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Abstract
The development of a new drug takes over 10 years and costs approximately US $2.6 billion. Virtual compound screening 
(VS) is a part of efforts to reduce this cost. Learning-to-rank is a machine learning technique in information retrieval that 
was recently introduced to VS. It works well because the application of VS requires the ranking of compounds. Moreover, 
learning-to-rank can treat multiple heterogeneous experimental data because it is trained using only the order of activity of 
compounds. In this study, we propose PKRank, a novel learning-to-rank method for ligand-based VS that uses a pairwise 
kernel and RankSVM. PKRank is a general case of the method proposed by Zhang et al. with the advantage of extensibility 
in terms of kernel selection. In comparisons of predictive accuracy, PKRank yielded a more accurate model than the previ-
ous method.
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1  Introduction

The development of a safe and effective drug takes more 
than 10 years and costs approximately US $2.6 billion 
[1]. Virtual screening (VS), which predicts the activity of 
untested compounds at a target drug protein using compu-
tational methods, is widely used in drug discovery research 
to reduce the developmental cost of medication [2]. Ligand-
based virtual screening (LBVS) is a VS method [3] where 
predictions are formulated as classification or regression 
problems, and the activity of untested compounds is pre-
dicted by machine learning methods using the activity of 
tested compounds.

Learning-to-rank is a machine learning framework in the 
field of information retrieval used to treat ranking models 
[4], and has lately been introduced to LBVS. In LBVS with 
learning-to-rank, VS is formulated as a problem of ranking 
prediction concerning the activity of compounds, such as 
half the maximum inhibitory concentration ( IC50 ), and rank-
ing is predicted using the ranking prediction model of learn-
ing-to-rank. Agarwal et al. [5] introduced learning-to-rank 
to VS for the first time, and showed that their method using 
RankSVM outperformed the method that simply employs 
the support vector machine (SVM) and the support vector 
regression (SVR). Rathke et al. [6] proposed StructRank, 
which directly solves the ranking problem and focuses on the 
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most promising compounds in terms of activity. Zhang et al. 
[7] compared several learning-to-rank prediction models, 
and concluded that RankSVM is the best. Furthermore, they 
noted that learning-to-rank can treat multiple heterogene-
ous experimental data measured for different targets or plat-
forms. This is major advantage of learning-to-rank because 
a traditional VS approach, such as classification and regres-
sion, cannot integrate multiple heterogeneous experimental 
data. Their method was based on the tensor product of the 
feature vectors of a compound and a target protein.

Drug–target interaction problems [8] have been studied 
as well as LBVS. This problem involves multiple com-
pounds and proteins, where a multiplicity of interactions 
between compounds and proteins is predicted. We note 
that the drug–target interaction problem differs from LBVS 
because it focuses on the predictive accuracy of entire inter-
actions involving multiple compounds and multiple proteins, 
whereas LBVS focuses on the predictive accuracy of interac-
tions involving multiple compounds and a specific protein 
as drug target. A pairwise kernel method was proposed for 
the drug–target interaction problem [9]. It is a kernel-based 
machine learning method. A pairwise kernel is defined as 
the product of a compound kernel and a protein kernel, thus 
the pairwise kernel method has extensibility in terms of 
selecting the compound kernel and the protein kernel.

We note that the method involving the tensor product 
proposed by Zhang et al. is a special case of the pairwise 
kernel method. If both the compound kernel and the pro-
tein kernel are represented as a linear kernel, the pairwise 
kernel method is equivalent to the method that uses a tensor 
product.

In this paper, we propose a novel VS method called 
PKRank, which is a learning-to-rank-based VS method, 
using a pairwise kernel and RankSVM. PKRank has several 
advantages over the method that uses a tensor product: (a) 
PKRank can handle high-dimensional feature vectors. (b) 
Any kernel function can be used for the compound kernel 
and the protein kernel. (c) PKRank can handle similarity 
measurement for prediction.

The purpose of this study is to obtain a more accurate 
prediction model through PKRank than the method that uses 
the tensor product [7]. A comparison in terms of prediction 
accuracy between PKRank and the previous method with 
compound activity data recorded in BindingDB [10] showed 
that the former is superior.

2 � Methods

We use the following notation throughout this paper: let 
� ≡ (c1, ..., cd(�))

⊤ be a feature vector of a compound and 
� ≡ (p1, ..., pd(�))

⊤ be a feature vector of a protein, where 

d(�) and d(�) are the number of dimensions of vector � and 
vector � , respectively.

