic weight ∈ [− 1.0, 1.0]
Mutation step size ∈ [0.0001, 0.2]
Initial mutation step size 0.05
Trials 10

Fig. 5   Left: the fitness trajectories of all experiments, where each tra-
jectory is the average of all ten trials. Composite denotes the compos-
ite artificial neural network-based controllers developed by the pro-
posed approach. SingleA and SingleB are the single artificial neural 
network-based controllers obtained by the conventional evolutionary 
robotics approach. F

1

 and F
2

 denote the fitness function used during 

the artificial evolution. Middle and right: performance comparison 
between the proposed approach and the conventional evolutionary 
robotics approach, in terms of individual resources collected (middle) 
and resource packages unpacked (right), where each data point repre-
sents the result of the best controller of each trial



133Artificial Life and Robotics (2019) 24:127–134	

1 3

In our approach, task partitioning is adopted to reduce 
the difficulty of designing fitness functions. Figure 6 shows 
the fitness trajectories of the partitioned subtasks. As it 
can be observed in the graph, the fitness in the exploration 
and the transportation subtasks grew rapidly in the early 
stage and achieved the fitness plateau within 300 genera-
tions. The fitness in the decomposition subtask grew slow 
but smoothly and finally achieved the fitness plateau in the 
last 50 generations, which implies that the decomposition 
subtask was relatively difficult than the other subtasks for 
the artificial evolution. Additionally, considering the fact 
that all trials in each subtask produced similar solutions 

(in terms of fitness), it can be said that the fitness functions 
successfully built gradient to functional solutions.

Figure 7 shows the simulation snapshots of the best 
controller developed by the proposed approach. It can 
be clearly observed that an autonomous task allocation 
mechanism over the partitioned subtasks was acquired 
successfully.

Fig. 6   Trajectories of the fitness in each trial of the partitioned subtasks

Fig. 7   Simulation snapshots of the best controller developed by the 
proposed approach. The color of the robot indicates whether it is 
performing the exploration subtask (blue), the decomposition sub-

task (red), or the transportation subtask (green). a 9.6  s/120.0  s, b 
26.8 s/120.0 s, c 52.2 s/120.0 s, d 70.1 s/120.0 s, e 104.2 s/120.0 s, f 
118.4 s/120.0 s. (Color figure online)



134	 Artificial Life and Robotics (2019) 24:127–134

1 3

6 � Conclusion

In this study, we proposed a two-step scheme consisting of 
task partitioning and autonomous task allocation to address 
the bootstrap problem and deception. The proposed approach 
was demonstrated in a complex collective foraging problem 
by means of computer simulation. The given task was par-
titioned into three subtasks, and we evolved three sub-con-
trollers to solve them, respectively, then the sub-controllers 
were combined together by evolving the autonomous task 
allocation sub-controller. We also performed comparison 
experiments in which a conventional evolutionary robotics 
approach is adopted, and the results show that the proposed 
approach leads to perform more effectively.

As future scope, we plan to examine the scalability and 
flexibility of the proposed method in more complex tasks 
and analyze the evolutionary acquisition of the autonomous 
task allocation. We are also interested in developing tech-
niques enabling automatic task partitioning.

References

	 1.	 Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm 
robotics: a review from the swarm engineering perspective. 
Swarm Intell 7(1):1–41

	 2.	 Şahin E (2004) Swarm robotics: from sources of inspiration to 
domains of application. International workshop on swarm robot-
ics. Springer, Berlin, Heidelberg, pp 10–20

	 3.	 Trianni V, Nolfi S, Dorigo M (2008) Evolution, self-organization 
and swarm robotics. In: Blum C, Merkle D (eds) Swarm intel-
ligence. Springer, Berlin, pp 1–41

	 4.	 Liu W, Winfield A (2010) Modelling and optimisation of 
adaptive foraging in swarm robotic systems. Int J Robot Res 
29(14):1743–1760

	 5.	 Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, 
intelligence, and technology of self-organizing machines. MIT 
Press, Cambridge

	 6.	 Francesca G, Birattari M (2016) Automatic design of robot 
swarms: achievements and challenges. Front Robot AI 3:29

	 7.	 Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from 
architectures to learning. Evol Intell 1(1):47–62

	 8.	 Soysal O, Şahin E (2005) Probabilistic aggregation strategies in 
swarm robotic systems. In: Proceedings of the 2005 IEEE swarm 
intelligence symposium, pp 325–332

