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Abstract When attempting to solve multiobjective optimi- 
zation problems (MOPs) using evolutionary algorithms, the 
Pareto genetic algorithm (GA) has now become a standard 
of sorts. After its introduction, this approach was further 
developed and led to many applications. All of these ap- 
proaches are based on Pareto ranking and use the fitness 
sharing function to keep diversity. On the other hand, the 
scheme for solving MOPs presented by Nash introduced the 
notion of Nash equilibrium and aimed at solving MOPs that 
originated from evolutionary game theory and economics. 
Since the concept of Nash Equilibrium was introduced, 
game theorists have attempted to formalize aspects of the 
evolutionary equilibrium. Nash genetic algorithm (Nash 
GA) is the idea to bring together genetic algorithms and 
Nash strategy. The aim of this algorithm is to find the Nash 
equilibrium through the genetic process. Another central 
achievement of evolutionary game theory is the introduc- 
tion of a method by which agents can play optimal strategies 
in the absence of rationality. Through the process of 
Darwinian selection, a population of agents can evolve to 
an evolutionary stable strategy (ESS). In this article, we find 
the ESS as a solution of MOPs using a coevolutionary 
algorithm based on evolutionary game theory. By apply- 
ing newly designed coevolutionary algorithms to several 
MOPs, we can confirm that evolutionary game theory can 
be embodied by the coevolutionary algorithm and this co- 
evolutionary algorithm can find optimal equilibrium points 
as solutions for an MOP. We also show the optimization 
performance of the co-evolutionary algorithm based on 
evolutionary game theory by applying this model to several 
MOPs and comparing the solutions with those of previous 
evolutionary optimization models. 
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1 Introduction 

Multiobjective optimization problems (MOPs) are met 
everywhere because most of the real-world problems en- 
countered by engineers involve simultaneous optimization 
of several competitive objective functionsJ For example, in 
the case of bridge construction, a good design is character- 
ized by low total mass and high stiffness. However, high 
stiffness requires high total mass. In this problem, total mass 
and stiffness are competitive objective functions that need 
to be optimized simultaneously. Aircraft design requires 
simultaneous optimization of fuel efficiency, payload, and 
weight. A Pegasus gas turbine engine design needs to op- 
timize the low-pressure spool speed governor. 2 These are all 
MOPs. Like these, traditional optimization problems at- 
tempt to simultaneously minimize the cost and maximize 
the fiscal return. In these and most other cases, it is unlikely 
that each objective would be optimized by the same param- 
eter choices. Hence, some trade-off between the criteria is 
needed to ensure a satisfactory design. 

In searching for solutions to these problems, we find that 
there is no single optimal solution but rather a set of so- 
lutions. These solutions are optimal in the wider sense that 
no other solutions in the search space are superior to them 
when all objectives are considered. They are generally 
known as Pareto-optimal solutions. 3 Although there are 
many approaches for solving MOPs, we bring evolutionary 
optimization algorithms into focus. 

This section refers to previously proposed traditional 
approaches and evolutionary approaches. In Sect. 2, the 
definition of MOPs and other concepts are outlined. Section 
3 explains optimization approaches based on evolutionary 
game theory for solving MOPs. The first is a Nash genetic 
algorithm (Nash GA) proposed by Sefrioui and the second 



is a coevolutionary optimization algorithm based on a game 
model, as newly proposed in this article. In the final section, 
we evaluate optimization performance by comparing the 
optimized solutions of our new coevolutionary optimization 
algorithm with those of other evolutionary optimization 
algorithms for several test problems. 

