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1 Introduction

Human motion is one of the more interesting fields of 
research. This could be because the mechanism of human 
motion is designed by nature. The study of human motion 
reveals information that can be used in diverse fields 
including psychology, sociology, and computer science. 
In the case of humans, motion analysis reveals a wealth 
of information about their nonverbal behaviors. For exam-
ple, observing or imitating the gait of a walking person can 
reveal what the walker is feeling [1]. This is because the 
study of human motion is directly related to the study of 
human behavior, as various motions in our body occur as 
result of spontaneous behavior arising within us. Thus, the 
visual analysis of such motion often attempts to detect and 
identify agents, emotions, and even the physical and men-
tal conditions of a body. This analysis is normally carried 
out by interpreting sequences of images involving human 
moves. This is also supported by the fact that human visual 
perception is very sensitive to motion patterns and could 
reveal abundant information about the different traits of a 
person. However, despite our continuous effort and study, 
the understanding of how exactly all these complex biolog-
ical and psychological perceptions are encoded in a mean-
ingful visual motion pattern that enables humans to identify 
other individuals is still in the stage of research [2].

Human gait refers to the rhythmic physical movement of 
body parts. It is said to be unique in the sense that humans 
have a distinctive ability to use it to identify their close 
friends and family easily. For instance, in an experiment 
done by Johansson [3], he placed light markers with small 
lights points to a subject’s main joints and recorded the 
action of walk so that the lights were highlighted against a 
dark background. With this demonstration, he proved that 
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optical perception from the biological motion of relatively 
less light points were enough for a person to identify the 
motion pattern of a known walker.

Human gait is also unique because, just like many ani-
mal behaviors such as flying, swimming, or walking, it 
requires a pattern of rhythmic contraction of muscles that 
is controlled by a dedicated neuronal circuit called the 
central pattern generator [4]. Basically, each and every 
individual has a unique walking pattern; therefore, it can 
be considered to be one of the reliable sources for human 
recognition.

2  Related works

Human motion has been investigated internationally. As 
gait analysis does not require a person to face the sensors 
directly, it can be done without the knowledge of the sub-
ject. This is also a reason why many security agencies and 
defense units around the world work in this field [5]. Some 
similar investigation in human motion includes research 
by the Defense Advanced Research Project Agency, which 
financed a multi-institutional project on video observation 
with the primary objective of developing a computerized 
video processing technology that allows a single operator 
to observe activities over complex areas including war zone 
and noncombatant scenes. The project, named W4, used a 
mixture of figure analysis and tracing, and developed a pro-
totype of individuals’ presences to empower it to identify 
and track multiple people as well as observe their actions, 
even in the presence of obstructions in an outdoor environ-
ment. Likewise, Hofmann et al. have developed a version 
that also extracts information from a person’s image, such 
as the shadows on his/her clothing, which leads to a more 
detailed signature. They have developed a prototype that 
can track people (by their gait) as they move through a lab-
oratory building [6].

The field of gait analysis is a comparatively dynamic 
subject of research in the field of computer science. Many 
contributions are based on the analysis of walking motion 
in 2D images using several series of video frames and 
deploy several processing techniques to derive the features 
[7, 8]. Looking at these studies in detail, most focus on 
overall gait movement, but none focus on finding the rela-
tionship between the gaits of several individuals. Therefore, 
the aim of this research is to generate a unique numerical 
signature that is similar for the different gaits of a particular 
individual but different for different individuals.

The objective of our work is to investigate the feasibil-
ity of applying genetic programming (GP) to evolve unique 
signatures for human gaits. In addition, we explore the 
viability of using collaborative filter to solve two of the 
most serious drawbacks of GP in real-world problems: (1) 
non-determinism and (2) lack of generality of the evolved 
solutions.

3  Computational methodologies

This study employed several approaches and methodolo-
gies to achieve experimental results as follows.

