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objective, hence, providing the simplest way to meas-
ure the effectiveness of the generated solutions. Bench-
marking EPSO with 20 well-known benchmark instances 
against two widely-reported optimization methods dem-
onstrated that it performed either equally well or better 
than the other two.
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1  Introduction

Flexible job-shop scheduling problem (FJSP) is a type of 
optimization problem. In this context, scheduling is the 
allocation and arrangement of resources over time to per-
form a collection of tasks to achieve an objective or goal. 
Scheduling varies according to the constraints of different 
conditions or situations. Normally, scheduling is graphi-
cally represented by Gantt chart that shows resource allo-
cation and scheduling arrangement where the y-axis rep-
resents a variety of resources and the x-axis represents 
the length of time that each resource is utilized. FJSP is 
an extension of the classical job-shop scheduling problem 
(JSSP), but is much harder and more complex to solve 
because FJSP allows each operation to be processed by 
more than one machine and each machine can finish each 
operation in a different amount of time.

Recently, a number of meta-heuristic approaches, such 
as genetic algorithm (GA) [1], ant colony optimization 
(ACO) [2], shuffled frog leaping algorithm (SFLA) [3], 
particle swarm optimization (PSO) [4], artificial immune 
algorithm (AIA) [5], and harmony search (HM) [6], have 
gained a lot of attention from researchers as viable FJSP 
optimization methods. Pezzella et al. [7] proposed a genetic 

Abstract  This paper proposes a new algorithm, named 
EPSO, for solving flexible job-shop scheduling problem 
(FJSP) based on particle swarm optimization (PSO). 
EPSO includes two sets of features for expanding the 
solution space of FJSP and avoiding premature conver-
gence to local optimum. These two sets are as follows: 
(I) particle life cycle that consists of four features: (1) 
courting call—increasing the number of more effective 
offspring (new solutions), (2) egg-laying stimulation—
increasing the number of offspring from the better par-
ents (current solutions), (3) biparental reproduction—
increasing the diversity of the next generation (iteration) 
of solutions, and (4) population turnover—succeeding 
the population (the current set of all solutions) in the 
previous generation by a population in a new generation 
that is as able but more diverse than the previous one; 
and (II) discrete position update mechanism—moving 
particles (solutions) towards the flight leader (the best 
solution), namely, interchanging some integers in every 
solution with those in both the best solution and itself, 
using similar swarming strategy as the update procedure 
of the continuous PSO. The basic objective function used 
was to minimize makespan which is the most important 
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algorithm that incorporates different strategies for generat-
ing initial population and selecting individuals for repro-
duction. Zhang et  al. [8] proposed new GA concepts for 
generating high-quality initial population, called global 
selection (GS) and local selection (LS). In another study, 
Zhang et al. [9] used variable neighborhood search to per-
form local search in PSO. Bagheri et al. [10] used an arti-
ficial immune algorithm to solve FJSP. They proposed a 
method for constructing diverse initial population, a strat-
egy of using ‘most work remaining’ and ‘most operation 
remaining’ to arrange the order of operations, and a muta-
tion procedure to achieve even more diversity. Teekeng 
et  al. [11] proposed an SFLA-FS algorithm that incorpo-
rates fuzzy logic for selecting parents that are better than 
those in the previous generation. In another one of their 
studies, Teekeng et  al. [12] introduced new crossover and 
mutation features into GA for solving FJSP. Yuan et al. [13] 
presented a hybrid harmony search (HM) for solving FJSP.

Our proposed EPSO algorithm introduced the following 
two sets of new features to the original concept of PSO: (I) 
particle life cycle that consists of 4 features: (1) courting 
call, (2) egg-laying stimulation, (3) biparental reproduc-
tion, and (4) population turnover; and (II) discrete position 
update mechanism.

This paper is organized as follows: Sect.  2 briefly 
describes FJSP; Sect. 3 describes the original PSO; Sect. 4 
presents our proposed EPSO algorithm for FJSP; Sect.  5 
presents the performance test results; and Sect. 6 concludes 
the paper.

