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on neural networks, such as phase and amplitude in a sig-
nal, can be achieved by this kind of extensions. Complex-
valued multistate neural network (CVMNN) is a complex-
valued Hopfield-type neural network, and the state of a 
neuron is encoded by a distinct point on a unit circle in the 
complex plane, i.e., the discretized phase [3]. Multi-level 
values, such as pixel values of images, can be easily rep-
resented using this type of encoding, and thus associative 
memory that is capable of storing gray-scaled images can 
be constructed. For CVMNNs there are several studies for 
the learning schemes that embed patterns to the networks 
[4, 5].

The use of quaternions, which are four-dimensional 
hypercomplex numbers, is expected to extend CVMNN 
so that multi-dimensional vectors with discretized values 
can be accepted. In this respect, quaternionic multistate 
neural network (QMNN) has been proposed [6], and sev-
eral learning schemes have also been formulated [5, 7]. 
QMNNs enable three-dimensional patterns, such as color 
images or three-dimensional body images, to be embedded 
in the network using phasor representation of quaternions. 
Though these learning schemes for QMNNs are available, 
the applicability and performances using memory patterns 
have not yet been investigated.

In this paper, we investigate the performances of 
QMNNs through storing to and retrieving patterns from 
the networks. The Hebbian rule and the extended projec-
tion rule for QMNN are used for storing memory patterns 
to the networks. First experiment is to ensure the projec-
tion rule actually works, i.e., random patterns can be stably 
embedded. In the second experiment, the noise robustness 
of QMNN with the projection rule is also investigated from 
the viewpoints of discretized level, the number of memory 
patterns in the network, and noise-affected patterns for the 
initial configuration of the network. Third experiment is to 
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1  Introduction
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demonstrate that color images can be stored to and retrieved 
from a QMNN using the projection rule. Three images with 
many pixels and with high resolution of the pixel level are 
used for the memory patterns, and the robustness of the 
noises for the input patterns is explored.

This paper is organized as follows. Section 2 gives pre-
liminaries, such as the definitions and representations of 
quaternion and quaternionic multistate neural network. 
Then, the learning schemes are described in Sect. 3. This 
is followed in Sect. 4 by showing the experimental results. 
We finish with conclusions in Sect. 5.

2 � Preliminaries

2.1 � Definition of quaternions

Quaternions form a class of hypercomplex numbers that 
consist of a real number and three kinds of imaginary num-
ber, i, j, k. Formally, a quaternion is defined as a vector in 
a four-dimensional vector space,

where x(e), x(i), x(j) and x(k) are real numbers. The multipli-
cation rules between the three imaginary numbers are:

It is also written using 4-tuple or 2-tuple notations as 
follows:

where �x = (x(i), x(j), x(k)). In this representation x(e) is the 
scalar part of x, and �x forms the vector part.

Now, we define the operation between quaternions, 
p and q. The addition and subtraction of quaternions are 
defined in the same manner as those of complex numbers 
or vectors by

The product of p and q, denoted as pq, is calculated by Eq. 
(2) as

where �p · �q and �p× �q denote the dot and cross products 
respectively between three-dimensional vectors �p and �q.

(1)x = x(e) + x(i)i + x(j)j + x(k)k

(2)
i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

(3)x =
(

x(e), x(i), x(j), x(k)
)

=
(

x(e), �x
)

,

(4)p± q =
(

p(e)± q(e), �p± �q
)

(5)=
(

p(e)± q(e), p(i)± q(i), p(j)± q(j), p(k)± q(k)
)

.

(6)pq =
(

p(e)q(e) − �p · �q, p(e)�q + q(e)�p+ �p× �q
)

.

The quaternion conjugate is defined as

The conjugate of product holds the relation of 
( pq )∗= q∗p∗ .