3.1  Data acquisition

Acquiring the data of a human gait/walk is the first and 
major stage. It involves the detection of a moving human 
and generation of the skeleton frame from the captured 
data. For this step, we use the Microsoft Kinect for Win-
dows as the sensing device. This device was chosen for our 
task because of its off-the-shelf availability, ability to detect 
human motion, and ability to generate a skeleton with 20 
different joints from the detected human body [9]. Raw data 
obtained from the sensor are integer values of the X, Y and 
Z (3D) co-ordinates. But, we only employed X and Y (2D) 

Fig. 1  Possible joints that could 
be extracted from Kinect sensor 
(left), and the sensor direction 
and co-ordinate in 3D space 
(right) [10]
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co-ordinates for our study. The image in Fig. 1 shows the 
parameter that could be obtained from the Kinect sensor. 
The left side of Fig. 1 shows the joint position that could 
be ascertained from the Kinect sensor, whereas the image 
on the right side depicts the co-ordinate position in a 3D 
space. These data are further used to analyze the gait pat-
tern of different individuals for the initial study. However, 
the accuracy of the acquired data depends upon the internal 
architecture of the sensor—we experienced random noise 
in the dataset and used a sliding (moving) window average 
to minimize it.

3.2  Pre‑processing

The next task after data acquisition is the pre-processing 
of the raw numerical data obtained from the Kinect. These 
raw data, comprising the skeleton joint coordinates, are 
first stored in the database and then processed to reduce the 
amount of noise. The data acquired from the sensor contain 
a significant amount of noise and flickering; therefore, the 
dataset needs to be filtered. This is done using a statistical 
model known as a sliding window average method [9]. This 
method is useful as it helps to smooth dataset while pre-
serving the features (i.e., main frequencies, amplitudes, and 
gradients) of the dataset.

3.3  Feature extraction

Feature extraction is associated with the task of finding the 
general features that could be used as a set of terminals in 
the genetic program. To make the features more general 
and natural, we calculated some distinctive features such 
as the angle, angular displacement, angular velocity, dis-
tance, and relative change in distance between the joints. 
All these features were calculated from the preprocessed 
dataset for a few selected joints, namely, the arm, shoul-
der, leg, and hip [9]. Because features were calculated on 

a frame-by-frame basis, they were further minimized using 
an average operation.

3.4  GP

The fourth step involves the use of evolutionary approaches 
to train the system. GP was used to evolve the mathemati-
cal function (formula) of the extracted features (terminal 
symbols) of the gaits. This function should be optimal in 
that it has to be evaluated into values that are similar for 
the gait of the same person, yet different from the values of 
the gait of different persons [9]. For this task, we applied 
our in-house XML based GP framework (XGP) [11]. The 
main parameters of XGP are shown in Table 1, and a sim-
ple snapshot of GP manager is provided in Fig. 2.

The outputs from the XML GP are mathematical func-
tions consisting of the terminals and function sets provided 
in the XML tree structure. Figure 2 shows a screenshot of 
XML GP Manager and a parse tree view of the generated 
genetic programs.

3.5  Collaborative filtering

GP is a powerful evolutionary computing technique, as it 
helps to uncover previously undefined methods in prob-
lem solving. However, there are two serious drawbacks 
when using GP for real-world problems: (i) non-deter-
minism: because of the randomness incorporated to some 
extent in the main GP operations (i.e., initial population 
generation, selection, crossover, and mutation), differ-
ent independent runs of GP result in different best-of-run 
solutions (functions). Even if their fitness values are the 
same, they may differ substantially in their contents. For 
instance, if we follow the empirical evidence in fitness 
convergence shown in Fig. 3, we could notice that the 
obtained solution for 20 different independent runs shows 
different characteristics; first, none of these obtained 

Table 1  The main parameters of GP

Parameters Values

Terminal set (1) Variables-v0, v1,v2…v29 (extracted human gait features)
(2) Random integer constants [0,10]

Function set {+, −, ×, /}

Population size 100 genetic programs

Selection ratio 10 %

Mutation rate 2 %

Selection method Binary tournament selection

Fitness value IDA = Quadratic deviation of each gait signature of person A from the average signatures of all three gaits
IDB = Quadratic deviation of each gait signature of person B from the average signatures of all three gaits
X =  % of Min Avg. ID (Person A, Person B) with Max Avg. ID (Person A, Person B)
Fitness Value = IDA + IDB + X

Termination criteria Fitness value <=4 or number of generations = 100 or stagnation of fitness value
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solutions are the same. Second, the required generation 
to evolve is different, which also means variation in runt-
ime required for each evolution. Therefore, this evidence 
also clearly highlights the non-deterministic nature of the 
evolved solution. (ii) Lack of generality of the obtained 
solutions: some of the evolved formulas might be good 
for particular test sets but not others. Table 2 shows two 
random solutions with their fitness value on training or 
learning case, fitness value on test case, and number of 
nodes in evolved GP tree function. Since both solutions 
given in Table 2 have the same fitness value on training, 
they are equally good while training; however, during 
test cases fitness value of these evolved programs varies 
substantially. In short, different best-of-run solutions are 
almost equally good on learning set, but behave differ-
ently, either good or bad on test set. Additionally, even if 
their fitness values are the same during learning, the dif-
ference in the number of nodes shows that they vary sig-
nificantly in their contents. Because in canonical GP, we 
usually deploy and use only one best-of-run solution, we 
do not know which one would be good for a given par-
ticular case of test set, which introduces additional chal-
lenges in finding generalized solution for a particular set 
of problem while adopting GP.

