
Artif Life Robotics (2016) 21:18–23
DOI 10.1007/s10015-015-0259-0

1 3

ORIGINAL ARTICLE

A new algorithm for flexible job‑shop scheduling problem based
on particle swarm optimization

Wannaporn Teekeng1 · Arit Thammano2 · Pornkid Unkaw3 ·
Jiraporn Kiatwuthiamorn2

Received: 7 February 2015 / Accepted: 7 December 2015 / Published online: 18 January 2016
© ISAROB 2016

objective, hence, providing the simplest way to meas-
ure the effectiveness of the generated solutions. Bench-
marking EPSO with 20 well-known benchmark instances
against two widely-reported optimization methods dem-
onstrated that it performed either equally well or better
than the other two.

Keywords  Particle swarm optimization · Flexible job-
shop scheduling · Meta-heuristic · Life cycle

1  Introduction

Flexible job-shop scheduling problem (FJSP) is a type of
optimization problem. In this context, scheduling is the
allocation and arrangement of resources over time to per-
form a collection of tasks to achieve an objective or goal.
Scheduling varies according to the constraints of different
conditions or situations. Normally, scheduling is graphi-
cally represented by Gantt chart that shows resource allo-
cation and scheduling arrangement where the y-axis rep-
resents a variety of resources and the x-axis represents
the length of time that each resource is utilized. FJSP is
an extension of the classical job-shop scheduling problem
(JSSP), but is much harder and more complex to solve
because FJSP allows each operation to be processed by
more than one machine and each machine can finish each
operation in a different amount of time.

Recently, a number of meta-heuristic approaches, such
as genetic algorithm (GA) [1], ant colony optimization
(ACO) [2], shuffled frog leaping algorithm (SFLA) [3],
particle swarm optimization (PSO) [4], artificial immune
algorithm (AIA) [5], and harmony search (HM) [6], have
gained a lot of attention from researchers as viable FJSP
optimization methods. Pezzella et al. [7] proposed a genetic

Abstract  This paper proposes a new algorithm, named
EPSO, for solving flexible job-shop scheduling problem
(FJSP) based on particle swarm optimization (PSO).
EPSO includes two sets of features for expanding the
solution space of FJSP and avoiding premature conver-
gence to local optimum. These two sets are as follows:
(I) particle life cycle that consists of four features: (1)
courting call—increasing the number of more effective
offspring (new solutions), (2) egg-laying stimulation—
increasing the number of offspring from the better par-
ents (current solutions), (3) biparental reproduction—
increasing the diversity of the next generation (iteration)
of solutions, and (4) population turnover—succeeding
the population (the current set of all solutions) in the
previous generation by a population in a new generation
that is as able but more diverse than the previous one;
and (II) discrete position update mechanism—moving
particles (solutions) towards the flight leader (the best
solution), namely, interchanging some integers in every
solution with those in both the best solution and itself,
using similar swarming strategy as the update procedure
of the continuous PSO. The basic objective function used
was to minimize makespan which is the most important

This work was presented in part at the 20th International
Symposium on Artificial Life and Robotics, Beppu, Oita, January
21–23, 2015.

 *	 Wannaporn Teekeng
	 w_teekeng@hotmail.com; wannaporn@rmutl.ac.th

1	 Rajamangala University of Technology Lanna, Tak, Thailand
2	 King Mongkut’s Institute of Technology Ladkrabang,

Bangkok, Thailand
3	 Rajamangala University of Technology Phra Nakhon,

Bangkok, Thailand

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-015-0259-0&domain=pdf

19Artif Life Robotics (2016) 21:18–23	

1 3

algorithm that incorporates different strategies for generat-
ing initial population and selecting individuals for repro-
duction. Zhang et al. [8] proposed new GA concepts for
generating high-quality initial population, called global
selection (GS) and local selection (LS). In another study,
Zhang et al. [9] used variable neighborhood search to per-
form local search in PSO. Bagheri et al. [10] used an arti-
ficial immune algorithm to solve FJSP. They proposed a
method for constructing diverse initial population, a strat-
egy of using ‘most work remaining’ and ‘most operation
remaining’ to arrange the order of operations, and a muta-
tion procedure to achieve even more diversity. Teekeng
et al. [11] proposed an SFLA-FS algorithm that incorpo-
rates fuzzy logic for selecting parents that are better than
those in the previous generation. In another one of their
studies, Teekeng et al. [12] introduced new crossover and
mutation features into GA for solving FJSP. Yuan et al. [13]
presented a hybrid harmony search (HM) for solving FJSP.

