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discussed to generate a collision-free path with continu-
ous curvature. Moreover, the Bezier-curve-based approach 
[8–11] is also reported. These works discussed single path 
generation when the constraints are given. Considering 
the long-term missions of the robot, there are the difficul-
ties to design whole trajectory/path by only a single pol-
ynomial curve. Because in order to design the trajectory/
path, appropriate high-order base curve and the number of 
the constraints must be prepared. An approach to compose 
a single complex path is to connect plural piecewise low 
order curves. Choi et al. [12] described a method for con-
tinuous curvature paths based on a set of low order Bezier 
curves. Zhou et  al. [13] also proposed a method that cuts 
the Bezier curve into pieces and reconnects the pieces to 
constitute an improved Bezier curve. They assume that the 
shape of the original curve are given.

Rapidly-exploring Random Trees (RRT), [14] is a nota-
ble path planning approach and the extended algorithm [15] 
is also presented. A RRT method with closed-loop predic-
tion by the forward simulation utilizing the vehicle’s con-
troller model was developed for smoothing the path [16]. 
Instead of such forward simulation, the spline interpolation 
between the sampled points was utilized for generating the 
path [17]. An anytime path planning method : RRT∗ [18] 
can obtain asymptotic optimal solution by a rewritten pro-
cess. However, a typical stop conditions for extending pro-
cess by RRT and RRT∗ is often that the path enters a certain 
area near the target and there is a weakness on the accuracy 
of reaching the target. Moreover, the shape of generated 
path by RRT is often jagged and meandering although the 
works attempt to smooth the path.

Considering the trajectory/path for long-term activities 
of the mobile robot, a possible and practical approach is 
to extend the trajectory on-line by maintaining continuity 
with the existing trajectory and satisfying the constraints 

Abstract  In this paper, we propose a trajectory generation 
method for mobile robot based on iterative extension-like 
process. Due to use mobile robots in the real world, trajec-
tory generation must be done depending on the faced situ-
ation on each occasion. Proposed method enables online 
iterative trajectory extension process based on a low-order 
polynomial curve named as trajectory segment. The way-
points on the existing trajectory segment and a waypoint 
designated every fixed interval are the constraints to trigger 
the trajectory extension. For maintaining the smooth conti-
nuity of the trajectory, the velocity state must be sustained 
at the connecting point. Resultantly, the trajectory segments 
are organized into a single smooth trajectory.

Keywords  Trajectory generation · Mobile robot · Iterative 
extension-like process

1  Introduction

Intelligent mobile robotics can contribute to built a life 
partner agent such as a porter [1], a guide [2, 3], a home 
surveillance [4, 5] etc. Trajectory/path generation is an 
important factor for mobile robots. Polynomial-curve-
based method is also a major approach [6–11]. The smooth-
ness and diversity are determined by the redundancy on the 
degree of the polynomial. In [6], a polynomial is introduced 
to define the curvature primitive for planning motion of a 
vehicle. A cubic B-spline, is selected in [7]; the approach 
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on each occasion. Previous works [19] proposed a motion 
generation method that utilizes a velocity profile based on 
the cubic spline. can extend the velocity profile based on 
time shifts. However, this method could only work with the 
cubic spline polynomial. Our previous work has discussed 
trajectory extension method based on iteratively designated 
waypoint [20]. This method can derive trajectory segments 
sequentially and passing through designated waypoints. 
However, sometimes it cannot realize smooth continuity 
because the trajectory is derived with only position-based 
constraints of the waypoints. Therefore, we extended the 
method to maintain smooth continuity between the polyno-
mial curve -based trajectory segments [21]. In this paper, 
we described practical trajectory generation algorithm and 
proposed method can realize to provide the types of the tra-
jectory for the mobile robots.

2 � Iterative trajectory extension‑like strategy

Polynomial-based approaches have the advantage of 
expressing smooth curves with a small number of vari-
ables. Due to use mobile robots such as service purposes 
in the real world, online trajectory generation must be done 
depending on the faced situation on each occasion. Such 
situation information are usually acquired when the robot 
moves to a location. Moreover, it is required to generate 
the trajectory continuously for long-term activity. However, 
even when the polynomial-based approach is utilized, it is 
difficult to design a single curve for the whole trajectory 
during the mobile robot’s mission because high-order-
based polynomial curves need to be estimated and a certain 
number of constraints are required to derive such a trajec-
tory. Regarding practical use, generally the situation and 
environment in which the robot travels will possibly change 
due to the appearance of the obstacles, etc.. In such cases, 
online local trajectory re-planning is a suitable approach, 
but such re-planning must be done by considering the con-
sistency with the previous trajectory like the continuity. 
One possible solution is to extend the trajectory gradually 
and iteratively based on the constraints. Figure 1 illustrates 
the concept of such trajectory extension approach. The 
approach generates another partial trajectory, called trajec-
tory segment, online iteratively by referring to the current 
trajectory segment and additional waypoints. For realizing 
continuous trajectory extension, both the interpolation of 
all waypoints and the continuity between current and the 
next trajectory segments must be considered. As an exam-
ple, Fig.  1 shows two trajectory segments and left one is 
the current trajectory segment. They have overlapped time 