The ranking prediction model f of learning-to-rank is 
represented as f (�) = f (�(�,�)) , where � ≡ �(�,�) is an 
input feature vector and � is a feature map. In this section, 
we explain the method proposed by Zhang et al. that uses 
the tensor product as � [7] as well as the proposed method 
PKRank, which is a learning-to-rank-based VS using a pair-
wise kernel. The former method is a special case of the lat-
ter, as described presently.

2.1 � Previously proposed method (tensor product)

Zhang et al. [7] introduced the tensor product as feature map 
� as follows:

where ⊗ is the tensor product operator. If � is a d(�)-dimen-
sional feature vector and � is a d(�)-dimensional feature 
vector, Φ(�,�) = �⊗ � is a d(�) × d(�)-dimensional feature 
vector. Zhang et al. used a general descriptor [11] (GD, 32 
dimensions) as compound feature vector � , and composi-
tion transition and the distribution feature [12] (CTD, 147 
dimensions) as protein feature vector � . Hence, they used a 
4,704-dimensional feature vector as input to the ranking pre-
diction model f. GD and CTD represent the physicochemical 
properties of a compound and a protein, respectively.

2.2 � Proposed method (PKRank)

The pairwise kernel [9] was originally proposed in the con-
text of the drug–target interaction problem [8]. Pairwise 
kernel k ∶ ℝ

d(�)×d(�) ×ℝ
d(�)×d(�)

→ ℝ is defined between two 
pairs of proteins and compounds (�,�) and (��, ��) as follows:

where kcom ∶ ℝ
d(�) ×ℝ

d(�)
→ ℝ is a compound kernel 

between two compounds, and kpro ∶ ℝ
d(�) ×ℝ

d(�)
→ ℝ is a 

protein kernel between two proteins.
RankSVM [13] is a learning-to-rank model based on a 

pairwise approach using SVM. Zhang et al. compared sev-
eral learning-to-rank prediction models and concluded that 
RankSVM is the best. RankSVM can be extended to use the 

(1)�(�,�) = �⊗ �,

(2)k((�,�), (��, ��)),

(3)= Φ(�,�)⊤Φ(��, ��),

(4)= (Φcom(�)⊗Φpro(�))
⊤(Φcom(�

�)⊗Φpro(�
�)),

(5)= (Φcom(�)
⊤Φcom(�

�)) × (Φpro(�)
⊤Φpro(�

�)),

(6)= kcom(�, �
�) × kpro(�, �

�),
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kernel method as well as SVM; thus, the pairwise kernel 
can be used.

Our proposed PKRank is a learning-to-rank method that 
uses a pairwise kernel and RankSVM. There are two steps in 
the training of PKRank: (1) A Gram matrix of the pairwise 
kernel K is generated. (2) RankSVM is trained with the input 
of the Gram matrix of the pairwise kernel K and the order 
of activity of compounds against target proteins. PKRank 
requires kcom and kpro to generate the Gram matrix of the 
pairwise kernel K. Figure 1 shows the training overview of 
PKRank and Fig. 2 shows the overview of the generation of 
the Gram matrix of the pairwise kernel K. 

If both kcom and kpro are represented as linear kernel 
k(�, ��) = Φ(�)⊤Φ(��) ≡ �⊤�� , we obtain Φcom(�) = � and 
Φpro(�) = � from (5) and (6). Then, we get Φ(�,�) = �⊗ � 
from (3) and (4). This is equivalent to the method that uses 
the tensor product; hence, this method is a special case of 
PKRank.

PKRank has several advantages: (a) The tensor product 
method cannot handle high-dimensional feature vectors 

because the number of dimensions of the tensor product 
is large [as previously described, �⊗ � is a d(�) × d(�)

-dimensional feature vector]. However, PKRank can handle 
it because the pairwise kernel uses not a feature map Φ(�,�) , 
but the compound kernel kcom and the protein kernel kpro . (b) 
In case of the tensor product method, the compound ker-
nel kcom and the protein kernel kpro are fixed to use a linear 
kernel, as described. However, PKRank can use any ker-
nel function in addition to the linear kernel. (c) PKRank 
can handle similarity measurements for prediction. This is 
because the pairwise kernel method needs only the Gram 
matrix, whose elements represent the similarity between 
compounds or proteins; thus, a feature vector representation 
of compound Φcom or protein Φpro is not always required.