Traditional approaches 

Classical methods for generating the Pareto-optimal set 
aggregate the objective functions of MOPs into a single 
parameterized objective function. Then the optimizer sys- 
tematically varies the parameters of this function. Several 
optimizations are performed in order to achieve a set of 
solutions that approximate the Pareto-optimal set] Some 
representatives of this class of techniques are the weighting 
method, 4 the constraint method, 4 goal programming, and 
the min-max approach. 
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goal, Goldberg and Richardson introduced the concept of 
fitness sharing. 13 It is within the range of possibility to search 
for distributive solutions using the fitness sharing that 
makes highly fitted candidates share fitness with others in 
their surroundings] 

With the introduction of nondominated Pareto-ranking 
and fitness sharing, Pareto GA has now become a standard 
in the sense that the Pareto GA provides a very efficient 
way to find a wide range of solutions to a given problem. 
Although this approach proposed by Goldberg was further 
developed 17 and led to many applications, 1~-2~ all of these 
approaches are based on the concept of Pareto ranking and 
use either sharing or mating restrictions to ensure diversity. 
In this paper, however, a multiple objective scheme based 
on the concept of Pareto optimality was developed, and we 
introduce two different approaches, Nash GA 21 and new 
coevolutionary optimization algorithm based on evolution- 
ary game theory, to solve MOPs. 

Evolutionary approaches: non-Pareto approaches 

The first exploration for treating objective functions sepa- 
rately in evolutionary algorithms (EAs) was launched by 
Schaffer. In his dissertation, 56 Schaffer proposed his vector- 
evaluated genetic algorithm (VEGA) for searching a so- 
lution set to solve MOPs. He created V E G A  to find and 
maintain multiple classification rules in a set covering a 
problem. V E G A  tried to achieve this goal by selecting a 
fraction of the next generation using one of each of the 
attributes (e.g., cost, reliability)] Other approaches that 
search solutions for MOPs include those of Fourman, 8 
Kursawe, ~~ and Hajela and Lin. H However, because none of 
them makes direct use of the actual definition of Pareto- 
optimality, different nondominated individuals are gener- 
ally assigned different fitness values] 

Evolutionary approaches: Pareto-based approaches 

Goldberg first proposed Pareto-based fitness assignment 
approaches known as Pareto genetic algorithm (Pareto 
GA). The idea of this algorithm is to assign high probability 
to all nondominated individuals in the population. This 
method consists of assigning rank 1 to the nondominated 
individuals and removing them from contention, then find- 
ing a new set of nondominated individuals, ranked 2, and so 
forth. He named this the Pareto ranking. H 

Fonseca and Fleming 12 proposed a different scheme, 
whereby an individual's rank corresponds to the number of 
individuals in the current population by which it is domi- 
nated. Therefore, nondominated individuals are assigned 
the same rank, while dominated ones are penalized accord- 
ing to the population density of the corresponding region of 
the trade-off surface. 14 Horn and Nafpliotis also proposed 
tournament selection based on Pareto dominance. 15 

Distributive search is very important in Pareto GA. The 
goal of Pareto GA is to search all Pareto optimal solution 
sets distributed along the Pareto frontier. To achieve this 

2 Definition of multiobjective optimization problems 
(MOPs) and other concepts 

2.1 Definition of MOPs 

General MOPs contain a set of n decision variables, a set of 
k objective functions, and a set o fm constraints. In this case, 
objective functions and constraints, respectively, become 
functions and constraints of the decision variables. If the 
goal of MOPs is to maximize objective functions vector y, 
then maximize 

y = S ( x ) = ( f l ( x )  . . . . .  f , ( x )  . . . . .  

subject to 

e(x) = (el(x) . . . .  , es(X) . . . . .  era(x)) <- 0 (1) 

where 

x = ( x l ,  x 2 . . . .  , x , , ) e X ,  Y = ( Y I ,  Y2 . . . . .  Y ~ ) e Y "  

In Eq. 1, x is called a decision variable vector and y is 
called an objective function vector. The decision variable 
space is denoted by X and the objective function space is 
denoted by Y. The constraint condition e(x) <- 0 determines 
the set of feasible solutions. 22 The set of solutions of MOPs 
consist of all decision vectors for which the corresponding 
objective vectors cannot be improved in any dimension 
without degradation in another. 23 In contrast to single- 
objective optimization problems (SOPs), MOPs have a set 
of solutions known as the Pareto-optimal set. This solution 
set is generally called nondominated solutions and is opti- 
mal in the sense that no other solutions are superior to them 
in the search space when all objectives are considered. 
Mathematically, the concept of Pareto optimality is given 
below. 
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2.2 Definition of Pareto optimality 

