
1 3

Artif Life Robotics (2016) 21:317–323
DOI 10.1007/s10015-016-0303-8

SPECIAL FEATURE: ORIGINAL ARTICLE

Critical mass in the emergence of collective intelligence: a
parallelized simulation of swarms in noisy environments

Aleksandr Drozd1 · Olaf Witkowski2 · Satoshi Matsuoka1 · Takashi Ikegami3

Received: 1 May 2016 / Accepted: 26 June 2016 / Published online: 8 August 2016
© ISAROB 2016

implementation requires careful optimization. We apply
techniques from astrophysics known as treecodes to com-
pute the signal propagation, and efficiently parallelize
for multi-core architectures. Our results open up future
research on signal-based emergent collective behavior as
a valid collective strategy for uninformed search over a
domain space.

Keywords Artificial life · Artificial neural networks · Bio-
inspired computation · Evolutionary robotics · Foraging ·
Swarming · Treecode

1 Introduction

The ability of swarms of organisms to coordinate their
motion in space has important implications for the evolu-
tion of social cognition, collective animal behavior, and
artificial life [7]. Swarming is defined as organization of a
large number of individuals into a coordinated formation.
Using only the information from their environment, they
can gather together and move in groups, using various types
of dynamics [5, 9, 21]. One of the most interesting aspects
of swarming is that individuals are able to overcome noise
and local minima in a search space, based on an explicit or
implicit exchange of information between agents.

As experiments on real animals, either in an experimen-
tal setup [1, 18] or in their ecological environment [17], are
costly to reproduce and do not offer the possibility to eas-
ily explore different evolutionary paths, researchers have
turned to computational modeling. It allows for easy modi-
fication of setup conditions and parameters, tremendous
data generation, reproducibility of every experiment, and
easier identification of the underlying dynamics of complex
phenomena.

Abstract We extend an abstract agent-based swarming
model based on the evolution of neural network controllers,
to explore further the emergence of swarming. Our model
is grounded in the ecological situation, in which agents can
access some information from the environment about the
resource location, but through a noisy channel. Swarming
critically improves the efficiency of group foraging, by
allowing agents to reach resource areas much more easily
by correcting individual mistakes in group dynamics. As
high levels of noise may make the emergence of collective
behavior depend on a critical mass of agents, it is crucial
to reach sufficient computing power to allow for the evo-
lution of the whole set of dynamics in simulation. Since
simulating neural controllers and information exchanges
between agents are computationally intensive, to scale up
simulations to model critical masses of individuals, the

This work was presented in part at the 1st International
Symposium on Swarm Behavior and Bio-Inspired Robotics,
Kyoto, Japan, October 28–30, 2015.

 * Aleksandr Drozd
 alex@smg.is.titech.ac.jp

 Olaf Witkowski
 okw@elsi.jp

 Satoshi Matsuoka
 matsu@acm.org

 Takashi Ikegami
 ikeg@sacral.c.u-tokyo.ac.jp

1 Global Scientific Information and Computing Center,
Tokyo Institute of Technology, Tokyo, Japan

2 Tokyo Institute of Technology, Earth-Life Science Institute,
Tokyo, Japan

3 Department of Multi-Disciplinary Sciences, The University
of Tokyo, Tokyo, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-016-0303-8&domain=pdf

318 Artif Life Robotics (2016) 21:317–323

1 3

The first model to simulate agents swarming in 3D is the
boids [20] (short for birdoids) model, with only three sim-
ple rules. This approach has been explored in many subse-
quent studies [8, 12, 14, 23, 27]. The next step in swarming
simulations came with evolutionary robotics where, instead
of a fixed set of rules, each agent is given an artificial neu-
ral network brain that controls its movements. The swarm-
ing behavior evolves by copying (with mutations) of chro-
mosomes which encode the neural network parameters.
By comparing the impact of different selective pressures,
this methodology, first used in [10], eventually allowed for
studying the evolutionary emergence of swarming.

