
Vol:.(1234567890)

Artificial Life and Robotics (2018) 23:428–433
https://doi.org/10.1007/s10015-018-0432-3

1 3

ORIGINAL ARTICLE

Mission planning of iOS application for a quadrotor UAV

Zeming Lu1 · Fusaomi Nagata1 · Keigo Watanabe2

Received: 4 February 2018 / Accepted: 26 March 2018 / Published online: 5 April 2018
© ISAROB 2018

Abstract
Development of civilian UAV (unmanned aerial vehicle) applications has become possible with the progress of electronics
and information technologies. In addition, smartphones have rapidly gained popularity and become very important due to
the simple operability and mobility. Under such a background, there is a need to have an easy and flexible way to control
a UAV using such a smartphone. The authors already developed basic handlers to enable an operator to remotely control a
quadrotor and monitor its surroundings using an iOS device. The basic handlers were implemented for obtaining compass
information, controlling a gimbal, autopilot function for return. In this paper, following and circling around functions while
gazing a moving object are first developed. Then, another promising function called the mission planning is additionally
designed and implemented to allow the quadrotor to execute a self-flight task using global positioning system (GPS) infor-
mation. As a result, the iOS application enables the quadrotor to achieve complex tasks. The functionality of the developed
software is evaluated through experiments using a quadrotor and an iOS device.

Keywords Unmanned aerial vehicle · Quadrotor · iOS · iPhone · Remote control · Following mode · Circling around mode ·
GPS

1 Introduction

This paper is centered on the proposal of an original quadro-
tor UAV controller design based on widely spread personal
smartphones. In recent years, if a UAV is operated through
wireless communication, a PC is generally used for control-
ling it [1–3]. Smartphones have rapidly gained popularity
and become very important due to the simple operability and
mobility, and hence the flexibility and ease of use to control
a UAV will be provided with portable technologies such as
iPhone. It is also expected that the smartphone will enable
us to get real-time information from various kinds of sensors
built in a quadrotor. However, at the present stage, it seems
that actual applications using smartphones are not many.

In our research, to cope with the need, a quadrotor UAV
equipped with multiple monochrome binocular cameras,
ultrasonic distance sensors and a RGB camera was first
considered as a controlled object. Then, a basic system was
developed to monitor the surrounding environment while
remotely controlling the quadrotor using an iOS device. iOS
formerly means iPhone OS which is a mobile operating sys-
tem created and developed by Apple Inc. Basic handlers for
obtaining compass information, controlling a gimbal, auto-
pilot function for return were already implemented [4–6].

In this paper, following and circling around functions
while gazing a moving object are first developed [7, 8].
Then, another promising function called the mission plan-
ning is additionally designed and implemented to allow the
quadrotor to execute a self-flight task using GPS informa-
tion. As a result, the iOS application enables the quadrotor to
achieve complex tasks. The functionalities of the programs
are evaluated through the software development and actual
experiments using a quadrotor and an iOS device.

This work was presented in part at the 23rd International
Symposium on Artificial Life and Robotics, Beppu, Oita, January
18–20, 2018.

 * Fusaomi Nagata
 nagata@rs.tusy.ac.jp

1 Graduate School of Science and Technology, Tokyo
University of Science, Yamaguchi, 1-1-1 Daigaku-Dori,
Sanyo-Onoda 756-0884, Japan

2 Okayama University, Okayama, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-018-0432-3&domain=pdf

429Artificial Life and Robotics (2018) 23:428–433

1 3

2 Experimental system

2.1 Hardware of quadrotor

Figure 1 shows the overview of hardware structure of
the quadrotor system. The main body is a quadrotor plat-
form (Hardware name: Matrice 100) provided by DJI Co.,
Ltd., in which a CPU controls four DC motors through
electronic speed control (ESC) port to drive four rotors.
A GPS, compass, and micro-inertial measurement unit
(MIMU) are also equipped. The MIMU can measure
angles, their velocities, and accelerations concerning the
attitude of the quadrotor.

