
Artif Life Robotics (2016) 21:500–509
DOI 10.1007/s10015-016-0305-6

1 3

ORIGINAL ARTICLE

A trajectory generation method for mobile robot based
on iterative extension‑like process

Kuniaki Kawabata1

Received: 18 June 2016 / Accepted: 14 July 2016 / Published online: 28 July 2016
© ISAROB 2016

discussed to generate a collision-free path with continu-
ous curvature. Moreover, the Bezier-curve-based approach
[8–11] is also reported. These works discussed single path
generation when the constraints are given. Considering
the long-term missions of the robot, there are the difficul-
ties to design whole trajectory/path by only a single pol-
ynomial curve. Because in order to design the trajectory/
path, appropriate high-order base curve and the number of
the constraints must be prepared. An approach to compose
a single complex path is to connect plural piecewise low
order curves. Choi et al. [12] described a method for con-
tinuous curvature paths based on a set of low order Bezier
curves. Zhou et al. [13] also proposed a method that cuts
the Bezier curve into pieces and reconnects the pieces to
constitute an improved Bezier curve. They assume that the
shape of the original curve are given.

Rapidly-exploring Random Trees (RRT), [14] is a nota-
ble path planning approach and the extended algorithm [15]
is also presented. A RRT method with closed-loop predic-
tion by the forward simulation utilizing the vehicle’s con-
troller model was developed for smoothing the path [16].
Instead of such forward simulation, the spline interpolation
between the sampled points was utilized for generating the
path [17]. An anytime path planning method : RRT∗ [18]
can obtain asymptotic optimal solution by a rewritten pro-
cess. However, a typical stop conditions for extending pro-
cess by RRT and RRT∗ is often that the path enters a certain
area near the target and there is a weakness on the accuracy
of reaching the target. Moreover, the shape of generated
path by RRT is often jagged and meandering although the
works attempt to smooth the path.

Considering the trajectory/path for long-term activities
of the mobile robot, a possible and practical approach is
to extend the trajectory on-line by maintaining continuity
with the existing trajectory and satisfying the constraints

Abstract  In this paper, we propose a trajectory generation
method for mobile robot based on iterative extension-like
process. Due to use mobile robots in the real world, trajec-
tory generation must be done depending on the faced situ-
ation on each occasion. Proposed method enables online
iterative trajectory extension process based on a low-order
polynomial curve named as trajectory segment. The way-
points on the existing trajectory segment and a waypoint
designated every fixed interval are the constraints to trigger
the trajectory extension. For maintaining the smooth conti-
nuity of the trajectory, the velocity state must be sustained
at the connecting point. Resultantly, the trajectory segments
are organized into a single smooth trajectory.

Keywords  Trajectory generation · Mobile robot · Iterative
extension-like process

1  Introduction

Intelligent mobile robotics can contribute to built a life
partner agent such as a porter [1], a guide [2, 3], a home
surveillance [4, 5] etc. Trajectory/path generation is an
important factor for mobile robots. Polynomial-curve-
based method is also a major approach [6–11]. The smooth-
ness and diversity are determined by the redundancy on the
degree of the polynomial. In [6], a polynomial is introduced
to define the curvature primitive for planning motion of a
vehicle. A cubic B-spline, is selected in [7]; the approach

 *	 Kuniaki Kawabata
	 kawabata.kuniaki@jaea.go.jp

1	 Japan Atomic Energy Agency, 1‑22, Yamadaoka, Naraha,
Futaba, Fukushima 979‑0513, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-016-0305-6&domain=pdf

501Artif Life Robotics (2016) 21:500–509	

1 3

on each occasion. Previous works [19] proposed a motion
generation method that utilizes a velocity profile based on
the cubic spline. can extend the velocity profile based on
time shifts. However, this method could only work with the
cubic spline polynomial. Our previous work has discussed
trajectory extension method based on iteratively designated
waypoint [20]. This method can derive trajectory segments
sequentially and passing through designated waypoints.
However, sometimes it cannot realize smooth continuity
because the trajectory is derived with only position-based
constraints of the waypoints. Therefore, we extended the
method to maintain smooth continuity between the polyno-
mial curve -based trajectory segments [21]. In this paper,
we described practical trajectory generation algorithm and
proposed method can realize to provide the types of the tra-
jectory for the mobile robots.