In this paper, we describe a simplistic model of agents
moving in a 3D space to find a vital resource. The popu-
lation is simulated with an asynchronous evolutionary
algorithm, meaning that new agents are created during the
experiments, eventually replacing the previous population.
Agents are indirectly selected in a Darwinian-like process
based on their energy: they are removed from the simula-
tion if their energy level is too low. We specifically explore
addition of noise to the food detection sense of the agents,
and hypothesize that it can be overcome by the emergence
of a collective behavior involving sufficiently large groups
of agents.

An atomic pile is said to “go critical” when a chain
reaction of nuclear fission becomes self-sustaining. A
minimal amount of fissionable material has to be com-
pacted together to keep the dynamics from fading away.
The notion of critical mass as a crucial factor in collective
behavior has been studied in various areas [13, 16]. Simi-
larly, it may be important for the swarms to reach a critical
mass, enough to overcome very noisy environments. We
will, therefore, explore the optimization of the computer
simulation itself, as large-scale swarms may qualitatively
differ in behavior from regular-sized ones.

2 Model

The model extends [24], which proposed an asynchronous
simulation evolving a swarming behavior based on signal-
ing between individuals. A population of agents is simulated
in a three-dimensional space of 600.0× 600.0× 600.0 ,
gaining a vital amount of energy from a resource gathering
task. Food spots are randomly placed in the environment
and moved around every 1000 iterations. By getting close
to one of those food spots, the agents gain more energy,
allowing them to compensate for the energy losses due to
their movement and their signaling. If an agent’s energy
level drops to zero, it is removed from the simulation. Only
agents with energy higher than 4.0 are allowed to reproduce.
In this regard, the energy also represents the agent’s fitness,
and both terms will here be used interchangeably.

The agent’s position is determined by three float-
ing point coordinates between 0.0 and 600.0. Each agent
is positioned randomly at the start of the simulation, and
then moves at a fixed speed of 1 unit per iteration. Every
iteration, the agent’s new velocity ct is obtained by rotat-
ing its velocity vector at the previous time step ct−1 by two
Euler angles: ψ for the agent’s pitch (i.e., elevation) and θ
for the agent’s yaw (i.e., heading). The rotation is deter-
mined by the two motor output values of the neural con-
troller o1 and o2, determining, respectively, the acceleration
in y and z in the agent’s inertial frame of reference, while
the norm of the velocity is kept constant. The agent’s posi-
tion xt is then updated according to its current velocity with
xt = xt−1 + ct.

In the original model [24], the individuals were blind,
in the sense that they do not see either the food patches
or the other agents around them. In our model, we add
a sense of vision to every agent, allowing them to detect
nearby resources. However, we add a high level of noise
(a randomly generated term at comparatively 10, 000 % of
the original value range) to make this information highly
imperfect.

The agents’ interaction is limited to the exchange of sig-
nals between each others. Every agent is capable of send-
ing signals of variable intensity, encoded as floating point
values ranging from 0.0 to 1.0. Each agent also has a direc-
tional communication sensor allowing it to detect signals
produced by other agents in a 60-degree frontal cone. The
distance to the source proportionally affects the intensity of
a received signal, and signals from agents above a 100 dis-
tance are ignored.

The agent’s neural controller is implemented by a modi-
fied Elman artificial neural network (Fig. 1) with 10 input
neurons, 10 hidden neurons, and 3 output neurons. The
outputs control the two motor angles and the communica-
tion signal emitted by the agent. The hidden layer is given a
form of memory feedback from a 10-neuron context layer,
containing the values of the hidden layer from the previ-
ous time step. The input neurons correspond to 6 direc-
tional signal sensors, 3 angle-to-goal sensors, and 1 fixed
bias input. All nodes in the neural network take floating
point input values between 0 and 1. All output values are
also floating values between 0 and 1, and the motor outputs
are then converted to angles between −π to π. The activa-
tion state of each internal neuron is updated according to
a sigmoid function. The weights of each connection in the
neural network are directly stored in an array. That array,
constituting the agent’s genotype, is then evolved using a
specific genetic algorithm described below.