We investigate two approaches to address these issues, 
(1) averaging and (2) voting, which we referred to as col-
laborative filtering.

3.5.1  Averaging

The averaging concept for several genetic programs is 
implemented by selecting a number n of the best genetic 
programs from the pool of best genetic programs gener-
ated over r different runs during the training stage of our 
approach. In our experiment, we selected the n = 5 best 
genetic programs over r = 20 independent runs. During 
the test stage, the signature for classifying two persons (A 
and B) is calculated by averaging the signatures of these 
n best solutions. This signature is used as a threshold for 
the test. We believe that applying this method could help to 
create a generalized signature and a mechanism to establish 
a general solution from among several of the best genetic 
programs. This concept can be further expressed in the fol-
lowing equation:

where Id is the signature value for identification and Gpi 
is the i-th signature obtained from the best-of-run genetic 
programs.

Id =
Gp1 + Gp2 + · · · + Gp

n

n

,

Fig. 2  Screenshot of the GP Manager (top) and a fragment of the 
tree representation of a sample genetic program (bottom)

Fig. 3  Fitness convergence characteristics for 20 independent runs 
of XGP; the dashed line represents the average fitness value conver-
gence
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3.5.2  Voting

In addition to averaging, we also experimented with the 
concept of voting for the final classification. This method 
can be considered as each gait undergoing a trail with dif-
ferent experts (in this case there are five experts, “repre-
sented” by the five best-of-run genetic programs). Each 
expert provides an opinion about the gait as to whether it is 
Person A’s or Person B’s. The final decision depends on the 
majority of the votes from the experts.

4  Experimental results

The experiment was conducted in a laboratory setup. Data 
were collected from two subjects who were requested to 
generate three different gait movements: (1) normal walk, 
(2) slow walk, and (3) fast walk. Note that the data for the 
two subjects were acquired one after another. The sensor 
was placed perpendicular to the walking direction at a dis-
tance of around 3–4 m.

The fitness convergence results for 20 independent runs 
of XGP are shown in Fig. 3. It is clear from the figure that 
some genetic programs progressed beyond the 58 gen-
erations, while others were able to achieve the terminating 
criteria (as shown in Table 1) in fewer generations. How-
ever, this differentiation does not make any significant dis-
tinction in the experimental results, as we only select the 
best genetic programs from the pool of evolved genetic 
programs. Furthermore, not all genetic programs can 
be expected to provide the best solution for all the cases. 
The dashed line indicates that the average fitness score 
improves from approximately 80 to 5, which highlights the 
evolving nature of the genetic programs and indicates that 
evolution is progressing.

Figure 4 illustrates the scaled signature using the aver-
age of the five best genetic programs, which is used as the 

basis for classifying persons A and B. Moreover, the sig-
nature is simplified by dividing them both by the lesser of 
both signatures which naturally results in signature values 
for B and A of 1 and greater than 1, respectively. This sig-
nature serves as a criterion for the classification of gaits of 
both subjects.

4.1  Experiments without collaborative filters

During the initial testing, we simply used the genetic 
program that had the lowest fitness value among several 
best evolved genetic programs. Figure 5 illustrates the 
result of classifying two persons without the collabora-
tive filtering. Test 1 to Test 5 in Fig. 5 are the five new 
test cases we used to obtain classification results. For 
this initial result, we correctly classified three out of five 
tests (Test 2, Test 3, and Test 5) using the classification 
criterion in Fig. 4. However, we further experimented 
with the voting method. To be clear, Fig. 6 shows an 
implementation of voting only for Test 1, and Fig. 7 
shows the final result using the voting method for all five 
test cases.

