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1 Introduction

Over the last decade, there has been increasing interest 
in UAV systems. Various types and objectives of UAV 
systems have been proposed and developed from both 
aspects of theory and practice. For example, Iscold et al. 
presented the engineering design and implementation of 
a low cost, portable, and hand-launched small UAV-plat-
form integrated with real data from practical flight tests. 
The required number of sensors and actuators was reduced 
without losing the feasibility and the required functionality 
[1]. Mahony et al. provided a tutorial introduction to mod-
eling, estimation, and control for multi-rotor aerial vehi-
cles such as common quadrotors. The results were useful 
for engineers concerned in related developments [2]. In 
addition, Lim et al. presented eight quadrotor OSPs (open 
source projects) with descriptions of their avionics, sen-
sor composition, analysis of attitude estimation and con-
trol algorithms, and features comparison. Several research 
projects that used OSPs as a main flight controller were 
described, in which it was expected that sharing the same 
platform became easier with such services [3]. Sanna et al. 
proposed natural user interfaces and visual computing 
methods using an RGB-depth sensor to control the navi-
gation of a quadrotor in indoor environments, where GPS 
information is not available. The proposed visual odom-
etry algorithm allowed not only the quadrotor to autono-
mously navigate the environment but also the user to con-
trol complex maneuvers by gestures and body postures [4]. 
Furthermore, Luxman and Liu reported an implementation 
of back-stepping integral controller for a quadcopter which 
was commanded by human gestures. A novel technology 
using computer vision was introduced for easy operation 
of the quadcopter, in which methods detecting and track-
ing human were developed [5].
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As for the utilization of smartphones, Kim et al. reported 
the feasibility of using a smartphone as the payload for a 
photogrammetric UAV system due to the availability of 
3G network environment at any time or location, high-
resolution images, and 3D location and attitude data were 
measured by built-in sensors [6]. Loianno et al. also used 
a smartphone as a payload for a quadrotor, in which the 
integration of a robot, processor, and smartphone through 
simple software architecture was described to build auton-
omous functions for navigating and mapping unknown, 
indoor environments [7]. Furthermore, Allen et al. intro-
duced smartdrones as the next step-change in technology 
via PCs and smartphones, whose features were defined 
from the aspects of affordability, lightweight structure, 
standardization of hardware and software, autonomy, and 
so on [8].

However, papers adequately applying a smartphone to 
users’ remote controller could not be seen well. If a UAV 
system is operated with wireless communication, a PC or 
specialized remote controller is generally used for control-
ling it . Actually, in almost conventional commercially-
provided UAVs, operators have to not only use each spe-
cialized remote controller but also continue giving needed 
commands manually. In such cases, it seems that there are 
still several problems for the users to handle, for example, 
the complex operability of the controller; the difficulty of 
manual flight control when exceeding the visible range; 
and the difficulty of planning (programming) for designing 
new functions such as automatic return function and navi-
gation referring GPS information, because easy program-
ming environments are not well provided from quadrotors’ 
makers. Those are the reasons why the current user inter-
face and functionality seem to be insufficient in terms of 
operability and extendability at the users’ side.

This paper is centered on the proposal of an original 
quadrotor UAV controller design based on widely spread 
personal smartphones. Smartphones have rapidly gained 
popularity and become very important due to the simple 
operability and mobility. It is also expected that smart-
phones enable us to get real-time information from various 
kinds of sensors built in robots and mechatronics systems 
including UAVs. The flexibility and ease of use to control 
a UAV with the portable technologies such as iPhone are 
enhanced with the developed techniques.

In this paper, to cope with the needs, a quadrotor UAV 
equipped with multiple monochrome binocular cameras, 
ultrasonic distance sensors, and an RGB camera is first con-
sidered as a controlled object. Then, a basic control system 
is developed to monitor surrounding environment while 
remotely controlling the quadrotor using an iOS device. 
iOS formerly means iPhone OS which is a mobile operat-
ing system created and developed by Apple Inc. Four basic 
programs for obtaining compass information, controlling 

a gimbal, autopilot function for return and video preview 
function are designed and implemented for future applica-
tion development. The functionalities of the programs are 
evaluated through the software development and actual 
experiments using a quadrotor and an iOS device.

2  Experimental system

2.1  Hardware of quadrotor

Figure 1 shows the hardware structure overview of the 
quadrotor system. Figure 2 illustrates the details of the 
CPU unit built in the quadrotor body. The main body is a 
quadrotor platform (Hardware name: Matrice 100) pro-
vided by DJI Co., Ltd., in which a CPU controls four DC 
motors through electronic speed control (ESC) port to drive 
four rotors. For example, a GPS, compass, and micro-iner-
tial measurement unit (MIMU) are included in Fig. 2. The 
MIMU can measure angles, their velocities, and accelera-
tions concerning the attitude of the quadrotor.