The agents reproduce by replicating whenever they
reach a minimal level of fitness, that is, whenever their
level of energy reaches a certain threshold value (arbitrary
12 units), a child agent is added to a random position on the

319Artif Life Robotics (2016) 21:317–323

1 3

map, and the parent’s energy is decreased by a certain cost
(arbitrary 10 units).

Every new agent is born with an energy equal to 2.0. In the
course of the simulation, each agent can gain or lose a vari-
able amount of energy. At iteration t, the fitness function fi for
agent i is defined by fi(t) = r

di(t)
, where r is the reward value

and di is the agent’s distance to any food spot. The reward
value is controlled by the simulation, such that the popula-
tion remains between 100 and 1000 agents, and as close as
possible to 500 agents. All the way through the simulation,
the agents also spend a fixed amount of energy for movement
(0.01 per iteration) and a variable amount of energy for sign-
aling costs (0.001× signal intensity per iteration).

The weights of every connection in the neural network
(apart from the links from hidden to context nodes, which
have fixed weights) are encoded in genotypes and evolved
through successive generations of agents. Each weight is
represented by a unique floating point value in the geno-
type vector, such that the size of the vector corresponds to
the total number of connections in a neural network. Agents
inherit parental genotype with 10 % chance of mutation of
each element. Mutation increases or decreases the weight
by the random value within 10 % range of original.

3 Implementation

The main performance bottleneck of the model is the com-
putation of aggregated signal that a boid perceives from all

other boids. Straightforward implementation has a daunt-
ing O(n2) complexity and becomes prohibitive already at a
thousands-of-agent scale. This task, however, resembles the
classical N-Body problem from computational physics—
the problem of predicting the individual motions of a group
of celestial objects (represented as particles) interacting
with each other gravitationally. This problem has an effi-
cient approximate implementation known as the Barnes–
Hut algorithm [2]. The key insight is to approximate the
gravitational pull from remote particle clusters with the
force coming from one particle positioned at the center of
mass of the cluster, and having the same aggregated mass.
Please note that this aggregation refers to the computa-
tional approximation of signals coming from clusters of
agents as single vectors, which should not be confused with
the swarming behavior of the boids.

Our signal-propagation method is based largely on the
Barnes–Hut algorithm, but accounts for the specifics of
the signal perception model of the agents. Instead of being
pulled by gravitational force, every particle (agent in our
case) perceives an aggregated signal from the other agents
independently by each sensor in a directed fashion. These
signals thus cannot be simply aggregated by summing the
corresponding vectors. For example, if an agent is receiv-
ing two signals of the same intensity coming, respectively,
from the left and from the right, they should not cancel
each other as in case of gravitation pull. Instead, in that
case, they will be perceived independently, respectively, by
the left and right sensors. To achieve this, independently for
each of the 6 sensors, the recursive tree traversal procedure
is informed by its direction. We then compute the projec-
tion of these signals coming from each cluster of signaling
agents, onto the vector corresponding to that sensor, dis-
carding negative values.

The algorithm works by constructing an octree corre-
sponding to the hierarchical decomposition of the simu-
lation space into cubic cells with the root of the tree rep-
resenting the whole space. Tree construction is done by
recursive splitting of the domain, so that at most one agent
is on one cell. Figure 2 illustrates space decomposition and
the corresponding quad-tree (Fig. 2c) for the two-dimen-
sional case. Fig. 3 Illustrates a 3D case. Then, the octree is
fully traversed once, such that each node stores the summed
aggregated signal for each of the nodes in its subtree. To
compute the signal, the algorithm starts from the root and
checks if the current node is a leaf node or if the node is
sufficiently remote from the target agent, i.e., the ratio s/d
is smaller than the threshold parameter θ, where s is the
width of the region represented by the internal node, and
d is the distance between the agent and the node’s center
of signal intensity. If the node is not a leaf and is not suffi-
ciently remote, the algorithm recursively aggregates signals
from all of the child nodes.