2 � Iterative trajectory extension‑like strategy

Polynomial-based approaches have the advantage of
expressing smooth curves with a small number of vari-
ables. Due to use mobile robots such as service purposes
in the real world, online trajectory generation must be done
depending on the faced situation on each occasion. Such
situation information are usually acquired when the robot
moves to a location. Moreover, it is required to generate
the trajectory continuously for long-term activity. However,
even when the polynomial-based approach is utilized, it is
difficult to design a single curve for the whole trajectory
during the mobile robot’s mission because high-order-
based polynomial curves need to be estimated and a certain
number of constraints are required to derive such a trajec-
tory. Regarding practical use, generally the situation and
environment in which the robot travels will possibly change
due to the appearance of the obstacles, etc.. In such cases,
online local trajectory re-planning is a suitable approach,
but such re-planning must be done by considering the con-
sistency with the previous trajectory like the continuity.
One possible solution is to extend the trajectory gradually
and iteratively based on the constraints. Figure 1 illustrates
the concept of such trajectory extension approach. The
approach generates another partial trajectory, called trajec-
tory segment, online iteratively by referring to the current
trajectory segment and additional waypoints. For realizing
continuous trajectory extension, both the interpolation of
all waypoints and the continuity between current and the
next trajectory segments must be considered. As an exam-
ple, Fig. 1 shows two trajectory segments and left one is
the current trajectory segment. They have overlapped time

duration and there are common waypoints between them.
Concretely speaking, iterative trajectory extension process
requires the propagation of the waypoints on the existing
trajectory segment, newly designated waypoint and the
smooth continuity between the trajectory segments as the
constraints. Here, we assume that a newly designated way-
point is provided from like the environment recognition
process every fixed time period. For maintaining the con-
tinuity between the trajectory segments, the state at such
waypoint on the current trajectory segment must be main-
tained. Thus, the first waypoint is the connecting point for
the current and the next trajectory segment and becomes
the original point of the new trajectory segment. The pass-
ing time of each waypoints can also be propagated between
the trajectory segments. Additionally, a primary differenti-
ated state at the connecting point also must be maintained
to realize the continuity between the trajectory segments As
one more additional condition, it should be guaranteed to
suspend extending the trajectory at anytime for realizing to
design various types of the trajectory. The terminal velocity
of every trajectory segment must be set to stop state. This
condition contributes the robot can stop at the end of the
final trajectory segment spontaneously. An application that
this kind of approach can contribute is human following
system like porter robots that required to generate the tra-
jectory depending on master’s motion. In such application,
environment recognition processing with the sensor like the
camera and laser range finder can be considered to provide
the candidate of additional waypoint.

3 � Iterative calculation of trajectory segment

In this section, we describe iterative trajectory genera-
tion method. Initial trajectory segment is either given and

Fig. 1   Proposed online iterative trajectory extension scheme based
on trajectory segment

502	 Artif Life Robotics (2016) 21:500–509

1 3

the waypoint for extension process is designated at a fixed
interval. The equation of the k-th trajectory segment based
on n-th polynomial curve is expressed. k refers to the num-
ber of iterative calculations.

where kAi is the coefficient vector of the k-th trajectory
segment and is valid under the conditions of Eq. (2). Thus,
0f (t) is the initial trajectory segment. �t is the sampling
period for determining the next trajectory segment that
passes through additional waypoints, and m�t is the time
period of each trajectory segment. As mentioned above,
the iterative trajectory extension should be considered to
design resultantly long term smooth trajectory. For this pur-
pose, we first describe the conditions related to the way-
points. We can also obtain below equations of the (k + 1)-th
trajectory segment.

When comparing Eqs. (3) with (1), an overlapped dura-
tion exists. Thus, there are common waypoints at
t = (k + 1)�t, (k + 2)�t · · · (k + m)�t as follows.

k+1f ((k + m + 1)�t) is an additional designated waypoint
for extension-like process. Thus, from Eqs. (5)–(7) and
waypoint k+1f ((k + m+ 1)�t), we can obtain the follow-
ing conditions.