Fig. 1  Hardware block diagram and SDKs for the quadrotor system

Fig. 2  Hardware details of the quadrotor
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Besides these, an onboard embedded system, an RGB 
camera fixed to a gimbal, and a vision system called 
guidance are mounted on the main body. The embedded 
system allows to handle flight control, vehicle telemetry, 
camera, and gimbal control. The flight control functions 
include, e.g., real-time attitude control, velocity con-
trol, position control. The embedded system makes state 
information available in real time, e.g., inertial sensors, 
attitude, heading, velocity, position, battery remaining 
capacity, and barometric pressure gauge. The height of 
the quadrotor is estimated from the value of the pressure 
gauge. In addition, the vision system is composed of five 
ultrasonic distance sensors and ten monochrome cam-
eras. Figure 3 shows the hardware of the quadrotor used 
in this study. The maximum ground speed and the radius 
of controllable area are about 17 m/s and 5 km, respectiv
ely.

2.2  Software development environment

Figure 4 presents the used software development envi-
ronment that constitutes three software development kits 
(SDKs). The mobile SDK for Xcode as a MacOS allows 
us to build a customized mobile application for iOS device 
[9], as shown in Fig. 5. In addition, the onboard embed-
ded system mounted on the quadrotor can monitor and 
control the flight behavior of the body using API functions 
included in DJI onboard SDK for Windows while utilizing 
the built-in intelligent navigation modes to create autono-
mous flight paths and maneuvers. The IN mode is built 
in the board on the quadrotor. When an iOS device is not 
available, the operator can manually control the quadrotor 
using the C1 controller.

The onboard embedded system (Windows OS) commu-
nicates with the DJI flight controller built-in the quadrotor 
via a direct serial connection (UART), as shown in Fig. 6. 
Furthermore, DJI guidance SDK enables to customize the 
application and extend the functions of vision and distance 

sensors according to the needs of developers. Further-
more, Xcode is an integrated development environment 
(IDE) containing a suite of software development tools 
for macOS, iOS, WatchOS, and tvOS provided by Apple. 
Xcode uses model view controller called MVC for develop-
ment, as shown in Fig. 7. MVC is a software architectural 
pattern for implementing a user interface on Mac. It divides 
a given software application into three interconnected parts, 
i.e., model, view, and controller, so that users can view the 
status of the quadrotor and give suitable commands to it.

3  Developed software and experiment

3.1  Monitoring compass information of quadrotor

To remotely control the quadrotor, the operator must 
know the current moving direction. To cope with the 
need, compass information is effective and obtained 
from the MIMU built in the CPU of the quadrotor, as 
shown in Fig. 2. The compass information has not only 
the deviation from the north direction, i.e., the data of 
yaw angle, but also horizontal and vertical states to both 

Fig. 3  Overview of the main body of the quadrotor with a guidance 
and an onboard embedded system Fig. 4  Three SDKs provided by DJI and software development envi-

ronment

Fig. 5  Detailed data flows among iOS Device, C1 controller, and 
quadrotor included in Fig. 4
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roll and pitch axes. Accordingly, the compass informa-
tion enables to correct the desired moving direction 
by compensating roll, pitch, and yaw operations of the 
quadrotor. The MIMU further has three-axis acceleration 
sensor and gyroscope. It was confirmed from an experi-
ment that the compass information of the quadrotor 
could be well monitored on iOS device.

3.2  Control function of gimbal

A gimbal with a pan and tilt structures is fixed under 
the quadrotor to keep the quality and stability of camera 
images even in a severe flight situation with disturbance. 
An RGB camera is attached to the quadrotor through the 
gimbal, as shown in Fig. 8. This feature allows to easily 
adjust the pan and tilt angles using iOS device, so that 
scenes in various direction, i.e., pictures and movies, can 
be obtained and viewed. It was confirmed from an exper-
iment that the pan and tilt angles could be well adjusted 
using an iOS device.

3.3  Takeoff, hovering, and automatic return function

Beginners are not familiar with the operation of a quadro-
tor, so that they are more prone to have misoperation or 
accidents. To cope with this problem, functions to automat-
ically act takeoff, landing, and hovering were developed 
and implemented. These functions bring simpler and easier 
operation for beginners. In addition, an autopilot function 
for return was implemented to ensure that the quadrotor is 
safe and it will not get lost due to an unpredictable trou-
ble, e.g., flying beyond the plan. For example, a quadrotor 
could not be directly controlled and consequently went out 
of view, i.e., if some undesirable signal interference or sig-
nal loss occurred.