Table 2  Parameters of two sample best-of-run evolved solutions

Evolved function Fitness value on training Fitness value on test # of GP tree nodes

((((v_9 + 1) + ((v_9 − (0 × 9)) − ((v_28 × ((((6 + (v_13/(((4 × v_14)/
v_18)/v_18)))/(((6 × 4) + (6 × 4)) + 5)) × (((6 × 5) + (6 × 4)) − (((v_
18 − (v_29 − v_0)) − 1) × (v_9 + 1)))) − 1)) + ((v_9 + 1) × (4 × v_14
)))))/(v_9 + 6)) × ((((4 + (v_13/(v_1/v_18)))/((v_9 + 1) + 5)) × (((v_9 
+ 1) + (6 × 4)) − (((v_18 − (v_29 − v_0)) − 1) × (v_9 + 1)))) − (((v_1
8 − (v_29 − v_0)) − ((v_18/v_22)/v_29)) × (v_9 + 1))))

12 (good fitness) 37 (good fitness) 423

(v_4 − (((4 + (((((5 + v_18) × ((v_18 × 3) × v_11))/((4 + v_1) 
× (1 × 8))) × ((((5 + ((8 + v_18) + 8)) + v_28) × (1 + v_10))/
(((v_29/v_28) − v_12)/(v_18 × v_29)))) + (v_18 + 8))) × (v_18 × (((((
5 + (v_18 + 8)) × ((v_18 × 4) × v_11))/(((8 × v_7) − (((4 + v_1) × (
1 × 8)) + ((8/v_15) × 2))) + v_1)) × ((((5 + ((8 + v_18) + 8)) + v_28
) × (1 + v_10))/(((v_29/v_28) − v_12)/(v_18 × v_29)))) + (v_18 + 8))
)) + 1))

12 (good fitness) 353 (bad fitness) 409
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4.2  Voting method

We implemented voting during the testing stage of our 
approach to improve the decision making regarding the 
recognition of the unknown gaits of two subjects (i.e., 

different from those used in the training stage). Figure 6 
illustrates the use of voting to determine the classifica-
tion of two gaits of two subjects. However, the figure only 
shows the calculation of one gait for each person using five 
different best-of-run genetic programs. As mentioned ear-
lier, Fig. 6 shows voting for the first test case (Test-1) only, 
but we used the same approach for all other test cases (i.e., 
Test 2 to Test 5) to achieve the final results shown in Fig. 7.

Figure 6 illustrates the signature of the same gait of two 
subjects from five different best of run genetic programs. 
The figure shows that gaits are classified correctly by the 
second, third, and fifth best-of-run genetic programs, based 
on the classification criterion in Fig. 4. The first and fourth 
genetic programs still could not classify the gait correctly. 
However, because the voting result depends upon the 
majority; we consider the results of the second, third, and 
fifth voters as the final classification, and the final signature 
of the two subjects as the average of the signatures pro-
duced by the second, third, and fifth voters, as shown for 
Test 1 in Fig. 7. Note that all other test cases in Fig. 6 are 
the outcome of the same approach, although the full pro-
cess is only shown for Test 1 in Fig. 6.

4.3  Tests with voting

The results for tests with voting are shown in Fig. 7. Note 
that each result shown in this chart (Test 1 to Test 5) are 
the results of the collaborative voting filter to determine 
the final classification. We can clearly visualize from Fig. 5 
(the experimental test without voting) and Fig. 7 (the exper-
imental test with voting) that the collaborative filter can 
increase the rate of gait classification obtained from two 
separate individuals. For our initial experiment using five 
different test cases for each person, the use of a collabora-
tive filter achieves a classification rate of as much as 80 % 
(four out of five); however, this test dataset is too limited to 
definitively draw this conclusion. Testing on a larger data-
set will be required and is a task for our future work.

5  Conclusion

In this work, we proposed the use of GP to evolve the 
signatures of human gaits. To address the drawbacks of 
genetic programming—non-determinism and lack of gen-
erality—we implemented collaborative filtering using sev-
eral of the obtained best-of-run genetic programs.

Experimental results suggest that the collaborative filter-
ing improves the quality of human gait recognition for two 
test subjects.

In our future work, we plan to include the evolution of 
the signatures of more than two subjects. Another plan is 
to determine a static signature for several gaits of the same 
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individual that will differ between individuals. This study 
is constrained in the sense that the methodology has been 
tested using a relatively small dataset (five test cases for 
each person); therefore, one important remaining task is to 
test the approach using several other test cases to validate 
its robustness.
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