(1)
kf (t) =

[

kx(t)
ky(t)

]

=

n
∑

i=0

kAit
i ∈ R

2

(2)t ∈[k�t, (k + m)�t]

(3)
k+1f (t) =

n
∑

i=0

k+1Ait
i ∈ R

2

(4)t ∈[(k + 1)�t, (k + m+ 1)�t]

(5)kf ((k + 1)�t) = k+1f ((k + 1)�t)

(6)kf ((k + 2)�t) = k+1f ((k + 2)�t)

(7)

...

kf ((k + m)�t) = k+1f ((k + m)�t)

(8)
kf ((k + 1)�t) =

n
∑

i=0

k+1Ai{(k + 1)�t}i

(9)
kf ((k + 2)�t) =

n
∑

i=0

k+1Ai{(k + 2)�t}i

Like Eqs. (8)–(10), the waypoints of the k-th trajectory
segment is transferred to the (k + 1)-th trajectory segment,
maintaining the passing time. Additional designated way-
points at the time (k + m+ 1)�t is set in the row of the
waypoints on (k + 1)-th trajectory segment. Moreover, we
also know the relationship as follows.

These conditions ensure that trajectory segments pass
through both the common waypoints and the added desig-
nated waypoint.

At next, we introduce the velocity constraint meant to
guarantee a smooth trajectory extension. We apply the min-
imal velocity constraint and may focus on the smoothness
of the curve at time (k + 1)�t because there is transferring
point between the nighboring trajectory segments. Here, a
primary differentiation of the k-th trajectory segment kf (t)
is expressed in below equation.

The velocity constraint at time (k + 1)�t between k-th and
(k + 1)-th trajectory segments is expressed as follows.

Another velocity constraint is to set the terminal velocity of
every trajectory segment to zero. This conditions is intro-
duced to realize to finish extending the trajectory arbitrarily
as follows.

(10)

...

kf ((k + m)�t) =

n
∑

i=0

k+1Ai{(k + m)�t}i

(11)
k+1f ((k + m+ 1)�t) =

n
∑

i=0

k+1Ai{(k + m+ 1)�t}i

(12)k+1f ((k + 1)�t) =k+1 A0 =
k f ((k + 1)�t)

(13)
k ḟ (t) =

[

k ẋ(t)
k ẏ(t)

]

=

n
∑

i=1

i ·k Ait
i−1 ∈ R

2

(14)t ∈ [k�t, (k + m)�t]

(15)k ḟ ((k + 1)�t) =k+1 ḟ ((k + 1)�t)

(16)=

n
∑

i=1

i · k+1Ai((k + 1)�t)i−1

(17)

k+1 ḟ ((k + m+ 1)�t) =

n
∑

i=1

i k+1Ai((k + m+ 1)�t)i−1

=O2

503Artif Life Robotics (2016) 21:500–509	

1 3

where, O2 ∈ R
2 is a zero vector. This guarantees the termi-

nal velocity of each trajectory segment is zero.
By summarizing the above-mentioned constraints (8)–

(12), (16) and (17), we obtain below equation.

where

Here, I2 ∈ R
2×d is an identity matrix. From Eq. (12), we

obtain kf ((k + 1)�t)−k+1 A0 = O2 that is for first factor
of H. The solution of Eq. (18) is derived as follows.

where D+ indicates the pseudo-inverse matrix of D. Here,
we can obtain all coefficients of the (k + 1)-th trajectory
segment k+1f (t), {t ∈ [(k + 1)�t, (k + m+ 1)�t]} by
these calculations.