Our proposed EPSO algorithm introduced the following
two sets of new features to the original concept of PSO: (I)
particle life cycle that consists of 4 features: (1) courting
call, (2) egg-laying stimulation, (3) biparental reproduc-
tion, and (4) population turnover; and (II) discrete position
update mechanism.

This paper is organized as follows: Sect. 2 briefly
describes FJSP; Sect. 3 describes the original PSO; Sect. 4
presents our proposed EPSO algorithm for FJSP; Sect. 5
presents the performance test results; and Sect. 6 concludes
the paper.

2 � FJSP

Flexible job-shop scheduling problem (FJSP) allows a job
operation to be processed by any machine out of a set of
several machines. To solve FJSP is to find the best sched-
ule for a set of R jobs J = {J1, J2, …, JR} that is operated
by a set of S machines M = {M1, M2, …, MS}. Each job
can have a different set of operations, and each operation
Oij, the jth operation of the ith job, can be processed by any
of the available machines. An example of FJSP is given in
Table 1. Each row refers to an operation and each column
refers to a machine. For example, the first row shows that
the first operation of Job1 can be processed by M1 and M2
using 2 and 4 time units, respectively. On the other hand,
the fifth row shows that the third operation of the second
job is allowed to be processed only by M1.

3 � Particle swarm optimization algorithm

Particle swarm optimization (PSO) is an algorithm that
was inspired by the behaviour of swarming animals like

a flock of birds or a school of fish [4]. It is similar to
genetic algorithm (GA) in that they both randomly select
an initial population and improve it so that the population
of the next generation (iteration) is better at finding the
optimal solution (the actual bound) than the previous one.
In PSO algorithm, a potential solution is called a parti-
cle. The ultimate goal of a particle is to reach the opti-
mal solution. A particle moves towards the solution by
positioning itself nearer to the flight leader, Gbest, that is
the nearest particle to the optimal solution in a particular
iteration. The position of a particle is updated according
to Eqs. (1) and (2):

where v
′

id is the speed of the idth particle in the current
iteration; vid is the speed of the idth particle in the previ-
ous iteration; ω is the initial weight; c1 and c2 are posi-
tive constants; Rand is a random function in the range of
[0, 1]; pbestid is the best local position of the idth particle
(Pbest); pbestgd is the best global position among all par-
ticles (Gbest); and pid is the idth particle. PSO is widely
used for a variety of optimization tasks; however, it can-
not be applied directly to FJSP because PSO was devel-
oped to solve continuous optimization problems but FJSP
is a combinatorial problem which is discrete in nature.

4 � EPSO algorithm for FJSP

Our EPSO algorithm uses the same position update strat-
egy as PSO does but defines a new discrete particle repre-
sentation and a new position update mechanism that suits

(1)
v
′

id = ω × vid + c1 × Rand× (pbestid − pid)

+ c2 × Rand× (pbestgd − pid)

(2)pid = pid + v
′

id

Table 1   An example of FJSP with 4 jobs, 2 machines, and 9 opera-
tions

Job Operation Machine processing time

M1 M2

J1 O11 2 4

O12 5 4

J2 O21 1 4

O22 6 5

O23 2 –

J3 O31 4 6

O32 – 5

J4 O41 3 4

O42 5 7

20	 Artif Life Robotics (2016) 21:18–23

1 3

the discrete nature of FJSP. In this section, we describe this
representation and mechanism, our objective function, and
particle life cycle, a set of enhancing features.