Besides these, an onboard embedded system, an RGB
camera fixed to a gimbal, and a vision system called guid-
ance are mounted on the main body. The embedded system
allows to handle flight control, vehicle telemetry, camera,
and gimbal control. The flight control functions include,
e.g., real-time attitude control, velocity control, and posi-
tion control. The embedded system makes state informa-
tion available in real time, e.g., inertia, attitude, heading,
velocity, position, battery-remaining capacity sensors and
a barometric pressure gauge. The height of the quadro-
tor is estimated from the value of the pressure gauge. In
addition, the vision system is composed of five ultrasonic
distance sensors and ten monochrome cameras. Figure 2
shows the quadrotor’s overview used in this study. Table 1
tabulates the main specifications of the quadrotor.

2.2 Software development environment

Figure 3 presents the software development environment
that constitutes three software development kits (SDKs).
The mobile SDK for Xcode on macOS allows us to build
a customized mobile application for iOS device [9]. In

addition, the onboard embedded system (Windows OS)
mounted on the quadrotor can monitor and control the
flight behavior of the body using API functions included
in DJI onboard SDK for Windows while utilizing the built-
in intelligent navigation (IN) mode to create autonomous
flight paths and maneuvers. The IN mode is built in the
board on the quadrotor. When an iOS device is not availa-
ble, the operator can manually control the quadrotor using

Fig. 1 Hardware block diagram and SDKs of the quadrotor system

Fig. 2 Overview of the quadrotor used in experiment

Table 1 The main specifications of the quadrotor

Items Specifications

Diagonal wheelbase 650 mm
Weight 2355 g
Max. takeoff weight 3600 g
Max. speed of ascent 5 m/s
Max. speed of descent 4 m/s
Max. wind resistance 10 m/s
Max. speed 22 m/s
Hovering time 22 min
Operating temperature − 10 to 40 ◦C
Operating frequency 922.7–927.7 MHz (Japan)
Transmission distance 3.5 km

Fig. 3 Three SDKs provided by DJI and their software development
environment

430 Artificial Life and Robotics (2018) 23:428–433

1 3

a handy-sized controller called C1. The onboard embedded
system communicates with the DJI flight controller built
in the quadrotor via a direct serial connection (UART).
Furthermore, the DJI guidance SDK enables to customize
the application and extend to the functions using vision
and distance sensors according to the needs of developers.

Xcode is an integrated development environment (IDE)
containing a suite of software development tools for macOS,
iOS, WatchOS, and tvOS provided by Apple. Xcode uses
Model View Controller called MVC for development. The
MVC is a software architectural pattern for implementing a
user interface on Mac. It divides a given software applica-
tion into three interconnected parts, i.e., model, view, and
controller, so that users can view the status of the quadrotor
and give suitable commands to it.

One of the relative merits is that this application can
combine a quadrotor with a smartphone’s Internet access
capability so that the quadrotor can obtain more information
and data processing capability such as Apple map. In addi-
tion, the software development environment for iOS applica-
tions is technically open, so that it is easier for engineers to
develop, improve and extend the functions in each applica-
tion using the three SDKs shown in Figs. 1 and 3.

3 Developed software and experiment

3.1 Circling and following functions

It is difficult for an operator to manipulate the quadrotor
along a circular flight path, and it is more difficult to make
the quadrotor to keep gazing on a moving target. The con-
troller designed for the quadrotor has two function modes.
They are the circling mode and following mode as shown in
Figs. 4 and 5, respectively. The following and circling modes
are switchable. The following mode is set by default. In addi-
tion to the altitude, the radius in the circling mode and the
distance in the following mode can be set in the operating
interface of the application. iOS devices such as iPhone,

iPad and iPod have a GPS module, so that the quadrotor
can basically follow the positions in GPS data transmitted
from the mobile phone while retaining the distance. In the
circling mode, the quadrotor in real time calculates a circular
trajectory with the radius while centering the GPS position,
and tries to follow it.

