
Artif Life Robotics (2017) 22:374–379
DOI 10.1007/s10015-017-0372-3

1 3

ORIGINAL ARTICLE

iOS application for quadrotor remote control
Implementation of basic functions with iphone

Zeming Lu1 · Fusaomi Nagata1 · Keigo Watanabe2 · Maki K. Habib3

Received: 17 February 2017 / Accepted: 12 June 2017 / Published online: 20 June 2017
© ISAROB 2017

1 Introduction

Over the last decade, there has been increasing interest
in UAV systems. Various types and objectives of UAV
systems have been proposed and developed from both
aspects of theory and practice. For example, Iscold et al.
presented the engineering design and implementation of
a low cost, portable, and hand-launched small UAV-plat-
form integrated with real data from practical flight tests.
The required number of sensors and actuators was reduced
without losing the feasibility and the required functionality
[1]. Mahony et al. provided a tutorial introduction to mod-
eling, estimation, and control for multi-rotor aerial vehi-
cles such as common quadrotors. The results were useful
for engineers concerned in related developments [2]. In
addition, Lim et al. presented eight quadrotor OSPs (open
source projects) with descriptions of their avionics, sen-
sor composition, analysis of attitude estimation and con-
trol algorithms, and features comparison. Several research
projects that used OSPs as a main flight controller were
described, in which it was expected that sharing the same
platform became easier with such services [3]. Sanna et al.
proposed natural user interfaces and visual computing
methods using an RGB-depth sensor to control the navi-
gation of a quadrotor in indoor environments, where GPS
information is not available. The proposed visual odom-
etry algorithm allowed not only the quadrotor to autono-
mously navigate the environment but also the user to con-
trol complex maneuvers by gestures and body postures [4].
Furthermore, Luxman and Liu reported an implementation
of back-stepping integral controller for a quadcopter which
was commanded by human gestures. A novel technology
using computer vision was introduced for easy operation
of the quadcopter, in which methods detecting and track-
ing human were developed [5].

Abstract With the progress of electronics technology, the
development of civilian UAV (unmanned aerial vehicle)
applications becomes possible. In addition, smartphones
have rapidly gained popularity and become very important
due to the simple operability and mobility. Hence, there is
a need to have an easy and flexible way to control a UAV
using such technology. In this study, a remote controller
using an iOS device is developed for a quadrotor to enable
remote control with easy operations. Four basic programs
for obtaining compass information, controlling a gimbal,
autopilot function for return, and video preview function
are developed and implemented for an iOS device. The
basic functionalities of the programs are evaluated and con-
firmed through experiments using a quadrotor and an iOS
device.

Keywords Unmanned aerial vehicle · Quadrotor · iOS ·
iPhone · Remote control · User interface for UAV

This work was presented in part at the 22nd International
Symposium on Artificial Life and Robotics, Beppu, Oita, January
19–21, 2017.

 * Fusaomi Nagata
 nagata@rs.tusy.ac.jp

1 Department of Mechanical Engineering, Tokyo
University of Science, Yamaguchi, 1-1-1, Daigaku-Dori,
Sanyo-Onoda 756-0884, Japan

2 Okayama University, Okayama, Japan
3 American University in Cairo, Cairo, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-017-0372-3&domain=pdf

375Artif Life Robotics (2017) 22:374–379

1 3

As for the utilization of smartphones, Kim et al. reported
the feasibility of using a smartphone as the payload for a
photogrammetric UAV system due to the availability of
3G network environment at any time or location, high-
resolution images, and 3D location and attitude data were
measured by built-in sensors [6]. Loianno et al. also used
a smartphone as a payload for a quadrotor, in which the
integration of a robot, processor, and smartphone through
simple software architecture was described to build auton-
omous functions for navigating and mapping unknown,
indoor environments [7]. Furthermore, Allen et al. intro-
duced smartdrones as the next step-change in technology
via PCs and smartphones, whose features were defined
from the aspects of affordability, lightweight structure,
standardization of hardware and software, autonomy, and
so on [8].

However, papers adequately applying a smartphone to
users’ remote controller could not be seen well. If a UAV
system is operated with wireless communication, a PC or
specialized remote controller is generally used for control-
ling it . Actually, in almost conventional commercially-
provided UAVs, operators have to not only use each spe-
cialized remote controller but also continue giving needed
commands manually. In such cases, it seems that there are
still several problems for the users to handle, for example,
the complex operability of the controller; the difficulty of
manual flight control when exceeding the visible range;
and the difficulty of planning (programming) for designing
new functions such as automatic return function and navi-
gation referring GPS information, because easy program-
ming environments are not well provided from quadrotors’
makers. Those are the reasons why the current user inter-
face and functionality seem to be insufficient in terms of
operability and extendability at the users’ side.