4 � Trajectory generation sequence

In this section, practical sequence for iterative trajectory
generation is discussed. Algorithm 1 is for main routine
and Algorithm 2 is a subroutine for calculating the next
trajectory segment. In Algorithm 1, firstly initialization
process are done by setting an initial trajectory segment
0f (t), to which k = 0 is assigned. t0 indicates the given start

(18)H =D ·











k+1A1
k+1A2

...
k+1An











∈ R
2(m+3)

(19)H =























kf ((k + 1)�t)−k+1 A0
kf ((k + 2)�t)−k+1 A0

...
kf ((k + m)�t)−k+1 A0

k+1f ((k + m+ 1)�t)−k+1 A0
k ḟ ((k + 1)�t)

O2























(20)
D =













(k + 1)�tI2 {(k + 1)�t}2I2 · · · {(k + 1)�t}nI2
(k + 2)�tI2 {(k + 2)�t}2I2 · · · {(k + 2)�t}nI2

.

.

.

.

.

.

.

.

.

.

.

.

(k + m)�tI2 {(k + m)�t}2I2 · · · {(k + m)�t}nI2
(k + m+ 1)�tI2 {(k + m+ 1)�t}2I2 · · · {(k + m+ 1)�t}nI2

I2 2{(k + 1)�t}I2 · · · n{(k + 1)�t}n−1I2
I2 2{(k + m+ 1)�t}I2 · · · n{(k + m+ 1)�t}n−1I2













∈ R
2(m+3)×2n

(21)















k+1A1
k+1A2
k+1A3

...
k+1An















=







D−1 · H for n = m+ 3

D+ · H for n > m+ 3

time of the calculation and t0 = 0 is set for first start. The
trajectory extension calculation is done every time period
�t . After getting m waypoints from the initial trajectory
segment, the extension process starts. It is checked
whether the process is just started utilizing k and the base
time is set. GetCurrentTime() is a function for getting
current time. The sampled waypoints on kf (t) are diverted
as the waypoints on k+1f (t). Additionally, the velocity

504	 Artif Life Robotics (2016) 21:500–509

1 3

constraints at t = (k + 1)�t and t = (k + m+ 1)�t
are also given. For providing a designated waypoint for
trajectory extension, a function DesignateWaypoint()
is called. In this paper, it is not the main topic how to
determine the waypoint and we assume that a waypoint is
provided by DesignateWaypoint( ). DesignateWaypoint()
returns the value of “NONE” when more trajectory
extension is not required. In such case, the trajectory ends
at the terminal point of k-th trajectory segment. When
DesignateWaypoint() returned the waypoint, it is set as
k+1f ((k + m + 1)�t). Here, all constraints for deriving
k+1f (t) (t ∈ [(k + 1)�t, (k + m+ 1)�t]) are prepared
and a function NextTrajectorySegment(kf (t), n,m) which
is described in Algorithm 2 is called for calculating the
coefficient vectors k+1A0,

k+1 A1,
k+1 A2, . . . ,

k+1 An of
k+1f (t). Here, it is done to generate k+1f (t) with the
coefficient vectors. Mobile robot generally has the kinematic
restrictions for its practicable motion. DesignateWaypoint()
provides a waypoint however generated trajectory segment
must meet such restrictions. CheckRestrictions (k+1f (t)) is
called for checking to meet the criteria. Restrictions for the
mobile robot are expressed as follows.

where,

s is the distance along trajectory segment from
(k + 1)�t to (k + m+ 1)�t. k+1θ(t) is the pos-
ture along (k + 1)-th trajectory segment and d k+1θ(t)

ds

is the curvature value. Vmax and Cmax are the maxi-
mum values for the motion velocity and the curva-
ture. When these are not satisfied, derived (k + 1)-th
trajectory segment is not qualified. check_result that is the
return value from CheckRestrictions (k+1f (t)) gets “OK”
when k+1f (t) was qualified, otherwise it returns “NG” to
check_result. In the case of check_result == “OK”, k is
increased by 1 and then the calculation proceeds to the next
turn. If �t is enough larger than calculation time of the tra-
jectory segment, there is the possibility that several re-cal-
culations with the other waypoints to find the qualified one
can be acceptable. Therefore, in this sequence, processing

(22)arg max(k+1)�t≤t≤(k+m+1)�t

∣

∣

∣

k+1 ḟ (t)

∣

∣

∣
≤Vmax

(23)arg max(k+1)�t≤t≤(k+m+1)�t

∣

∣

∣

∣

∣

d k+1θ(t)

ds

∣

∣

∣

∣

∣

≤Cmax

(24)
∣

∣

∣

k+1 ḟ (t)