The quaternion norm of x, notation |x|, is defined by

The multiplication between scalar a = (a, �0) and quater-
nion x is given by

2.2 � Phasor representation of quaternions

A complex number in the form c = c(e) + c(i)i can be repre-

sented in phasor form by c = reiθ, where r =
√

c(e)
2 + c(i)

2 , 
and θ = arctan (c(i)/c(e)). Similarly, every quaternion can be 
represented in the phasor form. The phasor form of quaterni-
ons [8] adopted in this paper is as follows:

ϕ, θ, and ψ are the phases of q, and they are defined in 
the ranges of [−π,π), [−π/2,π/2), and [−π/4,π/4], 
respectively.

3 � Quaternionic multistate Hopfield neural 
network

We describe the quaternionic multistate Hopfield neural 
network model in this section [6]. All the variables in the 
model are described by quaternions, i.e., neuron states and 
connection weights. The state of a neuron p is represented 
using three phases ϕp, ψp, and θp as

where |up| = 1. The action potential of the neuron p at a 
discrete time t is defined as

where wpq is the connection weights between neuron q 
to neuron p. The output state of the neuron p at the time 
(t + 1) is determined by

(7)
x∗ =

(

x(e),−�x
)

= x(e) − x(i)i − x(j)j − x(k)k.

(8)|x| =
√
xx∗ =

√

x(e)
2 + x(i)

2 + x(j)
2 + x(k)

2
.

(9)ax =
(

ax(e), a�x
)

=
(

ax(e), ax(i), ax(j), ax(k)
)

.

(10)q = |q|eiϕekψejθ , where







eiϕ = cosϕ + i sin ϕ

ejθ = cos θ + j sin θ

ekψ = cosψ + k sinψ

.

(11)up = eiϕpekψpejθp

(12)

hp(t) =
∑

q

wpquq(t)

=
∑

q

wpqe
iϕq(t)ekψq(t)ejθq(t)

(13)up(t + 1) = qsign
(

hp(t)
)

,
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where

The update is conducted for each of phases in h, i.e., ϕ, 
ψ, θ. The function csignA is used for updating ϕ, and it is 
defined as

where A is the phase resolution for ϕ, and ϕ0 defines a 
quantization unit which is represented by ϕ0 = 2π/A . 
q
(ϕ)
a  is a distinct point on a unit circle which is defined as 

q
(ϕ)
a = exp(i(−π+ aϕ0 + ϕ0

2
)). Therefore, the function 

csignA outputs the closest quaternion in {q(ϕ)0 , . . . , q
(ϕ)
A−1} 

corresponding to the input. Similarly, the function csignB 
for updating ψ and the function csignC for updating θ are 
defined as follows:

where B and C are the phase resolutions for ϕ and θ, respec-
tively. The quantization units ψ0 and θ0 are defined by 
ψ0 = π/2B and θ0 = π/C, respectively. q(ψ)

b  and q(θ)c  are 
also defined as follows: q(ψ)

b = exp( j(−π

4
+ bψ0 + ψ0

2
)), 

q(θ)c = exp(k(−π

2
+ cθ0 + θ0

2
)).

From the above equations, the quaternionic neuron takes 
a total of A× B× C states. An example of the quantized 
output points of the quaternionic neuron is shown in Fig. 1, 
where A = 4,B = 2, and C = 3.

The energy function of the network with N quaternionic 
neurons is given as:

(14)qsign(h) = qsign
(

eiϕekψejθ
)

(15)= csignA

(

eiϕ
)

csignB

(

ekψ
)

csignC

(

ejθ
)

.