To make full use of advantage (a) of PKRank, we intro-
duce Extended-connectivity Fingerprints [14] (ECFP4, 
2,048 dimensions) as a compound feature vector, which is 
a topological fingerprint representing the presence of sub-
structures. ECFP4 cannot be dealt with by the method of 
tensor product because of its large dimensionality (if ECFP4 

Fig. 1   The overview in the training of proposed method: PKRank
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and CTD are used in this method, a 301,056-dimensional 
feature vector is the input to the ranking prediction model). 
With regard to advantage (b), we introduce a polynomial 
kernel, a radial basis function (RBF) kernel and the Tani-
moto kernel [15], for the compound kernel kcom , and a 
polynomial kernel, an RBF kernel, for the protein kernel 
kpro . To exploit advantage (c), we introduce the normal-
ized Smith–Waterman score (nSW) [16] for protein kernel 
kpro , which is a normalized local alignment score between 
sequences. The nSW is calculated only using two amino acid 
sequences, and shows the similarity between proteins. Thus, 
the nSW can also be used as protein kernel kpro.

2.3 � Kernels

We use a linear kernel, a polynomial kernel, an RBF ker-
nel, and the Tanimoto kernel for the compound kernel kcom , 
and a linear kernel, an RBF kernel, and the normalized 
Smith–Waterman score (nSW) for protein kernel kpro . Here, 
we explain these kernels.

•	 A linear kernel between two features �, �′ is 

As seen above, if both kcom and kpro are represented as a 
linear kernel, PKRank is equivalent to the tensor product 
method.

•	 A polynomial kernel between two features �, �′ is 

 It has a hyper-parameter z, the manner of tuning which 
is explained in Sect. 3.4.

•	 An RBF kernel between two features �, �′ is 

It is widely used in kernel-based machine learning. It 
has a hyper-parameter � , the manner of tuning which is 
explained in Sect. 3.4.

•	 The Tanimoto kernel between two binary vectors �, �′ 
is 

(7)k(�, ��) = �⊤��.

(8)k(�, ��) = (�⊤�� + 1)z.

(9)k(�, ��) = exp(−�‖� − ��‖2).

(10)k(�, ��) =
�⊤��

�⊤� + ��⊤�� − �⊤��
.

Fig. 2   Generating a Gram matrix of the pairwise kernel K 
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The Tanimoto coefficient is used to measure similarity 
between compounds using a binary feature. In the drug–
target interaction problem, the Tanimoto coefficient is 
used as a compound kernel. We use the Tanimoto kernel 
only with ECFP4 (binary feature).

•	 The normalized Smith–Waterman score (nSW) between 
two proteins seq, seq′ is: 

where SW(⋅, ⋅) is the Smith–Waterman score, which is 
a local alignment score between amino acid sequences.

3 � Experiments

3.1 � Data

To compare the predictive accuracy of the method that 
uses the tensor product and PKRank, compound activity 
data measured in IC50 against proteins of phosphodiester-
ase (PDE), cathepsin (CTS), and the adenosine receptor 
(ADOR) family, recorded in BindingDB [10], were used as 
benchmark. We note that the compound activity data against 
the PDE and the CTS families had been used in a previ-
ous study [7]. To remove highly similar compounds from 
the dataset, clustering based on Butina’s method [17] with 
ECFP4 and the Tanimoto coefficient was performed. We 
set the threshold of similarity cutoff of Butina’s algorithm 
to 0.8. The non-redundant datasets compiled are shown in 
Table 1.

(11)k(seq, seq�) =
SW(seq, seq�)

√
SW(seq, seq)

√
SW(seq�, seq�)

,

3.2 � Evaluation criteria

In information retrieval, normalized discounted cumula-
tive gain (NDCG) [19] is widely used for evaluation. There 
are two types of NDCG: NDCG1 and NDCG2. NDCG1 is 
defined as follows:

where m is the number of items considered for evaluation, 
reli is the relevance of the item at position i in predicted 
ranking, and IdealDCG1@m is the normalization term 
defined as DCG1@m if all items contained in the dataset 
are sorted according to their true relevance. On the other 
hand, NDCG2 is defined as follows:

The study where the method using the tensor product was 
proposed [7] used NDCG2@10 for evaluation, but this 
is unstable because it changes drastically due to the reli-
th power of 2, even if the predicted ranking changes only 
slightly. Thus, we used NDCG1@100 and NDCG1@10 in 
addition to NDCG2@10 for evaluation.

We note that pIC50 ≡ − log10(IC50) is used for the rel-
evance of a compound. The higher the pIC50 of a compound, 
the more strongly it binds to a target protein; hence, pIC50 
shows the relevance of a compound.

(12)DCG1@m = rel1 +

m∑

i=2

reli

log2 i
,

(13)NDCG1@m =
DCG1@m

IdealDCG1@m
,

(14)DCG2@m =

m∑

i=1

2reli − 1

log2(i + 1)
,

(15)NDCG2@m =
DCG2@m

IdealDCG2@m
.