2 � FJSP

Flexible job-shop scheduling problem (FJSP) allows a job 
operation to be processed by any machine out of a set of 
several machines. To solve FJSP is to find the best sched-
ule for a set of R jobs J = {J1, J2, …, JR} that is operated 
by a set of S machines M =  {M1, M2, …, MS}. Each job 
can have a different set of operations, and each operation 
Oij, the jth operation of the ith job, can be processed by any 
of the available machines. An example of FJSP is given in 
Table 1. Each row refers to an operation and each column 
refers to a machine. For example, the first row shows that 
the first operation of Job1 can be processed by M1 and M2 
using 2 and 4 time units, respectively. On the other hand, 
the fifth row shows that the third operation of the second 
job is allowed to be processed only by M1.

3 � Particle swarm optimization algorithm

Particle swarm optimization (PSO) is an algorithm that 
was inspired by the behaviour of swarming animals like 

a flock of birds or a school of fish [4]. It is similar to 
genetic algorithm (GA) in that they both randomly select 
an initial population and improve it so that the population 
of the next generation (iteration) is better at finding the 
optimal solution (the actual bound) than the previous one. 
In PSO algorithm, a potential solution is called a parti-
cle. The ultimate goal of a particle is to reach the opti-
mal solution. A particle moves towards the solution by 
positioning itself nearer to the flight leader, Gbest, that is 
the nearest particle to the optimal solution in a particular 
iteration. The position of a particle is updated according 
to Eqs. (1) and (2):

where v
′

id is the speed of the idth particle in the current 
iteration; vid is the speed of the idth particle in the previ-
ous iteration; ω is the initial weight; c1 and c2 are posi-
tive constants; Rand is a random function in the range of 
[0, 1]; pbestid  is the best local position of the idth particle 
(Pbest); pbestgd  is the best global position among all par-
ticles (Gbest); and pid is the idth particle. PSO is widely 
used for a variety of optimization tasks; however, it can-
not be applied directly to FJSP because PSO was devel-
oped to solve continuous optimization problems but FJSP 
is a combinatorial problem which is discrete in nature.

4 � EPSO algorithm for FJSP

Our EPSO algorithm uses the same position update strat-
egy as PSO does but defines a new discrete particle repre-
sentation and a new position update mechanism that suits 

(1)
v
′

id = ω × vid + c1 × Rand× (pbestid − pid)

+ c2 × Rand× (pbestgd − pid)

(2)pid = pid + v
′

id

Table 1   An example of FJSP with 4 jobs, 2 machines, and 9 opera-
tions

Job Operation Machine processing time

M1 M2

J1 O11 2 4

O12 5 4

J2 O21 1 4

O22 6 5

O23 2 –

J3 O31 4 6

O32 – 5

J4 O41 3 4

O42 5 7
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the discrete nature of FJSP. In this section, we describe this 
representation and mechanism, our objective function, and 
particle life cycle, a set of enhancing features.

4.1 � Particle representation

For discrete FJSP problem, a particle is defined as follows. 
Each particle consists of a string of integers separated into 
two parts: (1) job sequence part containing as many slots, 
each holding a single job number, as the total number of 
operations, and (2) machine selection part containing the 
same number of slots as that of the job sequence part, each 
holding a single machine number assigned for a job opera-
tion of that job. The first integer slot (or dimension) of the 
job sequence part denotes that the operation of the selected 
job in this slot is performed first and the corresponding 
slot of the machine selection part denotes the machine 
selected to perform that operation; similarly, the second 
dimension denotes that the second operation (of any one 
of the jobs selected) is performed by the machine selected 
to perform it, and so on. To make particle representation 
clear, we show a concrete example in Fig. 1 and Table 1. 
This example is a string of 18 dimensions (9 × 2) repre-
senting a particle. Initially, the job sequence part contains 
9 randomly selected job numbers, Oij, 1 ≤ j ≤ ni, where ni 
is the number of operations, while the machine selection 
part contains 9 methodically selected feasible machine 
numbers, Mij. The machine selection method is as follows: 
(1) 80  % of the population consist of machines that per-
form the operations of jobs in the shortest processing time 
(SPT); and (2) 20 % of the population consist of randomly 
selected machines that can perform the selected jobs. The 
processing time of each machine is Pijk, 1 ≤  k ≤  Mij. It 
can be seen in Fig. 1 that the first slot operation is the first 
job operation of job 4 with machine 1; the second slot 
operation is the first job operation of job 2 with machine 1; 
while the last slot operation is the second job operation of 
job 3 with machine 2.