Let us explain a little bit more in detail using an example.
In the circling mode, the quadrotor flies around the opera-
tor while retaining a constant radius and gazing on him,
in which the location information of the iPhone is used to
guide the quadrotor tracking the flight path. The positions of
the operator and the quadrotor are displayed on the iPhone
screen. The quadrotor can fly around the operator with a set
radius, e.g., 20 m, while facing the front direction to him
at all times. When the operator moves, the quadrotor also
can follow the movement. In this case, a camera mounted
under the quadrotor can automatically follow the operator
to accurately monitor him.

When the quadrotor is flying in a circling mode, the oper-
ator can always stop the mode and change to the following
mode using the iPhone. In the following mode, which is
set by default, the quadrotor follows the operator keeping a
constant distance. In this case also, the location information
of the iPhone is used. Figures 6 and 7 show the successful
experimental scenes of the circling and following modes.

In future work, some image recognition technology
should be implemented to the quadrotor to cope with the
automatic identification and tracking of the target without
using GPS information [10, 11].

3.2 Mission planning function

To enable the quadrotor to achieve more complex tasks
based on the above developed functions, a mission planning
function is further developed. In this function, the Apple
map available on iOS is used for an operator to input desired
task points. The desired task points are set in the map in
accordance with the operator’s planning, so that the quadro-
tor can automatically fly along the task points one by one.
First, the initial operation screen is displayed as shown in

Fig. 4 In circling mode, the quadrotor circles around the operator
while gazing on him

Fig. 5 In following mode, the quadrotor follows the operator

431Artificial Life and Robotics (2018) 23:428–433

1 3

Fig. 8, in which the operator does the initialization of the
mission, then has only to set desired task points on the map
and give the orders to the points according to the mission.
In Fig. 8, the task points 1 and 2 are given as examples. This
process is called the mission planing.

The specification of operation steps is described in detail
below. In the developed interface, the operator can move
the map as he wants to set, and enlarge or reduce the size.
When a target point on the map is clicked once, it is set to a
task point. Clicking again will add the next task point. The
numbers of task points are automatically given in the order.
After recording the task points as shown in Fig. 8, the opera-
tor can edit them while deleting and/or adding as shown in
Fig. 9, and set flight altitude, flight angle and repeat times for
each point. The corresponding latitude and longitude infor-
mation at each point obtained by GPS can be monitored in
the task point editing menu as shown in Fig. 9. The format
of GPS information every sampling period includes latitude
and longitude components whose respective lengths are 13
digits. The quadrotor can automatically hover on a task point

by referring the GPS information within the error of 1.5 [m]
at worst. In the current system, desired altitude values need
to be set considering obstacles and reducing the likelihood
of accidents. The flight angle setting allows the control of
the quadrotor’s perspective so that the surrounding can be
observed in real time. Obstacle recognition and avoidance
capabilities will be realized with the binocular vision system
and the ultrasound system to accommodate the quadrotor to
complex terrain missions.

In addition to editing task points, the task plan can be fur-
ther refined as shown in Fig. 10. For example, the operator
can add an action such as hovering, landing at a task point,
returning to the starting point or the first task point, as an
additional task point. Not only the maximum flight speed
can be limited between two adjacent task points but also the
flight direction to the starting point, the operator or the pre-
vious task point can be set through the developed interface.

After the mission plan is completed through the three steps
as shown in Figs. 8, 9 and 10, the plan is uploaded to the quad-
rotor. The mission plan can be easily executed by clicking a
“Start Mission” button shown in Fig. 8. Of course, the operator

Fig. 6 Experiment of circling function while gazing on the operator

Fig. 7 Experiment of following function
Fig. 8 Task point setting interface in mission planning function

432 Artificial Life and Robotics (2018) 23:428–433

1 3

can suspend and resume the task. A speed control slider is also
designed in the interface, so that the flight speed of the quadro-
tor can be adjusted for better control.

Finally, an actual self-flight experiment using GPS informa-
tion was conducted using a mission plan as shown in Fig. 11,
in which three task points are given. The quadrotor could suc-
cessfully fly from the start point to the last point, i.e., task
point 3 via task points 1 and 2, so that the effectiveness and
validity of the proposed system were verified.