A decision vector x E Xr is said to be nondominated regard- 
ing a set A _C X s iff 

a s A : a > x  (2) 

where the feasible set Xy is defined as the set of decision 
vectors x that satisfy the constraints 

e(x): X, = {x Xle(x) _< 0} 

If it is clear within what context the set A is meant, it is 
simply left out. Moreover, x is said to be Pareto optimal iff 
x is nondominated regarding Xf. This equation means that 
there is no single optimal solution but rather a set of optimal 
trade-offs. None can be identified as better than the others 
unless preference information is included. The entirety of 
all Pareto-optimal solutions is called the Pareto-optimal 
set; the corresponding objective vectors form the Pareto- 
optimal front or surface. 22 

2.3 Definition of nondominated sets and fronts 

Let A C_ X~. The p(A) gives the set of nondominated deci- 
sion vectors in A :p(A) = {a E Ala is nondominated regard- 
ing A}. The set p(A) is the nondominated set regarding A, 
the corresponding set of objective vectors f(p(A)) is the 
nondominated front regarding A. Furthermore, the set 
Xp = p(X~) is called the Pareto-optimal set and the set 
lip = f(Xp) is denoted as the Pareto-optimal front. The 
Pareto-optimal set is comprised of the globally optimal 
solutions. However, as with SOPs, there may also be local 
optima that constitute a nondominated solution set within 
a certain neighborhood. These correspond to the con- 
cepts of global and local Pareto-optimal sets introduced by 
Deb. 24 

3 Evolutionary optimization approaches based on 
game theory 

Since the mathematical basis was founded by von Neumann 
in the late 1920s, game theory has contributed to providing 
solutions to MOPs that are indulged in the sphere of math- 
ematics and economics. Game theory introduces the notion 
of game and player associated with an optimization prob- 
lem. In the case of a multiobjective design through game 
theory, each candidate involved is named as a player and 
has their own criterion to be the winner of the game. During 
the game, they try to improve their criteria until the system 
reaches equilibrium. In this section, we introduce two 
searching algorithms for finding optimized solutions of 
MOPs through the evolutionary game. The first algorithm 
results from a solution of a noncooperative game intro- 
duced by Nash in the early 1950s. This approach has 
brought in the concept of the "game player" for solving 
MOPs involved in game theory and economics. 21 The sec- 

ond algorithm is a coevolutionary algorithm using the game 
model, which is the newly proposed approach in this article. 
This approach searches the evolutionary stable strategy 
(ESS) as solutions of MOPs. 

3.1 Nash equilibrium 

Nash equilibrium is the solution of a noncooperative strat- 
egy for MOPs. This concept was introduced by Nash in 
1952. According to Nash, each participant in the game has 
their own strategy set and objective function. During the 
game, each player searches for the optimal strategy for the 
objective function while the strategies of others are fixed. 
Nash frequency (o) indicates how frequently the game 
strategy is changed by participants. Generally o = 1, which 
means that the exchange of best strategies takes place at 
the end of each generation. Within this framework, evolu- 
tionary gaming is conducted and when no player can further 
improve their criterion, the system is then considered 
to have reached a state of equilibrium named Nash 
equilibrium] 5 

3.2 Nash genetic algorithm (Nash GA) 

The idea of Nash GA is to bring together genetic algorithms 
and Nash strategy in order to find the Nash equilibrium as a 
solution to MOPs. In the following example, represented in 
Fig. 1, we present the attempts to optimize two different 
objectives and how such merging can be achieved with two 
players. 