4.2 � Objective function

After a particle is represented, the particle is measured for 
its search effectiveness by an objective function. The objec-
tive function used in this study minimizes the maximums of 
the complete-time of every job (i.e., minimizes makespan),

(3)Cmax = max1≤j≤n{Cj}

where Cj is the complete time of job j.
This objective function is also used for measuring the 

effectiveness of particles when their positions at the end 
of an iteration are updated and when the particle life cycle 
features generate new positions.

4.3 � Particle life cycle

Enhancing this discrete algorithm based on PSO by incor-
porating the following four particle life cycle features 
brings about changes to particle population as described 
below.

The first feature is courting call (pcallid ). The courting call 
of a particle (solution) is an indicator of the effectiveness 
of the particle; the more effective the particle, the louder 
the call, and the higher the chance that the particle will take 
a mate and reproduce, hence, there will be more effective 
and diverse offspring from the current generation. A court-
ing call is a measure of the extent to which every machine 
can perform every of its assigned operation in roughly the 
same amount of time. The loudest call means that the total 
processing time of all operations processed by that machine 
of that particle is close to the average processing time of all 
operations, as expressed in Eq. 4 below,

Figure 2 illustrates pcallid  of two particles—pcall1  and pcall2 —
of which pcall1  is louder than pcall2  because the first particle 
operates all of its machines in an amount of time closer to 
macid than the second particle does: mac1 of pcall1  is 16.5 
while its m1 and m2 are 16 and 17, respectively, while mac2 
of pcall2  is 19 which is farther to its m1 and m2 at 12 and 26, 
respectively.

The second feature is egg-laying stimulation (qovumid ). 
qovumid  is the variable number of offspring that can be pro-
duced by a courting call of particle. A courting call with-
out egg-laying stimulation produces a fixed number of 
eggs. With egg-laying stimulation, a courting call produces 
a variable number of eggs that depends on the effective-
ness of the particle. Because of this arrangement, the next 

(4)pcallid =
∑n

k=1
|mk −macid|

Job sequence Machine selection
4 2 1 4 1 2 2 3 3 1 1 2 1 2 1 1 1 2

Fig. 1   A particle representation

Fig. 2   Gantt chart of courting calls of two particles
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generation (iteration) will have a higher number of more 
effective particles. Mathematically, qovumid  is expressed by 
the equation below,

where Emin is the minimum number of eggs a particle lays 
and Emax is the maximum.

The third feature is biparental reproduction. This kind of 
reproduction exchanges job numbers in the job sequence part 
of two parent particles. This exchange increases the diversity 
of offspring, leading to a better chance for the search to avoid 
local optimums. In this study, only the job sequence part is 
crossed over, not the machine selection part. The steps in the 
crossover procedure, illustrated in Fig. 3, are as follows:

(a)	 Randomly select half of the jobs from a randomly selected 
elite parent—the best 30 % of all of the particles;

(b)	 Copy all of the selected jobs from the elite parent and 
place them in the same slot of the offspring;

(c)	 Fill in the rest of the slots sequentially from left to right 
with the jobs from the non-elite parent (the last 70 % of 
particles) that are different from those jobs in b.

(d)	 Repeat step a–c with the same parents until the maxi-
mum number of eggs allowed is reached.

The last feature is population turnover (pini). pini selects 
the best 80 % of the initial population and adds newly ran-
domly selected particles (pnew) to make up 100 %. Therefore, 
most of the best particles in the current generation (iteration) 
will be passed along to the next generation while significant 
diversity is introduced. The equation for pini is below,

4.4 � Discrete particle position update mechanism

Similar to PSO, EPSO has a position update mechanism 
to move particles closer to Gbest, the flight leader, the one 

(5)

qovumid = max







Emin,Emax −



round





Emax × pcall
id

max

�

Pcall
id

�















(6)pini = (pini × 0.8) + pnew

Elite parent particle {J1,J2}

4 3 1 4 1 2 2 2 3 1 1 2 2 2 1 1 1 2

Offspring (i)

