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implementation requires careful optimization. We apply 
techniques from astrophysics known as treecodes to com-
pute the signal propagation, and efficiently parallelize 
for multi-core architectures. Our results open up future 
research on signal-based emergent collective behavior as 
a valid collective strategy for uninformed search over a 
domain space.
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1 Introduction

The ability of swarms of organisms to coordinate their 
motion in space has important implications for the evolu-
tion of social cognition, collective animal behavior, and 
artificial life [7]. Swarming is defined as organization of a 
large number of individuals into a coordinated formation. 
Using only the information from their environment, they 
can gather together and move in groups, using various types 
of dynamics [5, 9, 21]. One of the most interesting aspects 
of swarming is that individuals are able to overcome noise 
and local minima in a search space, based on an explicit or 
implicit exchange of information between agents.

As experiments on real animals, either in an experimen-
tal setup [1, 18] or in their ecological environment [17], are 
costly to reproduce and do not offer the possibility to eas-
ily explore different evolutionary paths, researchers have 
turned to computational modeling. It allows for easy modi-
fication of setup conditions and parameters, tremendous 
data generation, reproducibility of every experiment, and 
easier identification of the underlying dynamics of complex 
phenomena.

Abstract We extend an abstract agent-based swarming 
model based on the evolution of neural network controllers, 
to explore further the emergence of swarming. Our model 
is grounded in the ecological situation, in which agents can 
access some information from the environment about the 
resource location, but through a noisy channel. Swarming 
critically improves the efficiency of group foraging, by 
allowing agents to reach resource areas much more easily 
by correcting individual mistakes in group dynamics. As 
high levels of noise may make the emergence of collective 
behavior depend on a critical mass of agents, it is crucial 
to reach sufficient computing power to allow for the evo-
lution of the whole set of dynamics in simulation. Since 
simulating neural controllers and information exchanges 
between agents are computationally intensive, to scale up 
simulations to model critical masses of individuals, the 

This work was presented in part at the 1st International 
Symposium on Swarm Behavior and Bio-Inspired Robotics, 
Kyoto, Japan, October 28–30, 2015.

 * Aleksandr Drozd 
 alex@smg.is.titech.ac.jp

 Olaf Witkowski 
 okw@elsi.jp

 Satoshi Matsuoka 
 matsu@acm.org

 Takashi Ikegami 
 ikeg@sacral.c.u-tokyo.ac.jp

1 Global Scientific Information and Computing Center,  
Tokyo Institute of Technology, Tokyo, Japan

2 Tokyo Institute of Technology, Earth-Life Science Institute, 
Tokyo, Japan

3 Department of Multi-Disciplinary Sciences, The University 
of Tokyo, Tokyo, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-016-0303-8&domain=pdf


318 Artif Life Robotics (2016) 21:317–323

1 3

The first model to simulate agents swarming in 3D is the 
boids [20] (short for birdoids) model, with only three sim-
ple rules. This approach has been explored in many subse-
quent studies [8, 12, 14, 23, 27]. The next step in swarming 
simulations came with evolutionary robotics where, instead 
of a fixed set of rules, each agent is given an artificial neu-
ral network brain that controls its movements. The swarm-
ing behavior evolves by copying (with mutations) of chro-
mosomes which encode the neural network parameters. 
By comparing the impact of different selective pressures, 
this methodology, first used in [10], eventually allowed for 
studying the evolutionary emergence of swarming.

In this paper, we describe a simplistic model of agents 
moving in a 3D space to find a vital resource. The popu-
lation is simulated with an asynchronous evolutionary 
algorithm, meaning that new agents are created during the 
experiments, eventually replacing the previous population. 
Agents are indirectly selected in a Darwinian-like process 
based on their energy: they are removed from the simula-
tion if their energy level is too low. We specifically explore 
addition of noise to the food detection sense of the agents, 
and hypothesize that it can be overcome by the emergence 
of a collective behavior involving sufficiently large groups 
of agents.

An atomic pile is said to “go critical” when a chain 
reaction of nuclear fission becomes self-sustaining. A 
minimal amount of fissionable material has to be com-
pacted together to keep the dynamics from fading away. 
The notion of critical mass as a crucial factor in collective 
behavior has been studied in various areas [13, 16]. Simi-
larly, it may be important for the swarms to reach a critical 
mass, enough to overcome very noisy environments. We 
will, therefore, explore the optimization of the computer 
simulation itself, as large-scale swarms may qualitatively 
differ in behavior from regular-sized ones.