∣

∣

∣
=

{

{k+1ẋ(t)}2 + {k+1ẏ(t)}2
}

1
2

(25)

∣

∣

∣

∣

∣

d k+1θ(t)

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k+1ẋ(t)k+1ÿ(t)−k+1 ẍ(t)k+1ẏ(t)
{

{k+1ẋ(t)}2 + {k+1ẏ(t)}2
}

3
2

∣

∣

∣

∣

∣

∣

time �τ for finding (k + 1)-th trajectory segment are meas-
ured to check whether there is still the margin for time
to calculate with the other designated waypoints. When
k+1f (t) was found after the trials within the time period
�τ, the value check_result is set to “OK”. This means to
leave this seeking process and proceed to the next turn by
incrementing k. In case of that selected candidates of the
waypoints can not qualify the criteria during �t , it means
that the trajectory extension process is once suspended by
state ← STOP. This means that the robot stops at the end
of the current trajectory segment. After stopping, it can take
much time to find the way to go and it is possible to restart
to generate the trajectory when the way was found. When
state becomes “STOP”, this algorithm is once stopped. For
restarting the extension process after that, t0 is set to the
current time and Algorithm 1 is called. By this sequence,
the trajectory including temporal stoppage can be designed
by utilizing proposed trajectory segment calculation.

5 � Simulation experiments

Here, we performed computer simulations. The waypoints
are provided manually and the criteria Vmax = 0.4 [m/sec]
and Cmax = 5.0 were set in following cases.

5.1 � Forward motion

For Case 1, �t = 2.0[s] and m = 2 and also below initial
trajectory segment (n = 5, k = 0) were set.

The waypoints on the this initial trajectory segment are
selected as [0.0, 0.0]T at 0.0[s], [0.125, 0.0]T at 2.0[s] and
[0.4, 0.0]T at 4.0[s]. The velocity vector at the end points
of the trajectory segment become [0.0, 0.0]T To execute
a trajectory extension based on this initial trajectory, we
assigned a designated waypoint to each trajectory seg-
ment. For Case 1 , we prepared designated waypoints
[0.65, 0.1]T , [0.9, 0.175]T, [1.15, 0.2]T, [1.4, 0.2]T and
[1.65, 0.2]T for the 1st, 2nd, 3rd, 4th, and 5th trajectory seg-
ments, respectively. Figure 2a shows the above-mentioned
initial trajectory. Figure 2b, c, d, e, and f also show exten-
sion results for each designated waypoint. Circles indicate
the locations of designated waypoints. of the trajectory
segment had overlapped duration with the next trajectory
segment. For example, initial trajectory segment during

(26)0f (t) =

5
∑

i=0

0Ait
i {t ∈ [0, 4]}

(27)=

[

1/40

0

]

t3 +

[

−3/640

0

]

t4

505Artif Life Robotics (2016) 21:500–509	

1 3

t ∈ [0, 2.0] was used to organize the trajectory, and the one
during t ∈ [2.0, 4.0] was later renewed by 1-st trajectory
segment; the 1-st trajectory segment during t ∈ [2.0, 4.0]
was also used to organize the trajectory. The following
trajectory segments were also derived in a similar manner.
By this procedure, the resultant trajectory (t ∈ [0.0, 14.0])
shown in Fig. 2g was provided and pass through all desig-
nated waypoints.

For Case 2 (Fig. 3), the parameters for exten-
sion and the initial trajectory was the same with Case
1(�t = 2.0[s] , m = 2 and Eq. (26)). Another set of
designated waypoints [0.6,−0.12]T , [0.775,−0.25]T,
[1.0,−0.225]T , [1.15,−0.04]T, [1.125, 0.175]T, [1.0, 0.32]T
and [0.78, 0.35]T was provided. Figure 3 indicates gener-
ated trajectory segments and its development procedure.
Figure 3g shows the resultant trajectory (t ∈ [0.0, 18.0]).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1
0

0.1
0.2

x[m]

y[
m
]