(16)

csignA

�

eiϕ
�

=






























q
(ϕ)
0 for −π ≤ arg

�

eiϕ
�

< −π+ ϕ0

q
(ϕ)
1 for −π+ ϕ0 ≤ arg

�

eiϕ
�

< −π+ 2ϕ0

...

q
(ϕ)
A−1 for −π+ (A−1)ϕ0 ≤ arg

�

eiϕ
�

<−π+Aϕ0

,

(17)

csignB

�

ekψ
�

=






























q
(ψ)
0 for − π

4 ≤ arg
�

ekψ
�

< −π

4 + ψ0

q
(ψ)
1 for − π

4 + ψ0 ≤ arg
�

ekψ
�

< −π

4 + 2ψ0

...

q
(ψ)
B−1 for − π

4 + (B−1)ψ0 ≤ arg
�

ekψ
�

<−π

4 +Bψ0

,

(18)

csignC

�

ejθ
�

=






























q
(θ)
0 for − π

2 ≤ arg
�

ejθ
�

< −π

2 + θ0

q
(θ)
1 for − π

2 + θ0 ≤ arg
�

ejθ
�

< −π

2 + 2θ0

...

q
(θ)
C−1 for − π

2 + (C−1)θ0 ≤ arg
�

ejθ
�

<−π

2 +Cθ0

,

E takes real value (E = E∗) when the connection weights 
wpq satisfy the following conditions:

The function monotonically decreases under the conditions 
|�ϕ| < ϕ0, |�ψ | < ψ0, and |�θ | < θ0. In these conditions, 
�ϕ, �ψ, and �θ are a phase difference between the state at 
time (t + 1) and the action potential at time t for the neuron 
undergoing its update [6].

4 � Learning schemes

4.1 � Hebbian rule

Let (ξµϕ,1, . . . , ξ
µ
ϕ,N ), (ξ

µ
ψ ,1, . . . , ξ

µ
ψ ,N ), and (ξµθ ,1, . . . , ξ

µ
θ ,N ) 

be multistate memory patterns. Here, ξµϕ ∈ {0, . . . ,A−1} , 
ξ
µ
ψ ∈ {0, . . . ,B−1}, ξ

µ
θ ∈ {0, . . . ,C−1}, and µ denotes 

pattern index. These three patterns can be represented as a 
quaternionic pattern (ǫµ1 , . . . , ǫ

µ
N ), where ǫµ = ei(ξ

µ
ϕ ϕ0+ ϕ0

2 ) 
e
k(ξ

µ
ψψ0+ψ0

2 ) ej(ξ
µ
θ θ0+

θ0
2 ).

A straightforward way to embed patterns into the associ-
ative memory is the use of Hebbian rule. The Hebbian rule 
is represented as

(19)E(t) = −1

2

N
∑

p=1

N
∑

q=1

u∗p(t)wpquq(t).

(20)wpq = w∗
qp, wpp = w∗

pp = (w(e), 0), w(e) ≥ 0

(21)
wpq =

P
∑

µ=1

ǫ
µ
p ǫ

µ
q
∗
,

Fig. 1   An example of quantized output points in the quaternionic 
multistate neuron (A = 4,B = 2,C = 3)
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where P is the number of embedded patterns, and ǫµp  denotes 
the state of the neuron p about µ-th memory pattern.

The connection weights calculated by Eq. (21) satisfies 
the condition Eq. (20), thus the network with these connec-
tions is stable. In this scheme, the memory patterns can be 
stable points in the network when the memory patterns are 
orthogonal to each other [9].

4.2 � Projection rule

Projection rule [10–12] is a learning scheme that can embed 
non-orthogonal (correlated) memory patterns in a network. 
A key idea of the projection rule is that non-orthogonal pat-
terns are first projected onto orthogonal ones, and then the 
Hebbian rule is applied to these projected patterns.

Quaternionic extended projection rule [7] is given as 
follows:

where Q−1 denotes the pseudo inverse matrix of Q. By the 
use of orthogonalization of correlated patterns, the number 
of patterns that can be stored in the network equals to the 
number of neurons in the network.