To deal with such problems, the implemented automatic 
return function reduces such a serious risk that the quad-
rotor is out of control and consequently is lost. Figure 9 
shows a scene on the way returning to the initial preset 
point in the automatic return function. Furthermore, Fig. 10 
shows the detailed flight record, in which it was observed 
that the quadrotor successfully flew from the point 1© to the 
initial point 4© via points 2© and 3©. Furthermore, the time 
variation of the distance to the initial point 4© in automatic 
return function is shown in Fig. 11. It is verified from these 

Fig. 6  Detailed data flows among the main platform of quadrotor, 
embedded system, and guidance included, as shown in Fig. 4

Fig. 7  Model view controller (MVC) is used for developing an iOS 
device application under the software development environment 
called Xcode

Fig. 8  Gimbal and RGB camera fixed under the quadrotor

Fig. 9  Experimental scene of automatic return function a little bit 
before landing
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figures that the quadrotor could linearly return to the initial 
point, where the operator set in advance using an iPhone. 
Although the horizontal accuracy of landing in automatic 
return was around ±1.5 m due to a single GPS receiver, it 
will be reduced to ±2 cm using three GPS receivers.

3.4  Video preview function

In this subsection, basic principles and outline of video pre-
view function are described. This function was developed for 
remote monitoring of surrounding environment viewed under 
the quadrotor, by which a streaming movie (H.264) [10] 
captured by an RGB camera fixed under the quadrotor can 
be displayed on the iOS terminal via a remote controller C1, 
as shown in Fig. 5. The framework of H.264 video transfer 
system used in experiment is shown in Fig. 12. iOS Device 
can get live H.264 video data from the RGB camera shown 
in Fig. 8 using the Mobile SDK. The H.264 is a video coding 
format that is currently one of the most commonly spread for-
mats for compression and distribution of video content.

The video previewer function for iOS devices was devel-
oped with “VideoPreviewer( )” included in Mobile SDK. 
“VideoPreviewer( )” is a real-time preview function of 
H.264 video data developed based on the RTP (real-time 
transport protocol). The RTP was proposed by the Audio–
Video Transport Working Group of the Internet Engineer-
ing Task Force (IETF) and was described in RFC 3550 
published in 2003 [11]. The RTP is an effective network 
protocol for delivering audio and video data through IP 
networks [12, 13]. The structure of the RTP file consists of 
RTP header, NALU one, and H.264 video data, as shown in 
Fig. 13 [11–13].

The software flow chart in the quadrotor-side algorithm 
for sending H.264 video data to an iOS device is shown in 
Fig. 14. First, the RGB camera’s video data are transmitted 
to the image transmission system, as shown in Fig. 12. The 
image transmission system decomposes the video data into 
several small data packets called NALU (network abstrac-
tion layer unit) [10] to facilitate the fast transmission. The 
image transmission system uses a broadcast mode simi-
lar to one-way broadcast systems. This can guarantee the 
stability of transmission and its distance to improve flight 
safety. Due to the process explained above, the image trans-
mission system can send a complete real-time video data to 
the iOS device. The iOS device continuously receives, syn-
thesizes, and displays the video data for monitoring.

In the iOS device side shown in Fig. 12, several impor-
tant functions included in Mobile SDK shown in Fig. 4 
were used to develop the video preview function. For 
example, “self.fetchCamera( )” can access the camera 
data; “super.didReceiveMemoryWarning( )” temporally 

Fig. 10  Flight record of the quadrotor viewed using Google Earth

Fig. 11  Time variation of the distance to the initial point in auto-
matic return function

Fig. 12  Framework of image (H.264 video) transfer system, in 
which NALU means network abstraction layer unit

Fig. 13  Structure of the RTP file
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stores the received data in the cache; “VideoPreviewer.
instance. start( )” can read the cached data; and “VideoPre-
viewer. instance.set( )” can display the cached data on the 
screen. Figure 15 shows successful experimental scene of 
the developed complete real-time video preview function. 
Of course, video capture function will be able to be further 
achieved in the future work.

4  Conclusions

In this study, a remote control system was focused and 
designed for a quadrotor to remotely control it using an iOS 
device. At first, three basic programs for obtaining compass 

information, controlling a gimbal, autopilot function for 
return were developed. Then, another function for remote 
monitoring of surrounding environment under the quadro-
tor was developed, by which a streaming movie (H.264) 
captured by an RGB camera fixed under the quadrotor 
could be displayed on a remote iPhone terminal. The func-
tionality and effectiveness were evaluated and confirmed 
through actual experiments carried out outdoors.

In future work, the operator will be able to send con-
trol commands, while remotely checking current quadro-
tor’s states and watching surrounding flight environment 
only using an iOS device. In addition, the quadrotor will 
be able to have abilities to automatically detect and avoid 
obstacles during the flight, to arrive at a preset destination 
for complete remote autopilot function, and to identify and 
count moving objects using GPS and image processing 
technologies.
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