2  Model

The model extends [24], which proposed an asynchronous 
simulation evolving a swarming behavior based on signal-
ing between individuals. A population of agents is simulated 
in a three-dimensional space of 600.0× 600.0× 600.0 , 
gaining a vital amount of energy from a resource gathering 
task. Food spots are randomly placed in the environment 
and moved around every 1000 iterations. By getting close 
to one of those food spots, the agents gain more energy, 
allowing them to compensate for the energy losses due to 
their movement and their signaling. If an agent’s energy 
level drops to zero, it is removed from the simulation. Only 
agents with energy higher than 4.0 are allowed to reproduce. 
In this regard, the energy also represents the agent’s fitness, 
and both terms will here be used interchangeably.

The agent’s position is determined by three float-
ing point coordinates between 0.0 and 600.0. Each agent 
is positioned randomly at the start of the simulation, and 
then moves at a fixed speed of 1 unit per iteration. Every 
iteration, the agent’s new velocity ct is obtained by rotat-
ing its velocity vector at the previous time step ct−1 by two 
Euler angles: ψ for the agent’s pitch (i.e., elevation) and θ 
for the agent’s yaw (i.e., heading). The rotation is deter-
mined by the two motor output values of the neural con-
troller o1 and o2, determining, respectively, the acceleration 
in y and z in the agent’s inertial frame of reference, while 
the norm of the velocity is kept constant. The agent’s posi-
tion xt is then updated according to its current velocity with 
xt = xt−1 + ct.

In the original model [24], the individuals were blind, 
in the sense that they do not see either the food patches 
or the other agents around them. In our model, we add 
a sense of vision to every agent, allowing them to detect 
nearby resources. However, we add a high level of noise 
(a randomly generated term at comparatively 10, 000 % of 
the original value range) to make this information highly 
imperfect.

The agents’ interaction is limited to the exchange of sig-
nals between each others. Every agent is capable of send-
ing signals of variable intensity, encoded as floating point 
values ranging from 0.0 to 1.0. Each agent also has a direc-
tional communication sensor allowing it to detect signals 
produced by other agents in a 60-degree frontal cone. The 
distance to the source proportionally affects the intensity of 
a received signal, and signals from agents above a 100 dis-
tance are ignored.

The agent’s neural controller is implemented by a modi-
fied Elman artificial neural network (Fig. 1) with 10 input 
neurons, 10 hidden neurons, and 3 output neurons. The 
outputs control the two motor angles and the communica-
tion signal emitted by the agent. The hidden layer is given a 
form of memory feedback from a 10-neuron context layer, 
containing the values of the hidden layer from the previ-
ous time step. The input neurons correspond to 6 direc-
tional signal sensors, 3 angle-to-goal sensors, and 1 fixed 
bias input. All nodes in the neural network take floating 
point input values between 0 and 1. All output values are 
also floating values between 0 and 1, and the motor outputs 
are then converted to angles between −π to π. The activa-
tion state of each internal neuron is updated according to 
a sigmoid function. The weights of each connection in the 
neural network are directly stored in an array. That array, 
constituting the agent’s genotype, is then evolved using a 
specific genetic algorithm described below.

The agents reproduce by replicating whenever they 
reach a minimal level of fitness, that is, whenever their 
level of energy reaches a certain threshold value (arbitrary 
12 units), a child agent is added to a random position on the 
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map, and the parent’s energy is decreased by a certain cost 
(arbitrary 10 units).

Every new agent is born with an energy equal to 2.0. In the 
course of the simulation, each agent can gain or lose a vari-
able amount of energy. At iteration t, the fitness function fi for 
agent i is defined by fi(t) = r

di(t)
, where r is the reward value 

and di is the agent’s distance to any food spot. The reward 
value is controlled by the simulation, such that the popula-
tion remains between 100 and 1000 agents, and as close as 
possible to 500 agents. All the way through the simulation, 
the agents also spend a fixed amount of energy for movement 
(0.01 per iteration) and a variable amount of energy for sign-
aling costs (0.001× signal intensity per iteration).

The weights of every connection in the neural network 
(apart from the links from hidden to context nodes, which 
have fixed weights) are encoded in genotypes and evolved 
through successive generations of agents. Each weight is 
represented by a unique floating point value in the geno-
type vector, such that the size of the vector corresponds to 
the total number of connections in a neural network. Agents 
inherit parental genotype with 10  % chance of mutation of 
each element. Mutation increases or decreases the weight 
by the random value within 10  % range of original.

3  Implementation

The main performance bottleneck of the model is the com-
putation of aggregated signal that a boid perceives from all 

other boids. Straightforward implementation has a daunt-
ing O(n2) complexity and becomes prohibitive already at a 
thousands-of-agent scale. This task, however, resembles the 
classical N-Body problem from computational physics—
the problem of predicting the individual motions of a group 
of celestial objects (represented as particles) interacting 
with each other gravitationally. This problem has an effi-
cient approximate implementation known as the Barnes–
Hut algorithm [2]. The key insight is to approximate the 
gravitational pull from remote particle clusters with the 
force coming from one particle positioned at the center of 
mass of the cluster, and having the same aggregated mass. 
Please note that this aggregation refers to the computa-
tional approximation of signals coming from clusters of 
agents as single vectors, which should not be confused with 
the swarming behavior of the boids.