4.1 � Particle representation

For discrete FJSP problem, a particle is defined as follows.
Each particle consists of a string of integers separated into
two parts: (1) job sequence part containing as many slots,
each holding a single job number, as the total number of
operations, and (2) machine selection part containing the
same number of slots as that of the job sequence part, each
holding a single machine number assigned for a job opera-
tion of that job. The first integer slot (or dimension) of the
job sequence part denotes that the operation of the selected
job in this slot is performed first and the corresponding
slot of the machine selection part denotes the machine
selected to perform that operation; similarly, the second
dimension denotes that the second operation (of any one
of the jobs selected) is performed by the machine selected
to perform it, and so on. To make particle representation
clear, we show a concrete example in Fig. 1 and Table 1.
This example is a string of 18 dimensions (9 × 2) repre-
senting a particle. Initially, the job sequence part contains
9 randomly selected job numbers, Oij, 1 ≤ j ≤ ni, where ni
is the number of operations, while the machine selection
part contains 9 methodically selected feasible machine
numbers, Mij. The machine selection method is as follows:
(1) 80 % of the population consist of machines that per-
form the operations of jobs in the shortest processing time
(SPT); and (2) 20 % of the population consist of randomly
selected machines that can perform the selected jobs. The
processing time of each machine is Pijk, 1 ≤ k ≤ Mij. It
can be seen in Fig. 1 that the first slot operation is the first
job operation of job 4 with machine 1; the second slot
operation is the first job operation of job 2 with machine 1;
while the last slot operation is the second job operation of
job 3 with machine 2.

4.2 � Objective function

After a particle is represented, the particle is measured for
its search effectiveness by an objective function. The objec-
tive function used in this study minimizes the maximums of
the complete-time of every job (i.e., minimizes makespan),

(3)Cmax = max1≤j≤n{Cj}

where Cj is the complete time of job j.
This objective function is also used for measuring the

effectiveness of particles when their positions at the end
of an iteration are updated and when the particle life cycle
features generate new positions.

4.3 � Particle life cycle

Enhancing this discrete algorithm based on PSO by incor-
porating the following four particle life cycle features
brings about changes to particle population as described
below.

The first feature is courting call (pcallid). The courting call
of a particle (solution) is an indicator of the effectiveness
of the particle; the more effective the particle, the louder
the call, and the higher the chance that the particle will take
a mate and reproduce, hence, there will be more effective
and diverse offspring from the current generation. A court-
ing call is a measure of the extent to which every machine
can perform every of its assigned operation in roughly the
same amount of time. The loudest call means that the total
processing time of all operations processed by that machine
of that particle is close to the average processing time of all
operations, as expressed in Eq. 4 below,

Figure 2 illustrates pcallid of two particles—pcall1 and pcall2 —
of which pcall1 is louder than pcall2 because the first particle
operates all of its machines in an amount of time closer to
macid than the second particle does: mac1 of pcall1 is 16.5
while its m1 and m2 are 16 and 17, respectively, while mac2
of pcall2 is 19 which is farther to its m1 and m2 at 12 and 26,
respectively.

The second feature is egg-laying stimulation (qovumid).
qovumid is the variable number of offspring that can be pro-
duced by a courting call of particle. A courting call with-
out egg-laying stimulation produces a fixed number of
eggs. With egg-laying stimulation, a courting call produces
a variable number of eggs that depends on the effective-
ness of the particle. Because of this arrangement, the next

(4)pcallid =
∑n

k=1
|mk −macid|

Job sequence Machine selection
4 2 1 4 1 2 2 3 3 1 1 2 1 2 1 1 1 2

Fig. 1   A particle representation

Fig. 2   Gantt chart of courting calls of two particles

21Artif Life Robotics (2016) 21:18–23	

1 3

generation (iteration) will have a higher number of more
effective particles. Mathematically, qovumid is expressed by
the equation below,

where Emin is the minimum number of eggs a particle lays
and Emax is the maximum.

The third feature is biparental reproduction. This kind of
reproduction exchanges job numbers in the job sequence part
of two parent particles. This exchange increases the diversity
of offspring, leading to a better chance for the search to avoid
local optimums. In this study, only the job sequence part is
crossed over, not the machine selection part. The steps in the
crossover procedure, illustrated in Fig. 3, are as follows:

(a)	 Randomly select half of the jobs from a randomly selected
elite parent—the best 30 % of all of the particles;

(b)	 Copy all of the selected jobs from the elite parent and
place them in the same slot of the offspring;

(c)	 Fill in the rest of the slots sequentially from left to right
with the jobs from the non-elite parent (the last 70 % of
particles) that are different from those jobs in b.