Let s = X Y  represent the potential solution for a dual 
objective optimizations problem and two populations were 
allotted for each player. The optimization task of Player i is 
performed by population1 whereas that of Player 2 is per- 
formed by population2. Then X denotes the subset of vari- 
ables handled by Player 1 and is optimized along criterion 1. 
Similarly, Y denotes the subset of variables handled by 
Player 2 and optimized along criterion 2. Thus, as advocated 
by Nash theory, Player 1 optimizes s with respect to the first 
criterion by regeneration of population1 for X, while Y is 
fixed by Player 2. Symmetrically, Player 2 optimizes s with 
respect to the second criterion by regeneration of popula- 
tion2 for Y, while X is fixed by Player 1. 

Let X k i be the best value found by Player 1 at genera- 
tion k - 1 and Yk 1 the best value found by Player 2 at 
generation k - 1. At generation k, Player 1 optimizes X~ 
while using Y~-I in order to evaluate s (in this case, s = 
XkYk 1). At the same time, Player 2 optimizes Yk while using 
Xk 1 in order to evaluate s (in this case, s = Xk 1Yk). After 
the optimization process, Player 1 sends the best value X~ to 
Player 2 who will use it at generation k + 1. Similarly, 
Player 2 sends the best value Y~ to Player 1 who will use it 
at generation k + 1. Nash equilibrium is reached when 
neither Player 1 nor Player 2 can further improve their 
criteria. 21 

For this algorithm, Sefrioui et al. 26 also uses distance- 
dependent mutation, which is a technique evolved to 
maintain diversity in small populations. Instead of a fixed 



Optimization of X, Y 

Player 1 = Pop X Player 2 = Pop Y 

Initialization of Pop X and Pop Y 

Generation k- 1 

~ p t i m i z e s  Xk_-------- ~ ~-f~pt imizes  Y k_'~------~l ~ 

Yk-2 is fixed /~k_2 is fixed by Player l 

Send Xk_ t / Send Yk-I 

f ~ G e n e r a t i ~  k ~ 

Optimizes X k Optimizes Yk 

Ykd is fixed by Player 2 / Xkd is fixed by Player 1 

Generation k+l 

J '~ptimizes Xk+ 1 / Optimizes Yk+l 

Yk is fixed by Player 2 j ~ X k is fixed by Player 1 

Fig. 1. A block diagram of Nash genetic algorithm (Nash GA) 

mutation rate, each offspring has its mutation rate com- 
puted after each mating. This mutation rate depends on the 
distance between the two parents. 

3.3 Evolutionary stable strategy (ESS) 

The primary contribution of evolutionary game theory 
(EGT) is the concept of the evolutionary stable strategy 
(ESS). ESS was proposed by Maynard-Smith, 27 a biologist 
of worldwide fame. He defined an ESS as a strategy such 
that, if all the members of a population adopt it, then no 
mutant strategy could invade the population under the 
influence of natural selection. The ESS is a refinement 
concept of the Nash equilibrium that does away with 
the traditional assumption of agent rationality. Instead, 
Maynard-Smith showed that game-theoretic equilibria can 
be achieved through a process of Darwinian selectionff 
Nevertheless, the ESS is defined as a static concept, and 
since its introduction many other stability concepts have 
been proposed, 2u including those that are more properly 
rooted in dynamical systems theory. 3~ The ESS corresponds 
to a dynamical attractor. 31 
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From the idea that the target of these two solutions 
based on game theory was used to solve mathematical and 
economical problems covering MOPs and that the game 
mechanism can be implemented by the coevolutionary al- 
gorithm, we embodied the coevolutionary algorithm based 
on evolutionary game theory. In this approach, each popu- 
lation is allotted a game player and the fitness of individuals 
in the population is evaluated from each objective function 
and rewarded from the game matrix. 

3.4 Coevolutionary algorithm based on evolutionary 
game theory 

In this section, coevolutionary algorithm based on the ESS 
concept designed for searching the Pareto front of MOPs is 
explained. Through the evolutionary game, players for each 
objective function try to optimize their own objective func- 
tion and all individuals of the population are regenerated 
after players are rewarded. The reward value is determined 
from the previously defined game matrix. 

For example, in the case of minimization MOPs which 
have the two variables x and y and objective functions 
fl(x, y) and fz(X, y), the architecture of populations for co- 
evolutionary algorithm is designed as shown in Fig. 2 and 
Tables 1 and 2. 