duration and there are common waypoints between them. 
Concretely speaking, iterative trajectory extension process 
requires the propagation of the waypoints on the existing 
trajectory segment, newly designated waypoint and the 
smooth continuity between the trajectory segments as the 
constraints. Here, we assume that a newly designated way-
point is provided from like the environment recognition 
process every fixed time period. For maintaining the con-
tinuity between the trajectory segments, the state at such 
waypoint on the current trajectory segment must be main-
tained. Thus, the first waypoint is the connecting point for 
the current and the next trajectory segment and becomes 
the original point of the new trajectory segment. The pass-
ing time of each waypoints can also be propagated between 
the trajectory segments. Additionally, a primary differenti-
ated state at the connecting point also must be maintained 
to realize the continuity between the trajectory segments As 
one more additional condition, it should be guaranteed to 
suspend extending the trajectory at anytime for realizing to 
design various types of the trajectory. The terminal velocity 
of every trajectory segment must be set to stop state. This 
condition contributes the robot can stop at the end of the 
final trajectory segment spontaneously. An application that 
this kind of approach can contribute is human following 
system like porter robots that required to generate the tra-
jectory depending on master’s motion. In such application, 
environment recognition processing with the sensor like the 
camera and laser range finder can be considered to provide 
the candidate of additional waypoint.

3 � Iterative calculation of trajectory segment

In this section, we describe iterative trajectory genera-
tion method. Initial trajectory segment is either given and 

Fig. 1   Proposed online iterative trajectory extension scheme based 
on trajectory segment
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the waypoint for extension process is designated at a fixed 
interval. The equation of the k-th trajectory segment based 
on n-th polynomial curve is expressed. k refers to the num-
ber of iterative calculations.

where kAi is the coefficient vector of the k-th trajectory 
segment and is valid under the conditions of Eq. (2). Thus, 
0f (t) is the initial trajectory segment. �t is the sampling 
period for determining the next trajectory segment that 
passes through additional waypoints, and m�t is the time 
period of each trajectory segment. As mentioned above, 
the iterative trajectory extension should be considered to 
design resultantly long term smooth trajectory. For this pur-
pose, we first describe the conditions related to the way-
points. We can also obtain below equations of the (k + 1)-th  
trajectory segment.

When comparing Eqs. (3) with (1), an overlapped dura-
tion exists. Thus, there are common waypoints at 
t = (k + 1)�t, (k + 2)�t · · · (k + m)�t as follows.

k+1f ((k + m + 1)�t) is an additional designated waypoint 
for extension-like process. Thus, from Eqs. (5)–(7) and 
waypoint k+1f ((k + m+ 1)�t), we can obtain the follow-
ing conditions.

(1)
kf (t) =

[

kx(t)
ky(t)

]

=

n
∑

i=0

kAit
i ∈ R

2

(2)t ∈[k�t, (k + m)�t]

(3)
k+1f (t) =

n
∑

i=0

k+1Ait
i ∈ R

2

(4)t ∈[(k + 1)�t, (k + m+ 1)�t]

(5)kf ((k + 1)�t) = k+1f ((k + 1)�t)

(6)kf ((k + 2)�t) = k+1f ((k + 2)�t)

(7)

...

kf ((k + m)�t) = k+1f ((k + m)�t)

(8)
kf ((k + 1)�t) =

n
∑

i=0

k+1Ai{(k + 1)�t}i

(9)
kf ((k + 2)�t) =

n
∑

i=0

k+1Ai{(k + 2)�t}i

Like Eqs. (8)–(10), the waypoints of the k-th trajectory 
segment is transferred to the (k + 1)-th trajectory segment, 
maintaining the passing time. Additional designated way-
points at the time (k + m+ 1)�t is set in the row of the 
waypoints on (k + 1)-th trajectory segment. Moreover, we 
also know the relationship as follows.