Fig. 1 Architecture of the agent’s controller, a recursive neural net-
work composed of 10 input neurons (I1 to I10), 10 hidden neurons (H1
to H10), 10 context neurons (C1 to C10), and 3 output neurons (O1 to
O3). Every layer is fully connected to the next one

320 Artif Life Robotics (2016) 21:317–323

1 3

Further performance improvement can be achieved by
utilizing modern parallel hardware architectures. The sig-
nal-propagation logic in our code is roughly similar to the
logic of the original Barnes–Hut algorithms, and similar
parallelization schemes can be applied to it. The Barnes–
Hut algorithm has been extensively studied and optimized,

and it has been implemented on many platforms, such as
clusters, GPU accelerators, and even FPGA devices [3, 6,
11]. We focus on the traditional multi-core CPUs, as this
can be done with reasonable effort, but still lead to signifi-
cant performance improvement.

For the tree construction, we use a top–bottom approach:
each thread independently inserts particles into the tree,
starting traversing from the root to the desired last-level
cell, and then attempts to lock the appropriate child pointer,
as only the leaf nodes can be changed during the insertion.

Computing the signals does not modify the tree and
does not require any synchronization. The same is true for
the feed-forward computation of the ANN. Performance
evaluation was performed on a PC with Intel Core i7-3820
3.60 GHz CPU with 4 hyperthreaded cores (8 logical
cores) and 16 Gb RAM under Ubuntu 15.04 (Linux ker-
nel 3.19.0) operating system. Source codes written in C++
programming language with OpenMP programming inter-
face [4] used for multi-threading support and compiled
with gcc 4.9.2 compiler. Figure 4 shows performance scal-
ing with the increase of the number of agents (spawning of
new agents was disabled for this benchmark).

(a) The original domain

(b) 2D space decomposition

(c) Corresponding quad-tree

Fig. 2 Two-dimensional example of tree construction. Black squares
mark the leaf nodes containing an agent, white square nodes are
empty leaf nodes, and the nodes marked with circles are “inner
nodes”

Fig. 3 Three-dimensional space partitioning for three agents

Fig. 4 Performance scaling

321Artif Life Robotics (2016) 21:317–323

1 3

4 Related work

In the particle swarm optimization (PSO) problem, a large
number of particles are moving though a domain, with the
possibility of updating behavioral parameters every itera-
tion. Highly efficient parallel methods for the PSO have
been proposed and implemented [15]. However, as there is
no interaction between particles, the parallelization strategy
is fairly straightforward.

In the case of Reynolds’ boids, the agents have to be
aware of each other to follow separation, alignment, and
cohesion rules. Naive implementation can also lead to
quadratic performance complexity. However, since no
long-range interaction is required, and boids tend to be
fairly separated—the grid-based methods or methods based
on Smoothed Particle Hydrodynamics technique (and cor-
responding parallelization approaches) work quite well for
boids and similar models [19, 22].

Our model is different in three key aspects: (1) every
agent has to receive signals from all other agents; (2) every
agent contains an artificial neural network that has to be
evaluated at each iteration; and (3) the number of agents
changes over the simulation. The first aspect makes the
above-mentioned optimization and parallelization tech-
niques inapplicable to our model.

Yokoi et al. [25, 26] used a vibrating potential field
method to coordinate the motion of their morpho-functional
machines (amoeba-like autonomous agents). The equation
for the potential field at a given point in space contains the
sum of individual fields of the agents. As the values of the
potential have to be computed for every agent in a set, this
model also results in O(N2) computational complexity and
cannot scale to a large number of agents.

5 Results

In Fig. 5, we can observe that signaling improves the forag-
ing of agents. We use the average amount of food resource
obtained per agent per iteration as a measure of the popula-
tion’s fitness. Without noise, the agents using signaling are
less efficient than their silent counterparts. We found that
this is not due to the cost of signaling (we factored out this
cost from the graph), but rather because of the excess of
noise brought by the signal inputs. The difference remains
very small between signaling and non-signaling agents.

We find, however, that above a certain noise level, the
cost of signaling is fully compensated by its benefits, as it
helps foraging. The average fitness becomes even higher, as
we increase the noise level, which suggest that the signal-
ing behavior increases in efficiency for high levels of noise,
allowing the agents to overcome imperfect information by
forming swarms.