In Fig. 2, fitness F, is determined from the game matrix. 
The game matrices are defined in Tables 1 and 2. 

The pay of the game for each population, Gn, is calcu- 
lated from the difference of two objective functions. 

G1 = [(xn, y,,), (x ' ,  y')] = fl(xn, y,,) -- fz(X'~, Y ") 
( 3 )  

c2 = [(xn, yo), (x:, y;)] = y ' . ) -  ft(x., yo) 

From these pays, the fitness of each player is calculated. 

(4) 
= - C [(xo, y,,), (x:, 

Where a is a constant to prevent F, or F', from being zero so 
that a must be MaxlGk[(x,, Yn), (x', Y'n)]l. From these estab- 
lishments, the coevolutionary optimization algorithm is as 
follows: 
[Stepl] Two populations are randomly generated as in 

Fig. 2. 
[Step2] The player selected in the first population plays with 

the second population's one and then is paid off using 
Table 1 and Eq. 3. 

[Step3] The player in the second population is paid off using 
Table 2 and Eq. 3. 

[Step4] The fitness Fn and F" are updated using Eq. 4. 
[Step5] The process from [Step2] to [Step3] is executed for 

all individuals of each population one by one. 
[Step6] Each population is regenerated separately. 
[Step7] The process from [Step2] to [Step3] is executed until 

ESS is found. 

Keeping these ideas, we apply Nash GA and coevolutionary 
algorithm based on game theory to MOPs. 
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Fig. 2. Population architecture of coevolu- 
tionary algorithm 

Popula t ion  1 

Chromosome 

(xl,  Yl) 

(x2, Y2) 

(x3, Y3) 

Fitness 

Fl 

F 2 

F3 

(Xn, Yn) Fn 

Popula t ion2  

Chromosome 

(X'I' Y'I) 

(x'2, Y'2) 

(x'3, Y'3) 

Fitness 

F'  l 

F '  2 

F'  3 

(X'n, Y'n) F'n 

Table 1. The game matrix for population 1 of coevolutionary algorithm 

(X'l' Y'I) (X;, y;) (x;, y;) (x;,, y~,) 

(XI, Y[) GI[(XD Yl), (Xl, Yr GI[(XI, Yl), (x;, y;)] 
(x2, Y2) G~[(x2, Y2), (Xr Y',)] G,[(x2, Y2), (x',, Y'l)] 
(x~, y3) c~[(x3, y~), (x; y',)] G,[(x~, y~), (x;, y;)] 

(x,,, y,,) O,[(x,,, y,,), (x',, y',)] G,[(x,, y,,), (x;, y;)] 

G~[(x~, y,), (x;,y;)] . . .  
G,[(x2, Y2), (x;, y;)] . . .  
G,[(x3, Y3), (x;, y;)] . . .  

G~[(x,,,y,,), (x;, y;)] .. 

Gl[(X,, Y,), (x~l, Y;l)] 
G,[(x2, y~), (x;, y;,)] 
G,[(x~, y~), (x;,, y;,)] 

C,[(x,,, y,,), (x,',, y;,)] 

Table 2. The game matrix for population 2 of coevolutionary algorithm 

(x; y',) (x; y;) (x;, y;) (x'., y;,) 

(xt, y,) G2[(x,, y,), (x'~, y'~)] Gz[(x., Yl), (x;, y;)] 
(x2, Y2) G2[(x2, Y2), (x'l, y',)] G2[(x2, Y2), (x'2, y;)] 
(x3, Y3) G2[(x3, Y3), (x',, y',)] G2[(x3, Y3), (x;, y;)] 

(x., y,,) Gf[(x,,, y,,), (xl, Y',)I Gf[(x,,, y~ (x;, y;)] 

G2[(xI, y[), (x•, y;)] . .  
c2[(x~, y0, (x;, y;)] .. 
G2[(x3, y~), (x;, y;)] .. 

c~[(x,, y,,), (x;, y;)] .. 