These conditions ensure that trajectory segments pass 
through both the common waypoints and the added desig-
nated waypoint.

At next, we introduce the velocity constraint meant to 
guarantee a smooth trajectory extension. We apply the min-
imal velocity constraint and may focus on the smoothness 
of the curve at time (k + 1)�t because there is transferring 
point between the nighboring trajectory segments. Here, a 
primary differentiation of the k-th trajectory segment kf (t) 
is expressed in below equation.

The velocity constraint at time (k + 1)�t between k-th and 
(k + 1)-th trajectory segments is expressed as follows.

Another velocity constraint is to set the terminal velocity of 
every trajectory segment to zero. This conditions is intro-
duced to realize to finish extending the trajectory arbitrarily 
as follows.

(10)

...

kf ((k + m)�t) =

n
∑

i=0

k+1Ai{(k + m)�t}i

(11)
k+1f ((k + m+ 1)�t) =

n
∑

i=0

k+1Ai{(k + m+ 1)�t}i

(12)k+1f ((k + 1)�t) =k+1 A0 =
k f ((k + 1)�t)

(13)
k ḟ (t) =

[

k ẋ(t)
k ẏ(t)

]

=

n
∑

i=1

i ·k Ait
i−1 ∈ R

2

(14)t ∈ [k�t, (k + m)�t]

(15)k ḟ ((k + 1)�t) =k+1 ḟ ((k + 1)�t)

(16)=

n
∑

i=1

i · k+1Ai((k + 1)�t)i−1

(17)

k+1 ḟ ((k + m+ 1)�t) =

n
∑

i=1

i k+1Ai((k + m+ 1)�t)i−1

=O2
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where, O2 ∈ R
2 is a zero vector. This guarantees the termi-

nal velocity of each trajectory segment is zero.
By summarizing the above-mentioned constraints (8)–

(12), (16) and (17), we obtain below equation.

where

Here, I2 ∈ R
2×d is an identity matrix. From Eq. (12), we 

obtain kf ((k + 1)�t)−k+1 A0 = O2 that is for first factor 
of H. The solution of Eq. (18) is derived as follows.

where D+ indicates the pseudo-inverse matrix of D. Here, 
we can obtain all coefficients of the (k + 1)-th trajectory 
segment k+1f (t), {t ∈ [(k + 1)�t, (k + m+ 1)�t]} by 
these calculations.

4 � Trajectory generation sequence

In this section, practical sequence for iterative trajectory 
generation is discussed. Algorithm  1 is for main routine 
and Algorithm  2 is a subroutine for calculating the next 
trajectory segment. In Algorithm  1, firstly initialization 
process are done by setting an initial trajectory segment 
0f (t), to which k = 0 is assigned. t0 indicates the given start 

(18)H =D ·











k+1A1
k+1A2

...
k+1An











∈ R
2(m+3)

(19)H =























kf ((k + 1)�t)−k+1 A0
kf ((k + 2)�t)−k+1 A0

...
kf ((k + m)�t)−k+1 A0

k+1f ((k + m+ 1)�t)−k+1 A0
k ḟ ((k + 1)�t)

O2























(20)
D =













(k + 1)�tI2 {(k + 1)�t}2I2 · · · {(k + 1)�t}nI2
(k + 2)�tI2 {(k + 2)�t}2I2 · · · {(k + 2)�t}nI2

.

.

.

.

.

.

.

.

.

.

.

.

(k + m)�tI2 {(k + m)�t}2I2 · · · {(k + m)�t}nI2
(k + m+ 1)�tI2 {(k + m+ 1)�t}2I2 · · · {(k + m+ 1)�t}nI2

I2 2{(k + 1)�t}I2 · · · n{(k + 1)�t}n−1I2
I2 2{(k + m+ 1)�t}I2 · · · n{(k + m+ 1)�t}n−1I2