This paper is centered on the proposal of an original
quadrotor UAV controller design based on widely spread
personal smartphones. Smartphones have rapidly gained
popularity and become very important due to the simple
operability and mobility. It is also expected that smart-
phones enable us to get real-time information from various
kinds of sensors built in robots and mechatronics systems
including UAVs. The flexibility and ease of use to control
a UAV with the portable technologies such as iPhone are
enhanced with the developed techniques.

In this paper, to cope with the needs, a quadrotor UAV
equipped with multiple monochrome binocular cameras,
ultrasonic distance sensors, and an RGB camera is first con-
sidered as a controlled object. Then, a basic control system
is developed to monitor surrounding environment while
remotely controlling the quadrotor using an iOS device.
iOS formerly means iPhone OS which is a mobile operat-
ing system created and developed by Apple Inc. Four basic
programs for obtaining compass information, controlling

a gimbal, autopilot function for return and video preview
function are designed and implemented for future applica-
tion development. The functionalities of the programs are
evaluated through the software development and actual
experiments using a quadrotor and an iOS device.

2 Experimental system

2.1 Hardware of quadrotor

Figure 1 shows the hardware structure overview of the
quadrotor system. Figure 2 illustrates the details of the
CPU unit built in the quadrotor body. The main body is a
quadrotor platform (Hardware name: Matrice 100) pro-
vided by DJI Co., Ltd., in which a CPU controls four DC
motors through electronic speed control (ESC) port to drive
four rotors. For example, a GPS, compass, and micro-iner-
tial measurement unit (MIMU) are included in Fig. 2. The
MIMU can measure angles, their velocities, and accelera-
tions concerning the attitude of the quadrotor.

Fig. 1 Hardware block diagram and SDKs for the quadrotor system

Fig. 2 Hardware details of the quadrotor

376 Artif Life Robotics (2017) 22:374–379

1 3

Besides these, an onboard embedded system, an RGB
camera fixed to a gimbal, and a vision system called
guidance are mounted on the main body. The embedded
system allows to handle flight control, vehicle telemetry,
camera, and gimbal control. The flight control functions
include, e.g., real-time attitude control, velocity con-
trol, position control. The embedded system makes state
information available in real time, e.g., inertial sensors,
attitude, heading, velocity, position, battery remaining
capacity, and barometric pressure gauge. The height of
the quadrotor is estimated from the value of the pressure
gauge. In addition, the vision system is composed of five
ultrasonic distance sensors and ten monochrome cam-
eras. Figure 3 shows the hardware of the quadrotor used
in this study. The maximum ground speed and the radius
of controllable area are about 17 m/s and 5 km, respectiv
ely.

2.2 Software development environment

Figure 4 presents the used software development envi-
ronment that constitutes three software development kits
(SDKs). The mobile SDK for Xcode as a MacOS allows
us to build a customized mobile application for iOS device
[9], as shown in Fig. 5. In addition, the onboard embed-
ded system mounted on the quadrotor can monitor and
control the flight behavior of the body using API functions
included in DJI onboard SDK for Windows while utilizing
the built-in intelligent navigation modes to create autono-
mous flight paths and maneuvers. The IN mode is built
in the board on the quadrotor. When an iOS device is not
available, the operator can manually control the quadrotor
using the C1 controller.

The onboard embedded system (Windows OS) commu-
nicates with the DJI flight controller built-in the quadrotor
via a direct serial connection (UART), as shown in Fig. 6.
Furthermore, DJI guidance SDK enables to customize the
application and extend the functions of vision and distance

sensors according to the needs of developers. Further-
more, Xcode is an integrated development environment
(IDE) containing a suite of software development tools
for macOS, iOS, WatchOS, and tvOS provided by Apple.
Xcode uses model view controller called MVC for develop-
ment, as shown in Fig. 7. MVC is a software architectural
pattern for implementing a user interface on Mac. It divides
a given software application into three interconnected parts,
i.e., model, view, and controller, so that users can view the
status of the quadrotor and give suitable commands to it.

3 Developed software and experiment

3.1 Monitoring compass information of quadrotor

To remotely control the quadrotor, the operator must
know the current moving direction. To cope with the
need, compass information is effective and obtained
from the MIMU built in the CPU of the quadrotor, as
shown in Fig. 2. The compass information has not only
the deviation from the north direction, i.e., the data of
yaw angle, but also horizontal and vertical states to both

Fig. 3 Overview of the main body of the quadrotor with a guidance
and an onboard embedded system Fig. 4 Three SDKs provided by DJI and software development envi-

ronment

Fig. 5 Detailed data flows among iOS Device, C1 controller, and
quadrotor included in Fig. 4

377Artif Life Robotics (2017) 22:374–379

1 3

roll and pitch axes. Accordingly, the compass informa-
tion enables to correct the desired moving direction
by compensating roll, pitch, and yaw operations of the
quadrotor. The MIMU further has three-axis acceleration
sensor and gyroscope. It was confirmed from an experi-
ment that the compass information of the quadrotor
could be well monitored on iOS device.