5 � Simulations

5.1 � Stability of stored patterns

We first evaluate the stability of the embedded memory 
patterns which are stored into QMNNs using the Hebbian 
rule and the projection rule. In this experiment, the patterns 
with randomly generated values are used as memory pat-
terns. The size of the patterns, which is the number of neu-
rons in the network, is set to 100, and the phase resolutions 
are set as follows: (A,B,C) = (4, 1, 2), (8, 2, 4), (16, 4, 8), 
(32,  8,  16), (64,  16,  32). In these conditions, the quanti-
zation units ϕ0, ψ0, and θ0 are the same size. The number 
of the memory patterns, denoted by P, varies such that 
P = 1, 2, . . . , 100.

The stability of the patterns is investigated by the fol-
lowing procedure. First, for given A, B, C, and P, memory 
patterns are generated and stored into the network. Next, 
each of the memory patterns is set to the network as its ini-
tial states, then the states for all neurons are updated. If the 
network state does not change, this stored pattern can be 
regarded as stable.

Figure  2 shows P dependency of the retrieval success 
rates against various phase resolutions. The retrieval success 

(22)w̃pq =
P
∑

ν,µ

ǫ
µ
p

(

Q−1
)

µν
ǫ
ν
q
∗
, Qµν =

N
∑

p=1

ǫ
µ
p
∗
ǫ
ν
p,

rates are calculated from 1000 trials. From Fig.  2, we find 
that the memory patterns are hardly embedded to the net-
work using the Hebbian rule. The memory patterns tend to 
be more unstable with increases of the phase resolutions 
and the number of stored patterns. If the phase resolutions 
(A, B, C) are set to (32, 8, 16) or (64, 16, 32), only one pat-
tern is stable in the network as shown in Fig.  2. In other 
words, two or more memory patterns cannot to be stable in 
the network using the Hebbian rule for large phase resolu-
tions. On the other hand, the projection rule can store up to 
99 patterns in the network regardless of the phase resolutions 
as shown in Fig. 3. In this figure, the retrieval success rate 
is 0 % in the case of P = 100. It is due to that the self-con-
nection weights, w̃pps, are set to 0. If these weights are set 
to positive values, the retrieval success rate becomes 100 %. 
From these results, all the stored patterns are local minima in 
the network using the projection rule. Therefore, the memory 
patterns stored using the projection rule have higher stability 
than those using the Hebbian rule in QMNN.
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Fig. 2   Stability of the memory patterns stored by Hebbian rule

600 20 40 80 100

0

20

40

60

80

100

Number of Stored Patterns P

R
et
ri
ev
al
Su

cc
es
s
R
at
e
[%

]

(A, B , C )
(4, 1, 2)
(8, 2, 4)
(16, 4, 8)
(32, 8, 16)
(64, 16, 32)

Fig. 3   Stability of the memory patterns stored by projection rule



110	 Artif Life Robotics (2016) 21:106–111

1 3

5.2 � Noise robustness of projection rule

We have shown the stabilities of the stored patterns by 
retrieving stored patterns from the network. In this section, 
we show the retrieval performance by retrieving patterns 
from noisy patterns, i.e., the patterns modified from the 
stored patterns. This evaluates the basins of attractors (stored 
patterns) produced by the projection rule. We set the experi-
mental conditions for the number of neurons and phase reso-
lutions with the same ones in the previous section.

Figures  4 and 5 show the retrieval success rates when 
noisy patterns are used as initial configurations of the net-
work. A noisy input pattern is generated from one of the 
stored patterns with each pixel value being changed with 
probability r (noise rate). In the case of Fig. 4, the number 
of stored patterns is set to P = 10 and the noise rate of the 
input pattern varies from 0.1 to 1.0. In the case of Fig. 5, 
the noise rate is fixed to 0.3 and the number of stored pat-
terns is changed from 1 to 40. From these results, we find 

that the retrieval success rate is decreased with increas-
ing the number of stored patterns. The success rate is also 
decreased with increasing the phase resolutions.