Table 1   Three datasets used as benchmark in this study (PDE, CTS, ADOR)

Test sets (PDE5, CTSK, ADORA3) are shown in bold. IDs in brackets show the UniProt [18] accession numbers and the numbers in parentheses 
show the number of records of compound activity against each protein

PDE family (15 subfamilies)
 PDE5 [P54750] (835) PDE1A [P54750] (12) PDE1B [Q01064] (132) PDE1C [Q14123] (141)
 PDE2A [O00408] (324) PDE3A [Q14432] (177) PDE3B [Q13370] (22) PDE4A [P27815] (356)
 PDE4B [Q07343] (514) PDE4C [Q08493] (83) PDE6A [P35913] (32) PDE6C [P51160] (13)
 PDE9A [O76083] (72) PDE10 [Q9Y233] (1307) PDE11A [Q9HCR9] (76)

CTS family (10 subfamilies)
 CTSK [P43235] (735) CTSB [P07858] (440) CTSD [P07339] (686) CTSE [P14091] (20)
 CTSF [Q9UBX1] (20) CTSG [P08311] (186) CTSH [P09668] (15) CTSL [P07711] (566)
 CTSS [P25774] (771) CTSZ [Q9UBR2] (6)

ADOR family (4 subfamilies)
 ADORA3 [P0DMS8] (201) ADORA1 [P30542] (390) ADORA2A [P29274] (141) ADORA2B [P29275] (199)
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3.3 � Training method

We used RankSVM with kernel method implemented by 
Kuo et al. [20].

We tested ten methods by changing the feature vectors 
and kernels. For the compound feature vector, GD and 
ECFP4 were calculated by RDKit (version 2016.09.1) 
[21]. For the protein feature vector, CTD was calculated 
by PROFEAT (version 2016) [12], and the normalized 
Smith–Waterman score (nSW) was calculated by EMBOSS 
(version 6.6.0) [22].

3.4 � Parameter settings

We tuned the hyper-parameters as follows: (1) We randomly 
split the test data into two parts (a validation part for hyper-
parameter tuning and a test part for evaluation). (2) We used 

NDCG1@100, NDCG1@10, and NDCG2@10 to assess the 
test part using a hyper-parameter combination that maxi-
mized the evaluation score for the validation part. (3) We 
repeated (1) and (2) five times and reported the mean of the 
five evaluation scores.

RankSVM has a cost parameter C as SVM does, and we 
chose a values for it from the set {10−9, 10−8, ..., 100} . The 
polynomial kernel has a degree parameter z, which was cho-
sen from {2, 3} . The RBF kernel has a bandwidth parameter 
� , which was chosen from {10−6, 10−5, 10−4, 10−3}.

4 � Results

The evaluation scores (NDCG1@100, NDCG1@10 and 
NDCG2@10) are shown in Tables 2, 3 and 4. The best 
score among the 10 methods is shown in bold. The italicized 

Table 2   Experimental results of PDE

The first italicized line shows the results of the method using tensor product [7]. The bold type shows the best score for each evaluation criterion. 
Scores with asterisk indicate significance at P < 0.05 , calculated by the Wilcoxon signed-rank test between each of proposed methods (regular 
lines) and the method that uses tensor product (italicized line)

Line no. Compound feature Compound kernel Protein feature Protein kernel NDCG1@100 NDCG1@10 NDCG2@10

1 GD Linear CTD Linear 0.821 0.729 0.258
2 GD Polynomial CTD Polynomial 0.811 0.762* 0.256
3 GD RBF CTD RBF 0.834* 0.830* 0.336*
4 GD RBF Sequence nSW 0.855* 0.847* 0.371*
5 ECFP4 Linear CTD Linear 0.776 0.715 0.275
6 ECFP4 Polynomial CTD Polynomial 0.817 0.781* 0.326*
7 ECFP4 Tanimoto CTD RBF 0.827 0.740 0.313*
8 ECFP4 Tanimoto Sequence nSW 0.827 0.745 0.329*
9 ECFP4 RBF CTD RBF 0.838* 0.811* 0.390*
10 ECFP4 RBF Sequence nSW 0.849* 0.835* 0.399*

Table 3   Experimental results of CTS

The first italicized line shows the results of the method using tensor product [7]. The bold type shows the best score for each evaluation criterion. 
Scores with asterisk indicate significance at P < 0.05 , calculated by the Wilcoxon signed-rank test between each of proposed methods (regular 
lines) and the method that uses tensor product (italicized line)