Our signal-propagation method is based largely on the 
Barnes–Hut algorithm, but accounts for the specifics of 
the signal perception model of the agents. Instead of being 
pulled by gravitational force, every particle (agent in our 
case) perceives an aggregated signal from the other agents 
independently by each sensor in a directed fashion. These 
signals thus cannot be simply aggregated by summing the 
corresponding vectors. For example, if an agent is receiv-
ing two signals of the same intensity coming, respectively, 
from the left and from the right, they should not cancel 
each other as in case of gravitation pull. Instead, in that 
case, they will be perceived independently, respectively, by 
the left and right sensors. To achieve this, independently for 
each of the 6 sensors, the recursive tree traversal procedure 
is informed by its direction. We then compute the projec-
tion of these signals coming from each cluster of signaling 
agents, onto the vector corresponding to that sensor, dis-
carding negative values. 

The algorithm works by constructing an octree corre-
sponding to the hierarchical decomposition of the simu-
lation space into cubic cells with the root of the tree rep-
resenting the whole space. Tree construction is done by 
recursive splitting of the domain, so that at most one agent 
is on one cell. Figure 2 illustrates space decomposition and 
the corresponding quad-tree (Fig. 2c) for the two-dimen-
sional case. Fig. 3 Illustrates a 3D case. Then, the octree is 
fully traversed once, such that each node stores the summed 
aggregated signal for each of the nodes in its subtree. To 
compute the signal, the algorithm starts from the root and 
checks if the current node is a leaf node or if the node is 
sufficiently remote from the target agent, i.e., the ratio s/d 
is smaller than the threshold parameter θ, where s is the 
width of the region represented by the internal node, and 
d is the distance between the agent and the node’s center 
of signal intensity. If the node is not a leaf and is not suffi-
ciently remote, the algorithm recursively aggregates signals 
from all of the child nodes.

Fig. 1  Architecture of the agent’s controller, a recursive neural net-
work composed of 10 input neurons (I1 to I10), 10 hidden neurons (H1 
to H10), 10 context neurons (C1 to C10), and 3 output neurons (O1 to 
O3). Every layer is fully connected to the next one
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Further performance improvement can be achieved by 
utilizing modern parallel hardware architectures. The sig-
nal-propagation logic in our code is roughly similar to the 
logic of the original Barnes–Hut algorithms, and similar 
parallelization schemes can be applied to it. The Barnes–
Hut algorithm has been extensively studied and optimized, 

and it has been implemented on many platforms, such as 
clusters, GPU accelerators, and even FPGA devices [3, 6, 
11]. We focus on the traditional multi-core CPUs, as this 
can be done with reasonable effort, but still lead to signifi-
cant performance improvement.

For the tree construction, we use a top–bottom approach: 
each thread independently inserts particles into the tree, 
starting traversing from the root to the desired last-level 
cell, and then attempts to lock the appropriate child pointer, 
as only the leaf nodes can be changed during the insertion.

Computing the signals does not modify the tree and 
does not require any synchronization. The same is true for 
the feed-forward computation of the ANN. Performance 
evaluation was performed on a PC with Intel Core i7-3820 
3.60  GHz CPU with 4 hyperthreaded cores (8 logical 
cores) and 16  Gb RAM under Ubuntu 15.04 (Linux ker-
nel 3.19.0) operating system. Source codes written in C++ 
programming language with OpenMP programming inter-
face [4] used for multi-threading support and compiled 
with gcc 4.9.2 compiler. Figure 4 shows performance scal-
ing with the increase of the number of agents (spawning of 
new agents was disabled for this benchmark).

(a) The original domain

(b) 2D space decomposition

(c) Corresponding quad-tree

Fig. 2  Two-dimensional example of tree construction. Black squares 
mark the leaf nodes containing an agent, white square nodes are 
empty leaf nodes, and the nodes marked with circles are “inner 
nodes”

Fig. 3  Three-dimensional space partitioning for three agents

Fig. 4  Performance scaling
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4  Related work

In the particle swarm optimization (PSO) problem, a large 
number of particles are moving though a domain, with the 
possibility of updating behavioral parameters every itera-
tion. Highly efficient parallel methods for the PSO have 
been proposed and implemented [15]. However, as there is 
no interaction between particles, the parallelization strategy 
is fairly straightforward.