(d)	 Repeat step a–c with the same parents until the maxi-
mum number of eggs allowed is reached.

The last feature is population turnover (pini). pini selects
the best 80 % of the initial population and adds newly ran-
domly selected particles (pnew) to make up 100 %. Therefore,
most of the best particles in the current generation (iteration)
will be passed along to the next generation while significant
diversity is introduced. The equation for pini is below,

4.4 � Discrete particle position update mechanism

Similar to PSO, EPSO has a position update mechanism
to move particles closer to Gbest, the flight leader, the one

(5)

qovumid = max







Emin,Emax −



round





Emax × pcall
id

max

�

Pcall
id

�















(6)pini = (pini × 0.8) + pnew

Elite parent particle {J1,J2}

4 3 1 4 1 2 2 2 3 1 1 2 2 2 1 1 1 2

Offspring (i)

1 1 2 2 2 2 2 1 1 1

Non-Elite parent particle {J3,J4}

1 2 2 1 3 3 4 4 2 2 1 1 2 2 2 1 2 1

Fig. 3   Biparental reproduction

(a)

(b)

Fig. 4   An example of particle position update mechanism

EPSO Algorithm

Step 1: Set parameter values: population size,
termination criteria, number of elites, number of
eggs, number of matings an elite does

Step 2: Initialize particles (job sequence part and
machine selection part)

Step 3: Evaluate the effectiveness of each particle in the
population by the objective function

Step 4: If the termination criterion (80% of the
population share the same effective values) is not
met, go to step 5; otherwise, go to step 9

Step 5: Perform courting call, egg-laying stimulation, and
biparental reproduction (particle life cycle)

Step 6: Update position of every particle
Step 7: Update Gbest and Pbest for the next iteration
Step 8: Turn the population over (particle life cycle), then

go to step 4
Step 9: Show result

Fig. 5   Pseudo-code of EPSO algorithm for discrete FJSP problem.
The italicized texts represent new features to the original PSO

22	 Artif Life Robotics (2016) 21:18–23

1 3

nearest to the solution, thus increasing the chance of a par-
ticle to reach the optimal solution. PSO cannot be applied
directly to FJSP because its update mechanism uses real
numbers; instead, EPSO uses discrete integers for the same
purpose. To take advantage of the combined effectiveness
of the flight leader and itself, the next position of a particle
depends on both Gbest and Pbest values of the flight leader
and itself, respectively. When these two values are dissimi-
lar, the particle will be positioned somewhere in the mid-
dle between them. An example showing the discrete update
mechanism is depicted in Fig. 5. This example shows
changes in job sequence part and machine selection part of
a particle as it is updated with Gbest. The same procedure
applies when the particle is further updated with Pbest. The
update procedure is as follows:

•	 Updating job sequence part: the job numbers in the
corresponding slots of Gbest and a pre-updated particle
are compared, and the slots holding similar job num-
bers in the pre-updated particle are kept unchanged
while the slots holding different job numbers are
changed; Fig. 4a shows an example of these changes;

the job numbers in the 4 gray slots are similar and so
remain the same, while the other 5 slots are dissimilar
and the following changes are made: randomly select
the job number and job operation of a half of the dis-
similar slots of Gbest and sequentially place them in
the similar slot of the pre-updated particle; then, the
other half of the dissimilar slots of the pre-updated par-
ticle are sequentially filled with the job numbers that
are required to pair with all of the job operations that
are not selected in the former step, as shown Fig. 4a.

•	 Updating machine selection part: As shown in Fig. 4b,
after a rearrangement that is reversed after the update,
the machine numbers in the corresponding slots of
Gbest and the pre-updated particle are compared, and
the slots holding similar machine numbers in the pre-
updated particle are kept unchanged while the slots
holding different job numbers are changed; the changes
are made in the same way as those made in the job
sequence part.

To summarize the steps in our proposed algorithm, we
present them in pseudocode in Fig. 5 below.