∈ R
2(m+3)×2n

(21)















k+1A1
k+1A2
k+1A3

...
k+1An















=







D−1 · H for n = m+ 3

D+ · H for n > m+ 3

time of the calculation and t0 = 0 is set for first start. The 
trajectory extension calculation is done every time period 
�t . After getting m waypoints from the initial trajectory 
segment, the extension process starts. It is checked 
whether the process is just started utilizing k and the base 
time is set. GetCurrentTime( ) is a function for getting 
current time. The sampled waypoints on kf (t) are diverted 
as the waypoints on k+1f (t). Additionally, the velocity 
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constraints at t = (k + 1)�t and t = (k + m+ 1)�t 
are also given. For providing a designated waypoint for 
trajectory extension, a function DesignateWaypoint( ) 
is called. In this paper, it is not the main topic how to 
determine the waypoint and we assume that a waypoint is 
provided by DesignateWaypoint(  ). DesignateWaypoint( )  
returns the value of “NONE” when more trajectory 
extension is not required. In such case, the trajectory ends 
at the terminal point of k-th trajectory segment. When 
DesignateWaypoint( ) returned the waypoint, it is set as 
k+1f ((k + m + 1)�t). Here, all constraints for deriving 
k+1f (t) (t ∈ [(k + 1)�t, (k + m+ 1)�t]) are prepared 
and a function NextTrajectorySegment(kf (t), n,m) which 
is described in Algorithm  2 is called for calculating the 
coefficient vectors k+1A0,

k+1 A1,
k+1 A2, . . . ,

k+1 An of 
k+1f (t). Here, it is done to generate k+1f (t) with the 
coefficient vectors. Mobile robot generally has the kinematic 
restrictions for its practicable motion. DesignateWaypoint( ) 
provides a waypoint however generated trajectory segment 
must meet such restrictions. CheckRestrictions (k+1f (t)) is 
called for checking to meet the criteria. Restrictions for the 
mobile robot are expressed as follows.

where,

s is the distance along trajectory segment from 
(k + 1)�t to (k + m+ 1)�t. k+1θ(t) is the pos-
ture along (k + 1)-th trajectory segment and d k+1θ(t)

ds
 

is the curvature value. Vmax and Cmax are the maxi-
mum values for the motion velocity and the curva-
ture. When these are not satisfied, derived (k + 1)-th  
trajectory segment is not qualified. check_result that is the 
return value from CheckRestrictions (k+1f (t)) gets “OK” 
when k+1f (t) was qualified, otherwise it returns “NG” to 
check_result. In the case of check_result == “OK”, k is 
increased by 1 and then the calculation proceeds to the next 
turn. If �t is enough larger than calculation time of the tra-
jectory segment, there is the possibility that several re-cal-
culations with the other waypoints to find the qualified one 
can be acceptable. Therefore, in this sequence, processing 

(22)arg max(k+1)�t≤t≤(k+m+1)�t

∣

∣

∣

k+1 ḟ (t)

∣

∣

∣
≤Vmax

(23)arg max(k+1)�t≤t≤(k+m+1)�t

∣

∣

∣

∣

∣

d k+1θ(t)

ds

∣

∣

∣

∣

∣

≤Cmax

(24)
∣

∣

∣

k+1 ḟ (t)

∣

∣

∣
=

{

{k+1ẋ(t)}2 + {k+1ẏ(t)}2
}

1
2

(25)
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∣

∣
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ds
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∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k+1ẋ(t)k+1ÿ(t)−k+1 ẍ(t)k+1ẏ(t)
{

{k+1ẋ(t)}2 + {k+1ẏ(t)}2
}

3
2

∣

∣

∣

∣

∣

∣

time �τ for finding (k + 1)-th trajectory segment are meas-
ured to check whether there is still the margin for time 
to calculate with the other designated waypoints. When 
k+1f (t) was found after the trials within the time period 
�τ, the value check_result is set to “OK”. This means to 
leave this seeking process and proceed to the next turn by 
incrementing k. In case of that selected candidates of the 
waypoints can not qualify the criteria during �t , it means 
that the trajectory extension process is once suspended by 
state ← STOP. This means that the robot stops at the end 
of the current trajectory segment. After stopping, it can take 
much time to find the way to go and it is possible to restart 
to generate the trajectory when the way was found. When 
state becomes “STOP”, this algorithm is once stopped. For 
restarting the extension process after that, t0 is set to the 
current time and Algorithm 1 is called. By this sequence, 
the trajectory including temporal stoppage can be designed 
by utilizing proposed trajectory segment calculation.

5 � Simulation experiments

Here, we performed computer simulations. The waypoints 
are provided manually and the criteria Vmax = 0.4 [m/sec] 
and Cmax = 5.0 were set in following cases.

5.1 � Forward motion

For Case 1, �t = 2.0[s] and m = 2 and also below initial 
trajectory segment (n = 5, k = 0) were set.