In the case of Reynolds’ boids, the agents have to be 
aware of each other to follow separation, alignment, and 
cohesion rules. Naive implementation can also lead to 
quadratic performance complexity. However, since no 
long-range interaction is required, and boids tend to be 
fairly separated—the grid-based methods or methods based 
on Smoothed Particle Hydrodynamics technique (and cor-
responding parallelization approaches) work quite well for 
boids and similar models [19, 22].

Our model is different in three key aspects: (1) every 
agent has to receive signals from all other agents; (2) every 
agent contains an artificial neural network that has to be 
evaluated at each iteration; and (3) the number of agents 
changes over the simulation. The first aspect makes the 
above-mentioned optimization and parallelization tech-
niques inapplicable to our model.

Yokoi et al. [25, 26] used a vibrating potential field 
method to coordinate the motion of their morpho-functional 
machines (amoeba-like autonomous agents). The equation 
for the potential field at a given point in space contains the 
sum of individual fields of the agents. As the values of the 
potential have to be computed for every agent in a set, this 
model also results in O(N2) computational complexity and 
cannot scale to a large number of agents.

5  Results

In Fig. 5, we can observe that signaling improves the forag-
ing of agents. We use the average amount of food resource 
obtained per agent per iteration as a measure of the popula-
tion’s fitness. Without noise, the agents using signaling are 
less efficient than their silent counterparts. We found that 
this is not due to the cost of signaling (we factored out this 
cost from the graph), but rather because of the excess of 
noise brought by the signal inputs. The difference remains 
very small between signaling and non-signaling agents.

We find, however, that above a certain noise level, the 
cost of signaling is fully compensated by its benefits, as it 
helps foraging. The average fitness becomes even higher, as 
we increase the noise level, which suggest that the signal-
ing behavior increases in efficiency for high levels of noise, 
allowing the agents to overcome imperfect information by 
forming swarms.

We also observe scale effects in the influence of the sig-
nal propagation on the average fitness of the population. 
Figures 6 and 7 show the effect of different population 
sizes and propagation parameters on foraging efficiency. 
For a smaller population, only middle values of signal 
propagation seem to bring about fitter behaviors, whereas 
this is not the case for larger populations. On the contrary, 
larger populations are the most efficient for lower levels of 
signal propagation. This may suggest a phase transition in 

(a) Without noise

(b) With noise level 20

(c) With noise level 40

Fig. 5  Efficiency with and without signals with constant noise, mean 
(central line), and standard deviation range (area plot) over 10 runs
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the agents’ behavior for large populations, eventually in the 
way, the swarming itself helps foraging.

The analysis of the phylogeny (Fig. 8) though the whole 
simulation showed that at the initial step, one or a few of 
the “fittest” individuals are selected. The following gen-
erations branch more uniformly, slowly approaching the 
optimal genotypes within several sub-groups 5. This cor-
responds to the dynamics that we observe with the foraging 
efficiency over iterations: a noticeable jump in the begin-
ning, followed by slow improvement towards saturation.

6  Conclusion

We used an hierarchical method based on the Barnes–
Hut simulation in computational physics and its parallel 
implementation to speed up signal-propagation simulation 
between autonomous agents. This achieved performance 
improvement of a few orders of magnitude over the pre-
vious implementation [24], and allowed us to explore the 

behavior of large-scale swarms which have been suggested 
to generate qualitatively different dynamics.

We showed how signal-driven swarming, emerging in an 
evolutionary simulation, such as in [24], allows agents to 
overcome noisy information channels and improves their 
performance in a resource finding task. Our first contribu-
tion is the introduction of noise, demonstrating that the 
algorithm performs well against noise filling up channels of 
information almost up to their full capacity, in the inputs of 
agents. The swarming behavior helped by basic signaling 
enables the agents to globally filter out the noise present 
in the information from their sensory inputs, and to reach 
food sites.

The optimization of fitness is acquired by phenotypes 
(agents) using efficient patterns of behavior (motion and 
signaling), which themselves are encoded in the weights of 
agents’ neural networks. The real optimization, therefore, 
occurs at a higher level of the Darwinian-like process in the 
genotypic search space. Efficient genotypes are selected by 
the asynchronous genetic algorithm throughout a simula-
tion run.

Our results indicate non-linear dependencies of the 
signal propagation with respect to the population size, 

Fig. 7  Effects of population 
size and signal-propagation 
coefficient

Fig. 8  Phylogenetic tree

Fig. 6  Effects of population size and noise level
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suggesting the existence of a critical mass in swarms which 
enables them to overcome noisy environments. This effect 
could only be shown, thanks to the efficient simulation of 
a large-scale swarm, with a behavior qualitatively different 
from that of relatively small swarms.
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