(a) Initial trajectory (n = 5, ∆t = 2.0, m=2) :
designated waypoint [0.65, 0.1]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(b) 1st trajectory segment, t ∈ [2.0, 6.0] :
designated waypoint [0.9, 0.175]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(c) 2nd trajectory segment, t ∈ [4.0, 8.0] :
designated waypoint [1.15, 0.2]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(d) 3rd trajectory segment, t ∈ [6.0, 100] :
designated waypoint [1.4, 0.2]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(e) 4th trajectory segment, t ∈ [8.0, 12.0] :
designated waypoint [1.65, 0.2]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(f) 5th trajectory segment, t ∈ [10.0, 14.0]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1

0
0.1
0.2

x[m]

y[
m
]

(g) Resultant trajectory, t ∈ [0.0, 14.0], in Case 1

Fig. 2   Simulation results: case 1

506	 Artif Life Robotics (2016) 21:500–509

1 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(a) Initial trajectory (n = 5, ∆t = 2.0, m=2) :
designated waypoint [0.6,−0.12]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(c) 2nd trajectory segment, t ∈ [4.0, 8.0] :
designated waypoint [1.0,−0.225]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(d) 3rd trajectory segment, t ∈ [6.0, 100] :
designated waypoint [1.15,−0.04]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(e) 4th trajectory segment, t ∈ [8.0, 12.0] :

designated waypoint [1.125, 0.175]T

(b) 1st trajectory segment, t ∈ [2.0, 6.0] :
designated waypoint [0.775,−0.25]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(f) 5th trajectory segment, t ∈ [10.0, 14.0] :

designated waypoint [1.0, 0.32]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(g) 6th trajectory segment, t ∈ [12.0, 16.0] :
designated waypoint [0.78, 0.35]T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(h) 7th trajectory segment, t ∈ [14.0, 18.0]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-0.4

-0.2

0

0.2

0.4

x[m]

y[
m
]

(i) Resultant trajectory, t ∈ [0.0, 18.0], in Case 2

Fig. 3   Simulation results: case 2

507Artif Life Robotics (2016) 21:500–509	

1 3

The set of designated waypoints was only different from
Case 1, but the different smooth trajectory was generated.

5.2 � Stop‑and‑go motion and back‑up motion

As a trial for the other type of the trajectory generation, it
was done to verify to generate the “stop-and-go” trajectory
by proposed method. By proposed method, it is possible
to stop once at the end of the current trajectory segment
when the robot must be stop intentionally by some reasons
or the qualified trajectory segment can not be found dur-
ing �t. Case 3 (Fig. 4) shows the result of a trajectory for
“stop-and-go” motion. Figure 4a shows the resultant trajec-
tory and Fig. 4b indicates time development of the trajec-
tory and the velocity. Solid line in the graphs of Fig. 4b
indicates the position or velocity in the x axis and dotted
line indicates the position or velocity in the y axis. Initial
trajectory was the same with Eq. (26) again. We also set
the waypoints [0.65, 0.0]T , [0.9, 0.0]T for first phase of the
extension. After designating the waypoint [0.9, 0.0]T for
2nd one, the waypoint was not provided. Therefore, after
reaching to [0.9, 0.0]T at t = 8.0[s], the extension process
was interrupted. Thus, the trajectory stayed at [0.9, 0.0]T
temporary for 2.0[s]. During t ∈ [8.0, 10.0], the trajectory
was not evolved and the velocity became zero. As second
phase of the extension, when t = 10.0, below initial trajec-
tory segment for restart was set.

This is 4th trajectory segment and has the same curve
shape with the initial trajectory segment. The waypoint
[1.05, 0.0]T was designated for restarting the second phase
of the trajectory. After that, the trajectory extension pro-
cess was done with designated waypoints and it was termi-
nated at [1.55, 0.0]T again. This case shows that the trajec-
tory extension is ended spontaneously by interrupting to
designate new waypoint. It is because the condition of Eq.
(17) was introduced. By the condition, the velocity vec-
tor at the end point of every trajectory segment becomes
Od. When the trajectory extension proceeds, the velocity
vector at (k + 1)�t is forwarded to generate the next tra-
jectory segment and the velocity profile is renewed. From
Fig. 4b, the behavior of the velocity was emerged by only
designating the waypoints and it could be confirmed that
the velocity was transferred between k-th and (k + 1)-th
trajectory segment at every �t. As the result of Case 3,
we verified that the “stop-and-go”? trajectory could be
generated.