Table 2   Best solutions and percentage relative errors (in parentheses) from the lower bounds of Fattahi’s data set

The symbol “–” means that the machine cannot execute the corresponding operation

Test Instance Job and machine (n × m) Lower bound Bagheri et al. [10]
AIA method

Demir and Isleyen [15]
Mathematical model

EPSO

SFJS1 2 × 2 66 66 (0.00) 66 (0.00) 66 (0.00)

SFJS2 2 × 2 107 107 (0.00) 107 (0.00) 107 (0.00)

SFJS3 3 × 2 221 221 (0.00) 221 (0.00) 221 (0.00)

SFJS4 3 × 2 355 355 (0.00) 355 (0.00) 355 (0.00)

SFJS5 3 × 2 119 119 (0.00) 119 (0.00) 119 (0.00)

SFJS6 3 × 3 320 320 (0.00) 320 (0.00) 320 (0.00)

SFJS7 3 × 5 397 397 (0.00) 397 (0.00) 397 (0.00)

SFJS8 3 × 4 253 253 (0.00) 253 (0.00) 253 (0.00)

SFJS9 3 × 3 210 210 (0.00) 210 (0.00) 210 (0.00)

SFJS10 4 × 5 516 516 (0.00) 516 (0.00) 516 (0.00)

MFJS1 5 × 6 396 468 (18.18) 468 (18.18) 468 (18.18)

MFJS2 5 × 7 396 448 (13.13) 446 (12.63) 446 (12.63)

MFJS3 6 × 7 396 468 (18.18) 466 (17.68) 466 (17.68)

MFJS4 7 × 7 496 554 (11.69) 564 (13.71) 554 (11.69)

MFJS5 7 × 7 414 527 (27.29) 514 (24.15) 514 (24.15)

MFJS6 8 × 7 469 635 (35.39) 634 (35.18) 634 (35.18)

MFJS7 8 × 7 619 879 (42.00) 928 (49.92) 879 (42.00)

MFJS8 9 × 8 619 884 (42.81) – 884 (42.81)

MFJS9 11 × 8 764 1088 (42.41) – 1059 (38.61)

MFJS10 12 × 8 944 1267 (34.22) – 1205 (27.65)

Average relative error 14.27 – 13.53

– 10.11*** 9.50***

23Artif Life Robotics (2016) 21:18–23	

1 3

5 � Results of performance test

Our proposed algorithm was performance tested with Fdata
set, a benchmark data set invented by Fattahi [14]. An Fdata set
consists of 20 test instances that are grouped according to their
size: (1) small size (SJJS1:10), and (2) medium and large size
(MFJS1:10). It is relatively easy to find a solution that matches
the lower bound of SJJS1:10, but it is not so for MFJS1:10.

The test parameters used were as follows:

•	 Population size: initially 200 and does not increase over
500.

•	 Termination check: 80 % of the population share the
same effectiveness values.

•	 Number of elite particles: the best 30 % of the popula-
tion.

•	 Number of eggs: Emax = 5 to Emin = 2.
•	 Number of matings (for elite parent particle) = 3.

Performance was measured in terms of closeness to the
lower bound of the benchmark. The best solution that the
algorithm found was reported, and so was the average per-
centage of relative error from the lower bound of the final
solution. The percentage of relative error RE (%) is calcu-
lated by the following Eq. (7):

where Cbest is the best solution obtained from our algorithm.
BKS is the best-known solution or the lower bound of

the benchmark.
Table 2 shows the best results from our algorithm for all

20 test instances of the Fdata set (SFJS1:10 and MFJS1:10)
compared to the best results obtained from the artificial
immune algorithm (AIA) of Bagheri et al. [8] as well as our
best results for 17 instances of the Fdata set (SFJS1:10 and
MFJS1:7) compared to the best results obtained from a math-
ematical model proposed by Demir et al. [15]. With respect
to the results obtained from testing with SFJS1:10, the best
solutions from our algorithm, AIA algorithm, and Demir’s
mathematical model were the same and equal to the lower
bound, but with respect to the results obtained from testing
with MFJS, the best solution from our algorithm was either
the same or better than both the best solutions from AIA
and Demir’s mathematical model. The average percentages
of relative error from the lower bound of our algorithm and
the AIA algorithm for the 20 test instances were 13.53 and
14.27 %, respectively, and the average percentages of rela-
tive error from the lower bound of our algorithm and Demir’s
mathematical model for the 17 test instances were 9.50***
and 10.11 %***, respectively. All of these results show that
the performance of EPSO was better than those of AIA and
Demir’s mathematical model.