We also observe scale effects in the influence of the sig-
nal propagation on the average fitness of the population.
Figures 6 and 7 show the effect of different population
sizes and propagation parameters on foraging efficiency.
For a smaller population, only middle values of signal
propagation seem to bring about fitter behaviors, whereas
this is not the case for larger populations. On the contrary,
larger populations are the most efficient for lower levels of
signal propagation. This may suggest a phase transition in

(a) Without noise

(b) With noise level 20

(c) With noise level 40

Fig. 5 Efficiency with and without signals with constant noise, mean
(central line), and standard deviation range (area plot) over 10 runs

322 Artif Life Robotics (2016) 21:317–323

1 3

the agents’ behavior for large populations, eventually in the
way, the swarming itself helps foraging.

The analysis of the phylogeny (Fig. 8) though the whole
simulation showed that at the initial step, one or a few of
the “fittest” individuals are selected. The following gen-
erations branch more uniformly, slowly approaching the
optimal genotypes within several sub-groups 5. This cor-
responds to the dynamics that we observe with the foraging
efficiency over iterations: a noticeable jump in the begin-
ning, followed by slow improvement towards saturation.

6 Conclusion

We used an hierarchical method based on the Barnes–
Hut simulation in computational physics and its parallel
implementation to speed up signal-propagation simulation
between autonomous agents. This achieved performance
improvement of a few orders of magnitude over the pre-
vious implementation [24], and allowed us to explore the

behavior of large-scale swarms which have been suggested
to generate qualitatively different dynamics.

We showed how signal-driven swarming, emerging in an
evolutionary simulation, such as in [24], allows agents to
overcome noisy information channels and improves their
performance in a resource finding task. Our first contribu-
tion is the introduction of noise, demonstrating that the
algorithm performs well against noise filling up channels of
information almost up to their full capacity, in the inputs of
agents. The swarming behavior helped by basic signaling
enables the agents to globally filter out the noise present
in the information from their sensory inputs, and to reach
food sites.

The optimization of fitness is acquired by phenotypes
(agents) using efficient patterns of behavior (motion and
signaling), which themselves are encoded in the weights of
agents’ neural networks. The real optimization, therefore,
occurs at a higher level of the Darwinian-like process in the
genotypic search space. Efficient genotypes are selected by
the asynchronous genetic algorithm throughout a simula-
tion run.

Our results indicate non-linear dependencies of the
signal propagation with respect to the population size,

Fig. 7 Effects of population
size and signal-propagation
coefficient

Fig. 8 Phylogenetic tree

Fig. 6 Effects of population size and noise level

323Artif Life Robotics (2016) 21:317–323

1 3

suggesting the existence of a critical mass in swarms which
enables them to overcome noisy environments. This effect
could only be shown, thanks to the efficient simulation of
a large-scale swarm, with a behavior qualitatively different
from that of relatively small swarms.

Acknowledgments This paper was partially supported by a Grant-
in-Aid for Scientific Research on Innovative Areas (Research Pro-
ject Number: 15H01612). This paper was partially supported by JST,
CREST (Research Area: Advanced Core Technologies for Big Data
Integration).

References

 1. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E,
Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale
M, Zdravkovic V (2008) Interaction ruling animal collective
behavior depends on topological rather than metric distance: evi-
dence from a field study. Proc Natl Acad Sci 105(4):1232–1237

 2. Barnes J, Hut P (1986) A hierarchical o(n log n) force-calcula-
tion algorithm. Nature 324:446–449

 3. Blackston D, Suel T (1997) Highly portable and efficient imple-
mentations of parallel adaptive n-body methods. In: In SC’97:
1–20

 4. Board OAR (2013) OpenMP Application Program Inter-
face, Version 4.0. http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

 5. Budrene EO, Berg HC et al (1991) Complex patterns formed by
motile cells of Escherichia coli. Nature 349(6310):630–633

 6. Coole J, Wernsing J, Stitt G (2009) A traversal cache framework
for fpga acceleration of pointer data structures: A case study on
barnes-hut n-body simulation. In: Reconfigurable Computing
and FPGAs, 2009. ReConFig ’09. International Conference on,
pp 143–148