	 9.	 Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot 
swarm. Swarm Intell 2(1):1–23

	10.	 Groß R, Dorigo M (2009) Towards group transport by swarms of 
robots. Int J Bio-Inspired Comput 1(1–2):1–13

	11.	 Pini G, Brutschy A, Frison M, Roli A, Dorigo M, Birattari M 
(2011) Task partitioning in swarms of robots: an adaptive method 
for strategy selection. Swarm Intell 5(3–4):283–304

	12.	 Gomez F, Miikkulainen R (1997) Incremental evolution of com-
plex general behavior. Adapt Behav 5(3–4):317–342

	13.	 Whitley LD (1991) Fundamental principles of deception in 
genetic search. Found Genet Algorithms 1:221–241

	14.	 Agassounon W, Martinoli A, Goodman R (2001) A scalable, dis-
tributed algorithm for allocating workers in embedded systems. 
IEEE Int Conf Syst Man Cybern 5:3367–3373

	15.	 Parker LE (1998) ALLIANCE: an architecture for fault tolerant 
multirobot cooperation. IEEE Trans Robot Autom 14(2):220–240

	16.	 Krieger MJ, Billeter JB (2000) The call of duty: self-organised 
task allocation in a population of up to twelve mobile robots. 
Robot Auton Syst 30(1–2):65–84

	17.	 Agassounon W, Martinoli A (2002) Efficiency and robustness of 
threshold-based distributed allocation algorithms in multi-agent 
systems. In: Proceedings of the first international joint confer-
ence on autonomous agents and multiagent systems: part 3. ACM, 
Bologna, pp 1090–1097

	18.	 Brutschy A, Pini G, Pinciroli C, Birattari M, Dorigo M (2014) 
Self-organized task allocation to sequentially interdependent tasks 
in swarm robotics. Auton Agents Multi-agent Syst 28(1):101–125

	19.	 Silva F, Duarte M, Correia L, Oliveriram SM, Christensen 
AL (2016) Open issues in evolutionary robotics. Evol Comput 
24(2):205–236

	20.	 Lehman J, Stanley KO (2011) Abandoning objectives: evolution 
through the search for novelty alone. Evol Comput 19(2):189–223

	21.	 Lehman J, Stanley KO, Miikkulainen R (2013) Effective diver-
sity maintenance in deceptive domains. In: Proceedings of the 
15th annual conference on genetic and evolutionary computation. 
ACM, pp 215–222

	22.	 Lehman J, Miikkulainen R (2014) Overcoming deception in evo-
lution of cognitive behaviors. In: Proceedings of the 2014 annual 
conference on genetic and evolutionary computation (GECCO 
’14). ACM, pp 185–192

	23.	 Christensen AL, Dorigo M (2006) Incremental evolution of robot 
controllers for a highly integrated task. In: International confer-
ence on simulation of adaptive behavior, pp 473–484

	24.	 Togelius J (2004) Evolution of a subsumption architecture neuro-
controller. J Intell Fuzzy Syst 15(1):15–20

	25.	 Duarte M, Oliveira SM, Christensen AL (2015) Evolution of 
hybrid robotic controllers for complex tasks. J Intell Robot Syst 
78(3–4):463–484

	26.	 Celis S, Hornby G.S, Bongard J (2013) Avoiding local optima 
with user demonstrations and low-level control. In: Proceedings 
of the IEEE congress on evolutionary computation, pp 3403–3410

	27.	 Von HE (1990) Task partitioning: an innovation process variable. 
Res Policy 19(5):407–418

	28.	 Pini G, Brutschy A, Pinciroli C, Dorigo M, Birattari M (2013) 
Autonomous task partitioning in robot foraging: an approach 
based on cost estimation. Adapt Behav 21(2):118–136

	29.	 Beyer HG, Schwefel HP (2002) Evolution strategies: a compre-
hensive introduction. Nat Comput 1(1):3–52


	Autonomous task allocation by artificial evolution for robotic swarms in complex tasks
	Abstract
	1 Introduction
	2 Related work
	3 The two-step scheme
	3.1 Task partitioning
	3.2 Autonomous task allocation

	4 Experiments
	4.1 A complex collective foraging problem
	4.2 Experimental setting
	4.3 Comparison experiments
	4.4 Evolutionary algorithm settings

	5 Results and discussion
	6 Conclusion
	References