The waypoints on the this initial trajectory segment are 
selected as [0.0, 0.0]T at 0.0[s], [0.125, 0.0]T at 2.0[s] and 
[0.4, 0.0]T at 4.0[s]. The velocity vector at the end points 
of the trajectory segment become [0.0, 0.0]T To execute 
a trajectory extension based on this initial trajectory, we 
assigned a designated waypoint to each trajectory seg-
ment. For Case 1 , we prepared designated waypoints 
[0.65, 0.1]T , [0.9, 0.175]T, [1.15, 0.2]T, [1.4, 0.2]T and 
[1.65, 0.2]T for the 1st, 2nd, 3rd, 4th, and 5th trajectory seg-
ments, respectively. Figure 2a shows the above-mentioned 
initial trajectory. Figure 2b, c, d, e, and f also show exten-
sion results for each designated waypoint. Circles indicate 
the locations of designated waypoints. of the trajectory 
segment had overlapped duration with the next trajectory 
segment. For example, initial trajectory segment during 

(26)0f (t) =

5
∑

i=0

0Ait
i {t ∈ [0, 4]}

(27)=

[

1/40

0

]

t3 +

[

−3/640

0

]

t4
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t ∈ [0, 2.0] was used to organize the trajectory, and the one 
during t ∈ [2.0, 4.0] was later renewed by 1-st trajectory 
segment; the 1-st trajectory segment during t ∈ [2.0, 4.0] 
was also used to organize the trajectory. The following 
trajectory segments were also derived in a similar manner. 
By this procedure, the resultant trajectory (t ∈ [0.0, 14.0]) 
shown in Fig. 2g was provided and pass through all desig-
nated waypoints.

For Case 2 (Fig.  3), the parameters for exten-
sion and the initial trajectory was the same with Case 
1(�t = 2.0[s] , m = 2 and Eq. (26)). Another set of 
designated waypoints [0.6,−0.12]T , [0.775,−0.25]T, 
[1.0,−0.225]T , [1.15,−0.04]T, [1.125, 0.175]T, [1.0, 0.32]T 
and [0.78, 0.35]T was provided. Figure  3 indicates gener-
ated trajectory segments and its development procedure. 
Figure  3g shows the resultant trajectory (t ∈ [0.0, 18.0]). 
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0

0.1
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m
]

(a) Initial trajectory (n = 5, ∆t = 2.0, m=2) :
designated waypoint [0.65, 0.1]T
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(b) 1st trajectory segment, t ∈ [2.0, 6.0] :
designated waypoint [0.9, 0.175]T
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(c) 2nd trajectory segment, t ∈ [4.0, 8.0] :
designated waypoint [1.15, 0.2]T
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(d) 3rd trajectory segment, t ∈ [6.0, 100] :
designated waypoint [1.4, 0.2]T
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(e) 4th trajectory segment, t ∈ [8.0, 12.0] :
designated waypoint [1.65, 0.2]T
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(f) 5th trajectory segment, t ∈ [10.0, 14.0]
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(g) Resultant trajectory, t ∈ [0.0, 14.0], in Case 1

Fig. 2   Simulation results: case 1
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(a) Initial trajectory (n = 5, ∆t = 2.0, m=2) :
designated waypoint [0.6,−0.12]T
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(c) 2nd trajectory segment, t ∈ [4.0, 8.0] :
designated waypoint [1.0,−0.225]T
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(d) 3rd trajectory segment, t ∈ [6.0, 100] :
designated waypoint [1.15,−0.04]T
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(e) 4th trajectory segment, t ∈ [8.0, 12.0] :

designated waypoint [1.125, 0.175]T

(b) 1st trajectory segment, t ∈ [2.0, 6.0] :
designated waypoint [0.775,−0.25]T
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(f) 5th trajectory segment, t ∈ [10.0, 14.0] :

designated waypoint [1.0, 0.32]T
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(g) 6th trajectory segment, t ∈ [12.0, 16.0] :
designated waypoint [0.78, 0.35]T
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(h) 7th trajectory segment, t ∈ [14.0, 18.0]
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(i) Resultant trajectory, t ∈ [0.0, 18.0], in Case 2

Fig. 3   Simulation results: case 2
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The set of designated waypoints was only different from 
Case 1, but the different smooth trajectory was generated.