3.2 Control function of gimbal

A gimbal with a pan and tilt structures is fixed under
the quadrotor to keep the quality and stability of camera
images even in a severe flight situation with disturbance.
An RGB camera is attached to the quadrotor through the
gimbal, as shown in Fig. 8. This feature allows to easily
adjust the pan and tilt angles using iOS device, so that
scenes in various direction, i.e., pictures and movies, can
be obtained and viewed. It was confirmed from an exper-
iment that the pan and tilt angles could be well adjusted
using an iOS device.

3.3 Takeoff, hovering, and automatic return function

Beginners are not familiar with the operation of a quadro-
tor, so that they are more prone to have misoperation or
accidents. To cope with this problem, functions to automat-
ically act takeoff, landing, and hovering were developed
and implemented. These functions bring simpler and easier
operation for beginners. In addition, an autopilot function
for return was implemented to ensure that the quadrotor is
safe and it will not get lost due to an unpredictable trou-
ble, e.g., flying beyond the plan. For example, a quadrotor
could not be directly controlled and consequently went out
of view, i.e., if some undesirable signal interference or sig-
nal loss occurred.

To deal with such problems, the implemented automatic
return function reduces such a serious risk that the quad-
rotor is out of control and consequently is lost. Figure 9
shows a scene on the way returning to the initial preset
point in the automatic return function. Furthermore, Fig. 10
shows the detailed flight record, in which it was observed
that the quadrotor successfully flew from the point 1© to the
initial point 4© via points 2© and 3©. Furthermore, the time
variation of the distance to the initial point 4© in automatic
return function is shown in Fig. 11. It is verified from these

Fig. 6 Detailed data flows among the main platform of quadrotor,
embedded system, and guidance included, as shown in Fig. 4

Fig. 7 Model view controller (MVC) is used for developing an iOS
device application under the software development environment
called Xcode

Fig. 8 Gimbal and RGB camera fixed under the quadrotor

Fig. 9 Experimental scene of automatic return function a little bit
before landing

378 Artif Life Robotics (2017) 22:374–379

1 3

figures that the quadrotor could linearly return to the initial
point, where the operator set in advance using an iPhone.
Although the horizontal accuracy of landing in automatic
return was around ±1.5 m due to a single GPS receiver, it
will be reduced to ±2 cm using three GPS receivers.

3.4 Video preview function

In this subsection, basic principles and outline of video pre-
view function are described. This function was developed for
remote monitoring of surrounding environment viewed under
the quadrotor, by which a streaming movie (H.264) [10]
captured by an RGB camera fixed under the quadrotor can
be displayed on the iOS terminal via a remote controller C1,
as shown in Fig. 5. The framework of H.264 video transfer
system used in experiment is shown in Fig. 12. iOS Device
can get live H.264 video data from the RGB camera shown
in Fig. 8 using the Mobile SDK. The H.264 is a video coding
format that is currently one of the most commonly spread for-
mats for compression and distribution of video content.

The video previewer function for iOS devices was devel-
oped with “VideoPreviewer()” included in Mobile SDK.
“VideoPreviewer()” is a real-time preview function of
H.264 video data developed based on the RTP (real-time
transport protocol). The RTP was proposed by the Audio–
Video Transport Working Group of the Internet Engineer-
ing Task Force (IETF) and was described in RFC 3550
published in 2003 [11]. The RTP is an effective network
protocol for delivering audio and video data through IP
networks [12, 13]. The structure of the RTP file consists of
RTP header, NALU one, and H.264 video data, as shown in
Fig. 13 [11–13].

The software flow chart in the quadrotor-side algorithm
for sending H.264 video data to an iOS device is shown in
Fig. 14. First, the RGB camera’s video data are transmitted
to the image transmission system, as shown in Fig. 12. The
image transmission system decomposes the video data into
several small data packets called NALU (network abstrac-
tion layer unit) [10] to facilitate the fast transmission. The
image transmission system uses a broadcast mode simi-
lar to one-way broadcast systems. This can guarantee the
stability of transmission and its distance to improve flight
safety. Due to the process explained above, the image trans-
mission system can send a complete real-time video data to
the iOS device. The iOS device continuously receives, syn-
thesizes, and displays the video data for monitoring.