(28)4f (t) =

5
∑

i=0

4Ai(t − 10)i {t ∈ [10, 14]}

(29)=

[

0.9

0

]

+

[

1/40

0

]

(t − 10)3 +

[

−3/640

0

]

(t − 10)4

One more important behavior of the mobile robot is
back-up motion. Here, we also attempt to verify to generate
the trajectory of back-up motion. The same initial condi-
tions with Case 3 are utilized. The waypoints [0.65, 0.0]T
and [0.9, 0.0]T are designated for first phase of the trajec-
tory extension. After designating the waypoint [0.9, 0.0]T,
the next waypoint was not provided and the trajectory was
suspended at [0.9, 0.0]T from t = 8.0[s] to t = 10.0[s]. After
that, second phase of trajectory extension restarts by setting
the below trajectory segment at t = 10.0[s].

Then, the waypoint [0.67,−0.25]T is designated and
the trajectory extension was proceeded until t = 16.0[s] .

(30)4f (t) =

5
∑

i=0

4Ai(t − 10)i {t ∈ [10, 14]}

(31)

=

[

0.9

0

]

+

[

−3/80

1/800

]

(t − 10)2

+

[

1/160

−11/1600

]

(t − 10)3 +

[

0

1/800

]

(t − 10)4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2
-0.1
0

0.1
0.2

x[m]

y[
m
]

(a) Resultant trajectory, t ∈ [0.0, 16.0],
in Case 3

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time[sec]

po
si
tio

n[
m
]

0 2 4 6 8 10 12 14 16

-0.2
-0.1
0

0.1
0.2

time[sec]

ve
lo
ci
ty
[m

/s
ec

]

(b) Time development of the trajectory and
the velocity

Fig. 4   Simulation results: case 3

508	 Artif Life Robotics (2016) 21:500–509

1 3

Figure 5a shows the resultant trajectory for a back-up
motion and Fig. 5b shows the behavior of the position and
the velocity in x and y.

Moreover, from these simulation results, it was also con-
firmed that the velocity at the end point of each trajectory
segment becomes [0.0, 0.0]T. This characteristic provided
by proposed method is useful that the mobile robot can stop
traveling at the end point of the current trajectory segment
without adding any special conditions and calculations.
Some of these trajectory are difficult to express with a sin-
gle polynomial and it is an advantage of proposed method
based on iterative extension concept.

6 � Conclusions

In this paper, we described an online trajectory extension
method for mobile robots. Our approach iteratively gener-
ates the next trajectory segment based on constraints from
the existing trajectory segments and additional designated
waypoints. It utilizes a polynomial curve as the basis of tra-
jectory segments and derives the coefficients of the curve
iteratively. The whole trajectory is resultantly organized by

combining these generated trajectory segments. The results
of computer simulations show that the proposed method
accomplishes trajectory extension by depending on the
constraints of the existing trajectory segment and desig-
nated waypoint.

References

	 1.	 Sakamoto N, Okugawa M (2012) Human following control of
porter robot with velocity vectors. In: Proceedings of ASME
2012 5th annual dynamic systems and control conference joint
with the JSME 2012 11th motion and vibration conference, pp
817–821

	 2.	 Tachi S, Tanie K, Komoriya K, Abe M (1985) MELDOG: the
guide dog robot. IEEE Trans Biomed Eng 32(7):256–270

	 3.	 Karreman DE , van Dijk EMAG, Evers V (2012) Using the visi-
tor experiences for mapping the possibilities of implementing a
robotic guide in outdoor sites. In: Proceedings of the 21st IEEE
international symposium on robot and human interactive com-
munication, pp 1059–1065

	 4.	 Zacharie M (2010) Security guard robot detecting human
using Gaussian distribution histogram method. J Comput Sci
6(10):1144–1150