G2[(x,, y,), (x'o, y'o)] 
G2[(x2, YO, (x;,, y;,)] 
a~[(x3, y3, (x'o, y;,)] 

c~[(x,,, y,,), (x;, y:,)] 

4 Test problems and evaluation 

While various evolutionary approaches and variations of 
them were successfully applied to MOPs, in recent years 
some researchers have investigated particular topics of evo- 
lutionary multiobjective searches. In spite of the variety of 
approaches, there is a lack of studies that compare the 
performance and different aspects of these approaches. In 
this section, we provide a systematic comparison of several 
multiobjective evolutionary algorithms. The problems con- 
sidered here are those of Zitzler et al., 32 which cover six 
representative MOPs. A corresponding test function is con- 
structed following the guidelines given by Deb. 24 

4.1 Test MOPs 

In the previous section, we introduced various established 
evolutionary algorithms for solving MOPs. In spite of this 

variety, there is a lack of studies that compare the perfor- 
mance and different aspects of these approaches. Among 
these studies we introduce several here. On the theoretical 
side, Fonseca and Fleming TM discussed the influence of 
different fitness assignment strategies on the selection 
process. On the practical side, Zitzler and Thiele 3'33 used a 
NP-hard 0/1 knapsack problem to compare several multi- 
objective EAs. In these studies, a systematic comparison of 
multiobjective EAs was provided, including a random 
search strategy as well as a single-objective EA using objec- 
tive aggregation. The basis of this empirical study is formed 
by a set of well-defined, domain-independent test functions 
that allow the investigation of independent problem 
features. We thereby draw upon results where problem fea- 
tures that may make convergence of EAs to the Pareto- 
optimal front difficult are identified and, furthermore, 
methods of constructing appropriate test functions are sug- 
gested, l The functions considered here cover the range of 
convexity, nonconvexity, discrete, multimodal, deceptive, 
and nonuniform Pareto fronts. Deb 34 identified several 



features that may cause difficulties for multiobjective EAs  
in: (1) converging to the Pareto-opt imal  front, and (2) main- 
taining diversity within the population.  Each of the test 
functions defined below is structured in the same manner  
and consists of the three functions fi, g, and h. 

Minimize 

,(x) = s2(x)] 

subject to 

f2 (x )  = g ( x  2 . . . . .  X n )" h[ f l  (Xl), g(x2  . . . . .  x n )] (5) 

where x = (xl . . . . .  x,). The  function fi is a function of the 
first decision variable only, g is a function of the remaining 
m - 1 variables, and the parameters  of h are the function 
values of fl and g. The test functions differ in these three 
functions as well as in the number  of variables m and in the 
values the variables may take. 1 

The  test function h has a convex Pareto-opt imal  front 

(z )/( g(x 2 . . . . .  Xn) = 1 + 9" i=2Xi n -  1) 

h(fl, g ) =  1 -  

(6) 

where n = 30, and x~ E [0,1]. 
The test function t 2 has nonconvex Pareto-opt imal  front 

= x l  

g(x2 . . . . .  x ,)  = 1 + 9. i=2Xi F / -  1) 

h(f~, g) = 1 - (f~/g)2 

(7) 
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where n = 30, xl E [0,1] and x2 . . . . .  x, E [0,1]. 
The test function t5 describes a deceptive prob lem and 

distinguishes itself f rom the other  test functions in that x~ 
represents a binary string: 

fl(Xl) = 1 + u(xl) 

g ( x  2 . . . . .  X n ) = y~iL2v[u(xi)] (10) 

g) = 1/fl 

where u(xi) gives the number  of ones in the bit vector  xi 
(unitation), 

and n = 11, Xl = {0,1] 3o and x2 . . . . .  xn E {0,1} s. 
The test function t6 includes two difficulties caused by the 

nonuniformity of the objective space: firstly, the Pareto- 
optimal  solutions are nonuniformly distributed along the 
global Pareto front [the front is biased for solutions for 
which fl(Xl) is near  one]; secondly, the density of the solu- 
tions is least near  the Pareto-opt imal  front and highest away 
from the front: 

fl(X1) : 1 - -  e x p ( - - 4 & ) s i n 6 ( 6 T ~ f i )  

[(r )/( >1 g ( x  2 . . . . .  X,,) = 1 + 9" i=2Xi n -- 1 (11) 

h ( f ~ , g ) = l - ( f J g )  2 

where n = 10, xi ~ [0,1]. 