The deterioration of noise robustness is caused by spu-
rious patterns, i.e., mixture patterns, inverted patterns and 
rotated patterns of memory patterns. These spurious pat-
terns increase with increasing the number of stored patterns 
and the phase resolutions. Therefore, the noise robustness 
of QMNN depends on the number of stored patterns and 
phase resolutions.

5.3 � Image retrieval task

We have explored the performances of QMNN with the 
projection rule and Hebbian rule in the previous sections, 
and found that the projection rule could successfully work 
for storing random patterns. In this section, we investigate 
the performances of QMNNs by storing and retrieving 
natural images that have more intensity resolutions in each 
pixel from the viewpoint of practical applications such as 
color image database.

Figure  6 shows three types of memory patterns to 
be embedded to the network. These images consist of 
64× 64 = 4096 pixels and each pixel value is represented 
by 8 bits (256 levels) of three channels. The three channels, 
which are red, green, and blue, are assigned to ϕ, θ, and ψ of 
a quaternion in phasor representation. Thus, the phase resolu-
tions are set to A = B = C = 256. The number of neurons in 
the network is the same as the number of pixels of the images, 
i.e., N = 4096. These memory patterns are embedded to the 
networks with the Hebbian rule and the projection rule.

Figure  7 shows input images and their corresponding 
output images from the networks. The images on the top 
rows are the input images, and the pixel values on these 
images are affected by noises with probability r. The 
images on the second and third rows are the output images 
from the networks with patterns being embedded by the 
Hebbian rule and the projection rule, respectively. From the 
output images, the network with the Hebbian rule cannot 
retrieve the stored pattern, even if the original memory pat-
tern is input to the network. Thus the three color images 
are not stable in the network using the Hebbian rule. On 
the other hand, the network with the projection rule suc-
cessfully retrieves stored patterns from the noisy images. 
Therefore, for a large-scaled network with high resolution 
of phases, the patterns can be stored by the projection rule.

This experimental result shows that QMNN can store 
natural images each of which has some correlation to each 
other and it can retrieve the stored images from noisy input. 
In this case, loading rate, which is a ratio of the number 
of stored patterns (P) with respect to the number of neu-
rons (N) in the network, is low (P = 3/N = 4096). When 
the loading rate for the network gets higher, the retrieval of 
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images tends to be failed, as shown in Figs. 4 and 5. This 
is due to the spurious patterns in the QMNN caused by the 
memory patterns.

6 � Conclusion

In this paper, the stabilities of embedded patterns are inves-
tigated in the quaternionic associative memories. The asso-
ciative memory is based on quaternionic multistate Hop-
field neural network. The Hebbian rule and the projection 
rule are used for embedding memory patterns.

The stability of stored memory patterns has been 
explored with randomly generated patterns with chang-
ing the phase resolutions. From the experimental results, 
the Hebbian rule hardly stores the memory patterns with 
increasing the phase resolutions. In contrast, the projection 
rule can stabilize all the memory patterns into the network 
regardless of phase resolutions. The noise robustness of the 
retrieval patterns is also investigated and it is found that the 
performance from noisy input depends on the phase resolu-
tions of the quaternionic neuron states and the number of 
stored memory patterns. The practical experimental results 
show that the color images can be embedded to the net-
work by utilizing the projection rule. Three types of color 
images are embedded (by the projection rule) and they are 
retrieved from noisy input images successfully.

To obtain better performances in embedding patterns, 
we will explore encoding schemes for representing pixel 
values of images for practical applications. The experi-
mental results show that the QMNNs with the projection 
rule can store correlated patterns such as natural images 
successfully, but also show that the retrieval performances 
become lower when the number of patterns is higher or 
the resolutions in the neuron are higher. This is due to 
the spurious patterns by the memory patterns. This prob-
lem also lies in CVMNNs, but another type of CVMNN, 
which has a combination of real-valued and complex-
valued neurons in a network, could overcome this prob-
lem [13]. It is possible to extend this CVMNN to QMNN 
for improving the noise robustness. This remains for our 
future work.
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