5.2 � Stop‑and‑go motion and back‑up motion

As a trial for the other type of the trajectory generation, it 
was done to verify to generate the “stop-and-go” trajectory 
by proposed method. By proposed method, it is possible 
to stop once at the end of the current trajectory segment 
when the robot must be stop intentionally by some reasons 
or the qualified trajectory segment can not be found dur-
ing �t. Case 3 (Fig. 4) shows the result of a trajectory for 
“stop-and-go” motion. Figure 4a shows the resultant trajec-
tory and Fig. 4b indicates time development of the trajec-
tory and the velocity. Solid line in the graphs of Fig.  4b 
indicates the position or velocity in the x axis and dotted 
line indicates the position or velocity in the y axis. Initial 
trajectory was the same with Eq. (26) again. We also set 
the waypoints [0.65, 0.0]T , [0.9, 0.0]T for first phase of the 
extension. After designating the waypoint [0.9, 0.0]T for 
2nd one, the waypoint was not provided. Therefore, after 
reaching to [0.9, 0.0]T at t = 8.0[s], the extension process 
was interrupted. Thus, the trajectory stayed at [0.9, 0.0]T 
temporary for 2.0[s]. During t ∈ [8.0, 10.0], the trajectory 
was not evolved and the velocity became zero. As second 
phase of the extension, when t = 10.0, below initial trajec-
tory segment for restart was set.

This is 4th trajectory segment and has the same curve 
shape with the initial trajectory segment. The waypoint 
[1.05, 0.0]T was designated for restarting the second phase 
of the trajectory. After that, the trajectory extension pro-
cess was done with designated waypoints and it was termi-
nated at [1.55, 0.0]T again. This case shows that the trajec-
tory extension is ended spontaneously by interrupting to 
designate new waypoint. It is because the condition of Eq. 
(17) was introduced. By the condition, the velocity vec-
tor at the end point of every trajectory segment becomes 
Od. When the trajectory extension proceeds, the velocity 
vector at (k + 1)�t is forwarded to generate the next tra-
jectory segment and the velocity profile is renewed. From 
Fig. 4b, the behavior of the velocity was emerged by only 
designating the waypoints and it could be confirmed that 
the velocity was transferred between k-th and (k + 1)-th  
trajectory segment at every �t. As the result of Case 3, 
we verified that the “stop-and-go”? trajectory could be 
generated.

(28)4f (t) =

5
∑

i=0

4Ai(t − 10)i {t ∈ [10, 14]}

(29)=

[

0.9

0

]

+

[

1/40

0

]

(t − 10)3 +

[

−3/640

0

]

(t − 10)4

One more important behavior of the mobile robot is 
back-up motion. Here, we also attempt to verify to generate 
the trajectory of back-up motion. The same initial condi-
tions with Case 3 are utilized. The waypoints [0.65, 0.0]T 
and [0.9, 0.0]T are designated for first phase of the trajec-
tory extension. After designating the waypoint [0.9, 0.0]T, 
the next waypoint was not provided and the trajectory was 
suspended at [0.9, 0.0]T from t = 8.0[s] to t = 10.0[s]. After 
that, second phase of trajectory extension restarts by setting 
the below trajectory segment at t = 10.0[s].

Then, the waypoint [0.67,−0.25]T is designated and 
the trajectory extension was proceeded until t = 16.0[s] . 

(30)4f (t) =

5
∑

i=0

4Ai(t − 10)i {t ∈ [10, 14]}

(31)

=

[

0.9

0

]

+

[

−3/80

1/800

]

(t − 10)2

+

[

1/160

−11/1600

]

(t − 10)3 +

[

0

1/800

]

(t − 10)4
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(a) Resultant trajectory, t ∈ [0.0, 16.0],
in Case 3
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(b) Time development of the trajectory and
the velocity

Fig. 4   Simulation results: case 3
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Figure  5a shows the resultant trajectory for a back-up 
motion and Fig. 5b shows the behavior of the position and 
the velocity in x and y.

Moreover, from these simulation results, it was also con-
firmed that the velocity at the end point of each trajectory 
segment becomes [0.0, 0.0]T. This characteristic provided 
by proposed method is useful that the mobile robot can stop 
traveling at the end point of the current trajectory segment 
without adding any special conditions and calculations. 
Some of these trajectory are difficult to express with a sin-
gle polynomial and it is an advantage of proposed method 
based on iterative extension concept.

6 � Conclusions

In this paper, we described an online trajectory extension 
method for mobile robots. Our approach iteratively gener-
ates the next trajectory segment based on constraints from 
the existing trajectory segments and additional designated 
waypoints. It utilizes a polynomial curve as the basis of tra-
jectory segments and derives the coefficients of the curve 
iteratively. The whole trajectory is resultantly organized by 

combining these generated trajectory segments. The results 
of computer simulations show that the proposed method 
accomplishes trajectory extension by depending on the 
constraints of the existing trajectory segment and desig-
nated waypoint.
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