1 1 2 2 2 2 2 1 1 1

Non-Elite parent particle {J3,J4}

1 2 2 1 3 3 4 4 2 2 1 1 2 2 2 1 2 1

Fig. 3   Biparental reproduction

(a)

(b)

Fig. 4   An example of particle position update mechanism

EPSO Algorithm

Step 1: Set parameter values: population size, 
termination criteria, number of elites, number of 
eggs, number of matings an elite does

Step 2: Initialize particles (job sequence part and 
machine selection part)

Step 3: Evaluate the effectiveness of each particle in the 
population by the objective function

Step 4: If the termination criterion (80% of the 
population share the same effective values) is not 
met, go to step 5; otherwise, go to step 9

Step 5: Perform courting call, egg-laying stimulation, and
biparental reproduction (particle life cycle)

Step 6: Update position of every particle
Step 7: Update Gbest and Pbest for the next iteration
Step 8: Turn the population over (particle life cycle), then 

go to step 4
Step 9: Show result

Fig. 5   Pseudo-code of EPSO algorithm for discrete FJSP problem. 
The italicized texts represent new features to the original PSO



22	 Artif Life Robotics (2016) 21:18–23

1 3

nearest to the solution, thus increasing the chance of a par-
ticle to reach the optimal solution. PSO cannot be applied 
directly to FJSP because its update mechanism uses real 
numbers; instead, EPSO uses discrete integers for the same 
purpose. To take advantage of the combined effectiveness 
of the flight leader and itself, the next position of a particle 
depends on both Gbest and Pbest values of the flight leader 
and itself, respectively. When these two values are dissimi-
lar, the particle will be positioned somewhere in the mid-
dle between them. An example showing the discrete update 
mechanism is depicted in Fig.  5. This example shows 
changes in job sequence part and machine selection part of 
a particle as it is updated with Gbest. The same procedure 
applies when the particle is further updated with Pbest. The 
update procedure is as follows:

•	 Updating job sequence part: the job numbers in the 
corresponding slots of Gbest and a pre-updated particle 
are compared, and the slots holding similar job num-
bers in the pre-updated particle are kept unchanged 
while the slots holding different job numbers are 
changed; Fig.  4a shows an example of these changes; 

the job numbers in the 4 gray slots are similar and so 
remain the same, while the other 5 slots are dissimilar 
and the following changes are made: randomly select 
the job number and job operation of a half of the dis-
similar slots of Gbest and sequentially place them in 
the similar slot of the pre-updated particle; then, the 
other half of the dissimilar slots of the pre-updated par-
ticle are sequentially filled with the job numbers that 
are required to pair with all of the job operations that 
are not selected in the former step, as shown Fig. 4a.

•	 Updating machine selection part: As shown in Fig. 4b, 
after a rearrangement that is reversed after the update, 
the machine numbers in the corresponding slots of 
Gbest and the pre-updated particle are compared, and 
the slots holding similar machine numbers in the pre-
updated particle are kept unchanged while the slots 
holding different job numbers are changed; the changes 
are made in the same way as those made in the job 
sequence part.

To summarize the steps in our proposed algorithm, we 
present them in pseudocode in Fig. 5 below. 

Table 2   Best solutions and percentage relative errors (in parentheses) from the lower bounds of Fattahi’s data set

The symbol “–” means that the machine cannot execute the corresponding operation

Test Instance Job and machine (n × m) Lower bound Bagheri et al. [10]
AIA method

Demir and Isleyen [15]
Mathematical model

EPSO

SFJS1 2 × 2 66 66 (0.00) 66 (0.00) 66 (0.00)

SFJS2 2 × 2 107 107 (0.00) 107 (0.00) 107 (0.00)

SFJS3 3 × 2 221 221 (0.00) 221 (0.00) 221 (0.00)

SFJS4 3 × 2 355 355 (0.00) 355 (0.00) 355 (0.00)

SFJS5 3 × 2 119 119 (0.00) 119 (0.00) 119 (0.00)

SFJS6 3 × 3 320 320 (0.00) 320 (0.00) 320 (0.00)

SFJS7 3 × 5 397 397 (0.00) 397 (0.00) 397 (0.00)

SFJS8 3 × 4 253 253 (0.00) 253 (0.00) 253 (0.00)