In the development of mission-planning function described
in Sect. 3.2, a core routine provided in Mobile SDK, which
certainly leads the quadrotor from a task point to another one,
is mainly used. Other operating functions developed on iOS
shown in Figs. 8, 9, 10 and 11 are our actual contributions.

4 Conclusions

In our research, a remote control and monitoring system
using an iOS device is focused on and designed for a quad-
rotor to be able to monitor its surrounding environment.

Three basic handlers for obtaining compass information,
controlling a gimbal and autopilot function for return were
developed for remote control. The operator was able to
send control commands, while remotely checking current
quadrotor’s state and watching its surrounding flight envi-
ronment only using an iOS device.

In this paper, the following and circling around func-
tions while gazing a moving object were further devel-
oped. Then, an iOS application was designed and imple-
mented to allow the quadrotor to execute a self-flight task
using GPS information, that was called the mission plan-
ning function. As a result, the iOS application enabled the
quadrotor to achieve complex mission planning consisting
of multiple task points. The functionality and effectiveness
were evaluated and confirmed through actual experiments
carried out outdoors.

In future work, the quadrotor will be able to have abilities
to automatically detect and avoid obstacles during the flight,
to arrive at a preset destination for complete remote autopilot
function, and to identify and count moving objects using
both GPS and image processing technologies.

Fig. 9 Task point editing interface Fig. 10 Task point action editing interface

433Artificial Life and Robotics (2018) 23:428–433

1 3

References

 1. Iscold P, Pereira S, Torres A (2010) Development of a hand-
launched small UAV for ground reconnaissance. IEEE Trans
Aerosp Electron Syst 46(1):335–348

 2. Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles,
modeling, estimation, and control of quadrotor. Robot Autom Mag
19(3):20–32

 3. Lim H, Park J, Lee D, Kim HJ (2012) Build your own quadrotor.
Robot Autom Mag 19(3):33–44

 4. Lu Z, Nagata F (2017) Proposal of iPhone application for quad-
rotor UAV remote control—implementation of basic functions
with iPhone. In: Proceedings of 22nd international symposium
on artificial life and robotics (AROB2017), pp 571–575

 5. Lu Z, Nagata F, Watanabe K, Maki K (2017) Habib, iOS applica-
tion for quadrotor UAV remote control—implementation of basic
functions with iPhone. Artif Life Robot 22(3):374–379

 6. Lu Z, Nagata F, Watanabe K (2017) Development of iOS applica-
tion handlers for quadrotor UAV remote control and monitoring.
In: Proceedings of the 2017 IEEE international conference on
mechatronics and automation (ICMA 2017), pp 513–518

 7. Lu Z, Nagata F, Watanabe K (2017) iOS application for remotely
controlling a quadrotor UAV and monitoring a moving object.
In: Proceedings of the 27th fuzzy, artificial intelligence, neural
networks and computational intelligence (FAN2017), pp 104–108

 8. Lu Z, Nagata F, Watanabe K (2018) Remote control iOS appli-
cation for a quadrotor UAV. In: Proceedings of 23rd interna-
tional symposium on artificial life and robotics (AROB2018), pp
506–511

 9. Anderson F (2014) Xcode 5 start to finish: iOS and OS X develop-
ment (Developer’s Library). Addison-Wesley Professional, Boston

 10. Alenya G, Dellen B, Foix S, Torras C (2013) Robotized plant
probing. Robot Autom Mag 20(3):50–59

 11. Shuying Y (2015) Image recognition and project practice. Publish-
ing House of Electronics Industry, Beijing (in Chinese)Fig. 11 An actual flight experiment could be successfully conducted

using a mission plan

	Mission planning of iOS application for a quadrotor UAV
	Abstract
	1 Introduction
	2 Experimental system
	2.1 Hardware of quadrotor
	2.2 Software development environment

	3 Developed software and experiment
	3.1 Circling and following functions
	3.2 Mission planning function

	4 Conclusions
	References