We apply two evolutionary optimization algorithms based 
on game theory previously introduced to these six MOPs  
and analyze the results. 

where n = 30, and xi E [0,1]. 
The test function t 3 represents the discreteness feature; 

its Pareto-opt imal  front consists of several non-contiguous 
convex parts: 

f l (Xl )  = X 1 

g(x2 . . . . .  Xn) = 1 +  9.(~.~i~2xi)/(n - 1) 

h(fl, g ) =  1 - ~ - (f l /g)sin(lOnfl) 

(8) 

where n = 30, and xi E [0,1]. 
The test function t4 contains 219 local Pareto-opt imal  sets 

and therefore tests for the E A ' s  ability to deal with 
multimodality: 

f l (Xl )  : X 1 
n 2 

g(x2 . . . . .  x~) : 1 + l O ( n -  1 ) +  ~_~i=2[xi - lOcos(4~.xi)] 

h(fi, g ) =  1 -  

(9) 

4.2 Exper imental  results and analysis 

Optimized solutions of MOPs  by two evolutionary optimi- 
zation algorithms, the Nash G A  and coevolutionary algo- 
ri thm based on game theory are shown in Figs. 3-20. These 
solutions are known as the Pareto-opt imal  set or Pareto 
front. In analysis of these results we cite figures that display 
optimized solutions using the genetic algorithms by Zitzler 
et al. 32 The results of the eight different evolutionary opti- 
mization algorithms used by Zitzler et al. 32 to solve previ- 
ously introduced test MOPs  are shown in Figs. 3, 6, 9, 12, 15, 
and 18. In these figures, the evolutionary algorithms used 
are as follows: 

RAND:  A random search algorithm. 
FFGA:  Fonseca and Fleming's  multiobjective EA.  
NPGA:  The niched Pareto genetic algorithm. 
H L G A :  Hajela and Lin's weighted-sum based approach. 
V E G A :  The vector evaluated genetic algorithm. 
NSGA:  The nondominated  sorting genetic algorithm. 
S O E A :  A single-objective evolutionary algorithm using 

weighted-sum aggregation. 
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Fig. 3. The Pareto fronts of T1 multiobjective optimization problems 
(MOPs) searched by other evolutionary algorithms (EAs) (from 
Ziztler et al.3~ For algorithm codes, refer to text 

Fig. 4. The Nash equilibrium point of TI MOPs searched by Nash GA 

Fig. 5a,b. The Pareto front of T1 MOPs searched by coevolutionary algorithm based on game theory using a simple mutation and b distance- 
dependent mutation 

Fig. 6. The Pareto fronts of T2 MOPs searched by other EAs (from 
Ziztler et al. 39) 
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Fig. 8a,b. The Pareto front of T2 MOPs searched by coevolutionary algorithm based on game theory using a simple mutation and b distance- 
dependent mutation 

Fig. 9. The Pareto fronts of T3 MOPs searched by other EAs (from 
Ziztler et aL ~~ 

Fig. lla,b. The Pareto front of T3 MOPs searched by coevolutionary algorithm based on game theory using a simple mutation and b distance- 
dependent mutation 
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Fig. 12. The Pareto fronts of T4 MOPs searched by other EAs (from 
Ziztler et al. 3~ 

Fig. 14a,b. The Pareto front of T4 MOPs searched by coevolutionary algorithm based on game theory using a nonelitism and b elitism 

Fig. 15, The Pareto fronts of T5 MOPs searched by other EAs (from 
Ziztler et al. 3~ 
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Fig. 17a,b. The Pareto front of T5 MOPs searched by coevolutionary algorithm based on game theory using a simple mutation and b distance- 
dependent mutation 

Fig. 18. The Pareto fronts of T6 MOPs searched by other EAs (from 
Ziztler et al. 3~ 

Fig. 20a,b. The Pareto front of T6 MOPs searched by coevolutionary algorithm based on game theory using a simple mutation and b distance- 
dependent mutation 
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SPEA: The strength Pareto evolutionary algorithm. 