 7. Couzin ID (2009) Collective cognition in animal groups. Trends
Cogn Sci 13(1):36–43

 8. Cucker F, Huepe C (2008) Flocking with informed agents. Math
Action 1(1):1–25

 9. Czirók A, Barabási AL, Vicsek T (1997) Collective motion of
self-propelled particles: kinetic phase transition in one dimen-
sion. arXiv preprint. arXiv:9712154

 10. Eberhart RC, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Proceedings of the sixth international sympo-
sium on micro machine and human science, vol 1. New York,
NY, pp 39–43

 11. Hamada T, Yokota R, Nitadori K, Narumi T, Yasuoka K,
Taiji M (2009) 42 tflops hierarchical n-body simulations
on gpus with applications in both astrophysics and tur-
bulence. In: High Performance Computing Networking,

Storage and Analysis, Proceedings of the Conference on, pp.
1–12. doi:10.1145/1654059.1654123

 12. Hartman C, Benes B (2006) Autonomous boids. Comput Animat
Virtual Worlds 17(3–4):199–206

 13. Marwell G, Oliver P (1993) The critical mass in collective
action. Cambridge University Press, New York

 14. Mataric MJ (1992) Integration of representation into goal-driven
behavior-based robots. IEEE Trans Rob Autom 8(3):304–312

 15. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle
swarm optimization algorithms within the cuda architecture. Inf
Sci 181(20):4642–4657 (2011) (Special Issue on Interpretable
Fuzzy Systems)

 16. Oliver PE, Marwell G (2001) Whatever happened to critical
mass theory? A retrospective and assessment. Sociol Theory
19(3):292–311

 17. Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern,
and evolutionary trade-offs in animal aggregation. Science
284(5411):99–101

 18. Partridge BL (1982) The structure and function of fish schools.
Sci Am 246(6):114–123

 19. Pimenta L, Pereira G, Michael N, Mesquita R, Bosque M,
Chaimowicz L, Kumar V (2013) Swarm coordination based on
smoothed particle hydrodynamics technique. IEEE Trans Robot
29(2):383–399

 20. Reynolds CW (1987) Flocks, herds and schools: a distributed
behavioral model. In: ACM SIGGRAPH Computer Graphics,
vol 1. ACM, pp 25–34

 21. Shimoyama N, Sugawara K, Mizuguchi T, Hayakawa Y, Sano M
(1996) Collective motion in a system of motile elements. Phys
Rev Lett 76(20):3870

 22. Silva ARD, Lages WS, Chaimowicz L (2010) Boids that see:
using self-occlusion for simulating large groups on gpus. Com-
put Entertain 7(4):51:1–51:20

 23. Su H, Wang X, Lin Z (2009) Flocking of multi-agents with a vir-
tual leader. IEEE Trans Autom Control 54(2):293–307

 24. Witkowski O, Ikegami T (2014) Asynchronous evolution: emer-
gence of signal-based swarming. In: Proceedings of the Four-
teenth International Conference on the Simulation and Synthesis
of Living Systems (Artificial Life 14) vol 14, pp 302–309

 25. Yokoi H, Yu W, Hakura J (1999) Morpho-functional machine:
design of an amoebae model based on the vibrating potential
method. Rob Auton Syst 28(2–3):217–236

 26. Yokoi H, Yu W, Pfeifer R (2003) Morpho-rate: a macroscopic
evaluation and analysis of the morpho-functional machine. In:
Proceedings of the IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation: Computational
Intelligence in Robotics and Automation for the New Millen-
nium, CIRA 2003, Kobe, Japan, July 16–20, 2003, pp 788–793

 27. Yu W, Chen G, Cao M (2010) Distributed leader-follower flock-
ing control for multi-agent dynamical systems with time-varying
velocities. Syst Control Lett 59(9):543–552

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://arxiv.org/abs/9712154
http://dx.doi.org/10.1145/1654059.1654123

	Critical mass in the emergence of collective intelligence: a parallelized simulation of swarms in noisy environments
	Abstract
	1 Introduction
	2 Model
	3 Implementation
	4 Related work
	5 Results
	6 Conclusion
	Acknowledgments
	References