	 5.	 Lee H-T, Lin W-C, Huang C-H (2011) Indoor surveillance secu-
rity robot with a self-propelled patrolling vehicle. J Robot Vol
2011. Article ID 197105. doi:10.1155/2011/197105

	 6.	 Kelly A, Nagy B (2003) Reactive nonholonomic trajectory
generation via parametric optimal control. Int J Robot Res
22(7–8):583–601

	 7.	 Maekawa T, Noda T, Tamura Ozaki T, Machida K (2010) Cur-
vature continuous path generation for autonomous vehicle using
B-spline curves. Comput Aided Des 42:350–359

	 8.	 Bezier P (1986) Courbes et surfaces. Mathmatiques et CAO,
Hermes, Paris

	 9.	 Jolly KG, Kumar RS, Vijayakumar R (2009) A Bezier curve
based path planning in a multi-agent robot soccer system without
violating the acceleration limits. Robot Auton Syst 57:23–33

	10.	 Ma L, Yang J, Zhang M (2012) A two-level path planning
method for on-road autonomous driving. In: Proceedings of
international conference on intelligent system design and engi-
neering application, pp 661–664

	11.	 Kawabata K, Ma L, Xue J, Zheng N (2015) A path generation
for automated vehicle based on bezier curve and via-points.
Robot Auton Syst 74:243–252

	12.	 Choi JW, Curry RE, Elkaim GH (2010) Continuous curvature
path generation based on bezier curves for autonomous vehicles.
IAENG J Appl Math 40(2):IJAM_40_2_07

	13.	 Zhou F, Song B, Tian G (2011) Bezier curve based smooth path
planning for mobile robot. J Inf Comput Sci 8(12):2441–2450

	14.	 LaValle SM, Kuffner JJ (2001) Randomized kinodynamic plan-
ning. Int J Robot Res 20(5):378–400

	15.	 Melchior NA, Simmons R (2007) Particle RRT for path planning
with uncertainty. In: Proceedings of 2007 IEEE international
conference on robotics and automation, pp 1617–1624

	16.	 Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E, How
JP (2009) Real-time motion planning with applications to
autonomous urban driving. IEEE Trans Control Syst Technol
17(5):1105–1118

	17.	 Yang K, Moon S, Yoo S, Kang J, Doh NL, Kim NB, Joo S (2014)
Spline-based RRT path planner for non-holonomic robots. J
Intell Robot Syst 73:763–782

	18.	 Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011)
Anytime motion planning using the RRT . In: Proceedings of

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.2
-0.1
0

0.1
0.2

x[m]

y[
m
]

(a) Resultant trajectory, t ∈ [0.0, 16.0],
in Case 4

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

time[sec]

po
si
tio

n[
m
]

0 2 4 6 8 10 12 14 16

-0.2
-0.1
0

0.1
0.2

time[sec]

ve
lo
ci
ty
[m

/s
ec

]

(b) Time development of the trajectory
and the velocity

Fig. 5   Simulation results: case 4

http://dx.doi.org/10.1155/2011/197105

509Artif Life Robotics (2016) 21:500–509	

1 3

IEEE international conference on robotics and automation, pp
1478–1483

	19.	 Paromtchik I, Asama H (2000) A motion generation approach for
an omnidirectional vehicle. In: Proceedings of international con-
ference on robotics and automation, pp 1213–1218

	20.	 Kawabata K, Xue J, Ma L, Zheng N (2014) A sequential path
extension method for mobile robot. Proc IEEE TENCON
2014:075

	21.	 Kawabata K, Xue J, Ma L, Yokota S, Mitsukura Y, Zheng N
(2015) Iterative polynomial-based trajectory extension for
mobile robot. In: Proceedings of 2015 IEEE international confer-
ence on advanced intelligent mechatronics, pp 255–260

	A trajectory generation method for mobile robot based on iterative extension-like process
	Abstract
	1 Introduction
	2 Iterative trajectory extension-like strategy
	3 Iterative calculation of trajectory segment
	4 Trajectory generation sequence
	5 Simulation experiments
	5.1 Forward motion
	5.2 Stop-and-go motion and back-up motion

	6 Conclusions
	References