In our experiments, we used the two mutation methods 
of general simple mutation and distance-dependent muta- 
tionJ 4 Distance-dependent mutation involves using the 
distance between the two mates in order to compute the 
mutation rate. The mutation rate is no longer a constant 
parameter,  but is dynamically computed for both children 
and depends on the parents. Every time a couple of indi- 
viduals is chosen for mating, the mutation rate is computed 
and will be applied to their children after crossover occurs. 
If the parents are quite close, that would lead to a high 
mutation rate for their children, whereas the mutation rate 
will be smaller if they are distant. As a distance criteria we 
took a relative distance that takes into account the bounds 
of each variable of the individual. We apply this nonuniform 
mutation to Nash G A  and coevolutionary algorithm based 
on game theory. Figures 4, 7, 10, 13, 16, and 19 show the 
optimized experimental results using Nash GA. The circles 
in these figures indicate the Nash equilibrium points as 
solutions of test MOPs. Figures 5, 8, 11, 14, 17, and 20 
display optimized experimental results using coevolution- 
ary algorithm based on game theory. 

Each experimental result of coevolutionary algorithm 
was determined twice using simple uniform mutation and 
distance-dependent mutation. The genetic algorithm pa- 
rameters used were number  of generations: 500, population 
size: 30, one-point crossover rate: 0.3, and in the case of 
simple mutation, mutation rate: 0.06. In the first experimen- 
tal case using Nash GA,  the circled points show the final 
Nash equilibrium points for each test problem. By compar- 
ing with the Pareto fronts in the cited figures of Zitzler 
et a l l  2 with these results we can see that Nash equilibrium 
point exists in the Pareto front. Therefore, we conclude that 
the Nash G A  can find MOPs solutions. However,  this 
algorithm cannot search the Pareto optimal set but rather 
a single solution which depends on the initial population 
condition. In the second experimental case using coevolu- 
tionary algorithm based on game theory, we conducted the 
experiment twice for each test MOPs. In the first trial, we 
used only simple uniform mutation, while in the second 
trial, we used distance-dependent mutation. For  every test 
MOP, a coevolutionary algorithm based on game theory 
using distance-dependent mutation can find ESS more rap- 
idly and clearly than using simple mutation except for T4 
test MOP. In the case of T4 test MOP, we use elitism rather 
than distance-dependent mutation because the T4 test 
problem is multimodal and Zitzler et al. also used elitism to 
solve this problem. 32 By comparing the Pareto front found 
by Zitzler et al. with these second experimental results for 
each MOPs, we can see that the ESS found by coevolution- 
ary algorithm based on game theory is very similar to the 
Pareto front. Therefore,  we conclude that the algorithm 
newly proposed in this study can search optimal solution 
sets of MOPs, and this algorithm needs fewer parameter  
resources than the evolutionary algorithms used in the ex- 
periments of Zitzler et al. 32 

5 Conclusions 

In this article, we introduced several approaches to solve 
MOPs. In the introduction, established optimization algo- 
rithms based on the concept of the Pareto-optimal set were 
introduced. Contrary to these algorithms, we introduced 
the theoretical backgrounds of the Nash genetic algorithm 
(Nash GA)  and evolutionary stable strategy (ESS), which 
are based on evolutionary game theory (EGT). Moreover,  
ESS is the basis of the coevolutionary algorithm based on 
game theory as newly proposed in this study. Generally, 
ESS is the equilibrium solution of a noncooperative game 
model, but we confirmed that this strategy can be used as an 
optimal solution set of MOPs. In future work, we will imple- 
ment this idea in a robot controller for an environment 
which has more than one conflict object functions. 
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