Line no. Compound feature Compound kernel Protein feature Protein kernel NDCG1@100 NDCG1@10 NDCG2@10

1 GD Linear CTD Linear 0.789 0.669 0.117
2 GD Polynomial CTD Polynomial 0.820* 0.730* 0.149*
3 GD RBF CTD RBF 0.855* 0.839* 0.599*
4 GD RBF sequence nSW 0.843* 0.807* 0.405*
5 ECFP4 Linear CTD Linear 0.803* 0.644 0.122
6 ECFP4 Polynomial CTD Polynomial 0.867* 0.847* 0.525*
7 ECFP4 Tanimoto CTD RBF 0.819* 0.722* 0.234*
8 ECFP4 Tanimoto sequence nSW 0.820* 0.730* 0.273*
9 ECFP4 RBF CTD RBF 0.865* 0.821* 0.524*
10 ECFP4 RBF sequence nSW 0.846* 0.745* 0.262*
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first lines in Tables 2, 3 and 4 are equivalent to the method 
using tensor product [7], as shown in Sect. 2.2. The other 
lines (from the second to the last line) correspond to the 
proposed method PKRank. To check the significance of 
the evaluation score of PKRank, the Wilcoxon signed-rank 
test was performed between each of the proposed methods 
(regular lines) and the method using tensor product (the itali-
cized first line). The scores with an asterisk (*) show that the 
score of the combination of feature vectors and kernels was 
significant at P < 0.05.

For the three datasets, PKRank outperformed the method 
using tensor product in all three evaluations. The best com-
bination of feature vectors and kernels was different for each 
dataset and evaluation criterion, but the combination of GD 
compound feature, RBF compound kernel, CTD protein fea-
ture, and RBF protein kernel (Line 3 in Tables 2, 3 and 4) 
comprehensively worked well.

5 � Discussion and conclusion

The experimental results showed that the proposed PKRank 
is superior to the method using tensor product in NDCGs 
evaluation.

It is not advisable to use a linear kernel for the compound 
kernel or the protein kernel, but other kernels worked well. 
This is because non-linear kernels can represent more com-
plicated ranking models. Since PKRank has extensibility 
in terms of kernel selection, these non-linear kernels can 
be used.

Since the evaluation scores of the number of cases were 
significant, it can be said that the settings of Line 3 in 
Tables 2, 3 and 4 worked well. There was only one case 
where the evaluation score was not significant for the ADOR 
dataset on NDCG1@10 evaluation, but was still better than 

that for methods using tensor product. One way to deter-
mine the best combination of features and kernels is by using 
cross-validation by changing features and kernels.

The nSW for the protein kernel worked well in the PDE 
dataset, but this tendency was not replicated in the results 
for the CTS and ADOR datasets. The training set of the 
PDE dataset had many proteins related to PDE5 (test data). 
This might have caused such a result, and further study is 
needed to determine when the nSW works well.

The purpose of this study was to obtain a more accurate 
prediction model by PKRank than the previous method that 
uses tensor product. This study showed that PKRank out-
performs the tensor product-based method due to its several 
advantages. We believe that methods that can cope with 
multiple heterogeneous experimental data, like PKRank 
can, are important for drug discovery research. Moreover, 
classifying objects that are sampled jointly from two or more 
domains has many applications, such as in bioinformatics 
[23, 24], social network analysis [25], and world wide web 
[26]. The tensor product feature space is useful for modeling 
interactions between feature sets in different domains where 
PKRank can be applied to yield better performance.
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The first italicized line shows the results of the method using tensor product [7]. The bold type shows the best score for each evaluation criterion. 
Scores with asterisk indicate significance at P < 0.05 , calculated by the Wilcoxon signed-rank test between each of proposed methods (regular 
lines) and the method that uses tensor product (italicized line)

Line no. Compound feature Compound kernel Protein feature Protein kernel NDCG1@100 NDCG1@10 NDCG2@10

1 GD Linear CTD Linear 0.942 0.799 0.321
2 GD Polynomial CTD Polynomial 0.943 0.805 0.420*
3 GD RBF CTD RBF 0.948* 0.812 0.439*
4 GD RBF sequence nSW 0.941 0.802 0.370
5 ECFP4 Linear CTD Linear 0.937 0.790 0.339
6 ECFP4 Polynomial CTD Polynomial 0.935 0.787 0.301
7 ECFP4 Tanimoto CTD RBF 0.915 0.695 0.280
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10 ECFP4 RBF sequence nSW 0.916 0.728 0.318
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