In the iOS device side shown in Fig. 12, several impor-
tant functions included in Mobile SDK shown in Fig. 4
were used to develop the video preview function. For
example, “self.fetchCamera()” can access the camera
data; “super.didReceiveMemoryWarning()” temporally

Fig. 10 Flight record of the quadrotor viewed using Google Earth

Fig. 11 Time variation of the distance to the initial point in auto-
matic return function

Fig. 12 Framework of image (H.264 video) transfer system, in
which NALU means network abstraction layer unit

Fig. 13 Structure of the RTP file

379Artif Life Robotics (2017) 22:374–379

1 3

stores the received data in the cache; “VideoPreviewer.
instance. start()” can read the cached data; and “VideoPre-
viewer. instance.set()” can display the cached data on the
screen. Figure 15 shows successful experimental scene of
the developed complete real-time video preview function.
Of course, video capture function will be able to be further
achieved in the future work.

4 Conclusions

In this study, a remote control system was focused and
designed for a quadrotor to remotely control it using an iOS
device. At first, three basic programs for obtaining compass

information, controlling a gimbal, autopilot function for
return were developed. Then, another function for remote
monitoring of surrounding environment under the quadro-
tor was developed, by which a streaming movie (H.264)
captured by an RGB camera fixed under the quadrotor
could be displayed on a remote iPhone terminal. The func-
tionality and effectiveness were evaluated and confirmed
through actual experiments carried out outdoors.

In future work, the operator will be able to send con-
trol commands, while remotely checking current quadro-
tor’s states and watching surrounding flight environment
only using an iOS device. In addition, the quadrotor will
be able to have abilities to automatically detect and avoid
obstacles during the flight, to arrive at a preset destination
for complete remote autopilot function, and to identify and
count moving objects using GPS and image processing
technologies.

References

 1. Iscold P, Pereira S, Torres A (2010) Development of a hand-launched
small UAV for ground reconnaissance. IEEE Trans Aerosp Elec-
tron Syst 46(1):335–348

 2. Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles, mod-
eling, estimation, and control of quadrotor. Robot Autom Mag
19(3):20–32

 3. Lim H, Park J, Lee D, Kim HJ (2012) Build your own quadrotor.
Robot Autom Mag 19(3):33–44

 4. Sanna A, Lamberti F, Paravati G, Manuri F (2013) A kinect-
based natural interface for quadrotor control. Entertain Comput
4(3):179–186

 5. Luxman R, Liu X (2015) Implementation of back-stepping integral
controller for a gesture driven quad-copter with human detection
and auto follow feature. In: Proceedings of 2015 second interna-
tional conference on computer science, computer engineering, and
social media (CSCESM), pp 134–138

 6. Kim J, Lee S, Ahn H et al (2013) Feasibility of employing a smart-
phone as the payload in a photogrammetric UAV system. ISPRS J
Photogramm Remote Sens 79:1–18

 7. Loianno G, Cross G, Qu C et al (2015) Flying smartphones: auto-
mated flight enabled by consumer electronics. IEEE Robot Autom
Mag 22(2):24–32

 8. Allen R, Pavone M, Schwager M (2016) Flying smartphones:
when portable computing sprouts wings. IEEE Pervas Comput
15(3):83–88

 9. Anderson F (2014) Xcode 5 start to finish: iOS and OS X develop-
ment (Developer’s Library). Addison-Wesley Professional, New
York

 10. Wenger S, Hannuksela MM, Stockhammer T et al (2005) RTP pay-
load format for H.264 video. Network Working Group, RFC 3984

 11. Schulzrinne H (2003) A transport protocol or real-time applica-
tions. Audio-Video Transport Working Group of the Internet Engi-
neering Task Force (IETF), RFC 3550

 12. Durresi A, Jain R (2005) RTP, RTCP, and RTSP—internet proto-
cols for real-time multimedia communication. The Industrial Infor-
mation Technology Handbook. CRC Press, Los Angeles

 13. Perkins C (2012) RTP: audio and video for the internet. Addison-
Wesley, New York

Fig. 14 Software flow chart of “RTP sent” in Fig. 12 for sending
H.264 video data used in quadrotor-side algorithm

Fig. 15 Experimental scene of video preview function on iPhone’s
display

	iOS application for quadrotor remote control
	Abstract
	1 Introduction
	2 Experimental system
	2.1 Hardware of quadrotor
	2.2 Software development environment

	3 Developed software and experiment
	3.1 Monitoring compass information of quadrotor
	3.2 Control function of gimbal
	3.3 Takeoff, hovering, and automatic return function
	3.4 Video preview function

	4 Conclusions
	References