(7)RE(%) =
Cbest − BKS

BKS
× 100

6 � Conclusion

This paper proposes an algorithm for solving discrete flex-
ible job-shop scheduling problem (FJSP) based on the
swarming strategy of the particle swarm optimization (PSO)
algorithm. Two sets of enhancing features are introduced:
(I) particle life cycle that consists of the following features:
(1) courting call, (2) egg-laying stimulation, (3) biparental
reproduction, and (4) population turnover; and (II) discrete
position update mechanism. The performance test results
show that the proposed algorithm performed better than
AIA algorithm and Demir’s mathematical model. In our
future work, we will attempt to apply this algorithm to a
much more complex FJSP with multi-objective functions.

References

	 1.	 Goldberg DE (1989) Genetic algorithms in search optimisation
and machine learning. Addison-Wesley, Reading

	 2.	 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimiza-
tion: artificial ant as a computational intelligence technique.
IRIDIA Technical Report Series, University Libre De Bruxelles,
Belgium

	 3.	 Eusuff MM, Lansey KE (2003) Optimization of water distribu-
tion network design using the shuffled frog leaping algorithm. J
Water Resour Plan Manage 129(3):210–225

	 4.	 Kennedy J, Eberhard R (1995) Particle swarm optimization.
Phys Rev B 13:5344–5348

	 5.	 Dasgupta D (2002) Special issue on artificial immune system.
IEEE Trans Evol Comput 6:225–256

	 6.	 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic
optimisation algorithm: harmony search. Simulation 76:60–68

	 7.	 Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm
for the flexible job-shop scheduling problem. Comput Oper Res
35(10):3202–3212

	 8.	 Zhang GH, Gao L, Shi Y (2011) An effective genetic algorithm
for the flexible job-shop scheduling problem. Expert Syst Appl
38(4):3563–3573

	 9.	 Zhang G, Gao L, Li X (2013) Solving the flexible job-shop
scheduling problem using particle swarm optimization and
variable neighborhood search. Int J Adv Comput Technol
5(4):291–299

	10.	 Bagheri A, Zandieh M, Mahdavia I, Yazdani M (2010) An artifi-
cial immune algorithm for the flexible job-shop scheduling prob-
lem. Future Gener Comput Syst 26:533–541

	11.	 Teekeng W, Thammano A (2011) A combination of Shuffled frog
leaping algorithm and fuzzy logic for flexible job-shop schedul-
ing problems. Proc Comput Sci Complex Adapt Syst 6:69–75

	12.	 Teekeng W, Thammano A (2012) Modified genetic algorithm for
flexible job-shop scheduling problems. Proc Comput Sci Com-
plex Adapt Syst 12:122–128

	13.	 Yuan Y, Xu H, Yang J (2013) A hybrid harmony search algorithm
for the flexible job shop scheduling problem. Appl Soft Comput
13(7):3259–3272

	14.	 Fattahi P, Mehrabad MS, Jolai F (2007) Mathematical modeling
and heuristic approaches to flexible job shop scheduling prob-
lems. J Intell Manuf 18(3):331–342

	15.	 Demir Y, Isleyen SK (2013) Evaluation of mathematical models
for flexible job-shop scheduling problems. Appl Math Model
37(3):977–988

	A new algorithm for flexible job-shop scheduling problem based on particle swarm optimization
	Abstract
	1 Introduction
	2 FJSP
	3 Particle swarm optimization algorithm
	4 EPSO algorithm for FJSP
	4.1 Particle representation
	4.2 Objective function
	4.3 Particle life cycle
	4.4 Discrete particle position update mechanism

	5 Results of performance test
	6 Conclusion
	References