SFJS9 3 × 3 210 210 (0.00) 210 (0.00) 210 (0.00)

SFJS10 4 × 5 516 516 (0.00) 516 (0.00) 516 (0.00)

MFJS1 5 × 6 396 468 (18.18) 468 (18.18) 468 (18.18)

MFJS2 5 × 7 396 448 (13.13) 446 (12.63) 446 (12.63)

MFJS3 6 × 7 396 468 (18.18) 466 (17.68) 466 (17.68)

MFJS4 7 × 7 496 554 (11.69) 564 (13.71) 554 (11.69)

MFJS5 7 × 7 414 527 (27.29) 514 (24.15) 514 (24.15)

MFJS6 8 × 7 469 635 (35.39) 634 (35.18) 634 (35.18)

MFJS7 8 × 7 619 879 (42.00) 928 (49.92) 879 (42.00)

MFJS8 9 × 8 619 884 (42.81) – 884 (42.81)

MFJS9 11 × 8 764 1088 (42.41) – 1059 (38.61)

MFJS10 12 × 8 944 1267 (34.22) – 1205 (27.65)

Average relative error 14.27 – 13.53

– 10.11*** 9.50***
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5 � Results of performance test

Our proposed algorithm was performance tested with Fdata 
set, a benchmark data set invented by Fattahi [14]. An Fdata set 
consists of 20 test instances that are grouped according to their 
size: (1) small size (SJJS1:10), and (2) medium and large size 
(MFJS1:10). It is relatively easy to find a solution that matches 
the lower bound of SJJS1:10, but it is not so for MFJS1:10.

The test parameters used were as follows:

•	 Population size: initially 200 and does not increase over 
500.

•	 Termination check: 80  % of the population share the 
same effectiveness values.

•	 Number of elite particles: the best 30 % of the popula-
tion.

•	 Number of eggs: Emax = 5 to Emin = 2.
•	 Number of matings (for elite parent particle) = 3.

Performance was measured in terms of closeness to the 
lower bound of the benchmark. The best solution that the 
algorithm found was reported, and so was the average per-
centage of relative error from the lower bound of the final 
solution. The percentage of relative error RE (%) is calcu-
lated by the following Eq. (7):

where Cbest is the best solution obtained from our algorithm.
BKS is the best-known solution or the lower bound of 

the benchmark.
Table 2 shows the best results from our algorithm for all 

20 test instances of the Fdata set (SFJS1:10 and MFJS1:10) 
compared to the best results obtained from the artificial 
immune algorithm (AIA) of Bagheri et al. [8] as well as our 
best results for 17 instances of the Fdata set (SFJS1:10 and 
MFJS1:7) compared to the best results obtained from a math-
ematical model proposed by Demir et al. [15]. With respect 
to the results obtained from testing with SFJS1:10, the best 
solutions from our algorithm, AIA algorithm, and Demir’s 
mathematical model were the same and equal to the lower 
bound, but with respect to the results obtained from testing 
with MFJS, the best solution from our algorithm was either 
the same or better than both the best solutions from AIA 
and Demir’s mathematical model. The average percentages 
of relative error from the lower bound of our algorithm and 
the AIA algorithm for the 20 test instances were 13.53 and 
14.27  %, respectively, and the average percentages of rela-
tive error from the lower bound of our algorithm and Demir’s 
mathematical model for the 17 test instances were 9.50*** 
and 10.11 %***, respectively. All of these results show that 
the performance of EPSO was better than those of AIA and 
Demir’s mathematical model.

(7)RE(%) =
Cbest − BKS

BKS
× 100

6 � Conclusion

This paper proposes an algorithm for solving discrete flex-
ible job-shop scheduling problem (FJSP) based on the 
swarming strategy of the particle swarm optimization (PSO) 
algorithm. Two sets of enhancing features are introduced: 
(I) particle life cycle that consists of the following features: 
(1) courting call, (2) egg-laying stimulation, (3) biparental 
reproduction, and (4) population turnover; and (II) discrete 
position update mechanism. The performance test results 
show that the proposed algorithm performed better than 
AIA algorithm and Demir’s mathematical model. In our 
future work, we will attempt to apply this algorithm to a 
much more complex FJSP with multi-objective functions.
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