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Abstract
The revised 4th edition of the 2016 World Health Organization Classification of Tumors of the Central Nervous System 
(2016 CNS WHO) has introduced the integrated diagnostic classification that combines molecular and histological diagnoses 
for diffuse gliomas. In this study, we evaluated the molecular alterations for consecutive 300 diffuse glioma cases (grade 
2, 56; grade 3, 62; grade 4, 182) based on this classification. Mutations in the isocitrate dehydrogenase (IDH) genes were 
common in lower grade glioma (LGG: grade2–3), and when combined with 1p/19q status, LGGs could be stratified into 
three groups except for four cases (Astrocytoma, IDH-mutant: 44; Oligodendroglioma, IDH-mutant and 1p/19q codeleted: 
37; Astrocytoma, IDH-wildtype: 33). 1p/19q-codeleted oligodendrogliomas were clinically the most favorable subgroup 
even with upfront chemotherapy. In contrast, IDH-wildtype astrocytomas had a relatively worse prognosis; however, this 
subgroup was more heterogeneous. Of this subgroup, 11 cases had TERT promoter (pTERT) mutation with shorter overall 
survival than 12 pTERT-wildtype cases. Additionally, a longitudinal analysis indicated pTERT mutation as early molecular 
event for gliomagenesis. Therefore, pTERT mutation is critical for the diagnosis of molecular glioblastoma (WHO grade 4), 
regardless of histological findings, and future treatment strategy should be considered based on the precise molecular analysis.
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Introduction

Recent revised WHO classification established integrated 
diagnosis for diffuse gliomas based on the combination 
of histological, molecular findings and clinical factors 
[1]. IDH1/2 mutation is considered one of the most cru-
cial genetic alterations, which divide lower grade glioma 
(LGG) into two molecular trajectories during the early 
stage of gliomagenesis [2–4]. 1p/19q codeletion is another 
essential molecular alteration, which classified IDH-mutant 
LGGs into astrocytic and oligodendroglial tumors [5, 6]. 
IDH-wildtype LGG is considered to be a more aggressive 
genotype [2, 3]; however, it is a heterogeneous subgroup 

that should be further stratified [7]. Treatment strategy, 
including a surgical procedure, should be considered based 
on the integrated diagnosis [8–11] and optimal genetic 
analysis is recommended for the precise molecular clas-
sification. The Consortium to Inform Molecular and Prac-
tical Approaches to CNS Tumor Taxonomy-Not Official 
WHO (cIMPACT-NOW) has provided novel information 
for clinical application of WHO classification via updates 1 
through 7, published for the next WHO classification of CNS 
tumors [12–18]. The cIMPACT-NOW update 3 indicated 
that the tumor with molecular features of GBM, so-called 
“molecular GBM”, exists within the IDH-wildtype LGG 
[14]. These cases also showed a clinical course similar to 
that of IDH-wildtype GBMs. Furthermore, the cIMPACT-
NOW update 6 proposed that one of the three genetic altera-
tions (EGFR amplification, Combined whole chromosome 
7 gain and whole chromosome 10 loss (+ 7/−10), TERT 
promoter (pTERT) mutation) is sufficient to define lower 
grade astrocytoma as IDH-wildtype GBM, grade 4 [17]. 
IDH-wildtype astrocytoma with pTERT mutation exhibited 
a worse prognosis similar to IDH-wildtype GBM, even when 
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these tumors did not show the typical radiological findings 
of histologically defined GBM [19]. The cIMPACT-NOW 
update 4 indicated that IDH-wildtype diffuse gliomas are 
more heterogeneous and complex, especially in pediatric 
and young adults [15, 20]. The cIMPACT-NOW update 5 
improved the grading of IDH-mutant astrocytomas based 
on CDKN2A/B homozygous deletion [16]. Based on these 
updates, the grade of diffuse glioma can be determined by 
specific molecular alterations regardless of histological find-
ings in some situations. Here we evaluated molecular alter-
ations in 300 diffuse glioma cases and summarized these 
molecular characteristics to determine the future direction 
of practical molecular testing algorism for the next WHO 
classification.

Materials and methods

Tumor samples

Tumor samples were obtained from consecutive 300 patients 
diagnosed with diffuse glioma, who were initially treated at 
Kyushu University Hospital between 2002 and 2019. Tumor 
tissues were saved for histopathological examination, and 
also snap-frozen in liquid nitrogen and stored at − 80 °C. 
Tumors were histologically diagnosed by two expert neuro-
pathologists (SOS, TI).

The tumor DNA and corresponding constitutional DNA 
from peripheral blood leukocytes were extracted using the 
QIAamp DNA Mini Kit and DNA Blood Kit (Qiagen Sci-
ence, Germantown, MD, USA), respectively. This study was 
approved by the ethics committee of Kyushu University.

Evaluation of 1p/19q codeletion and chromosome10 
loss

Loss of heterozygosity (LOH) on chromosomes 1p, 19q 
and 10 was detected by microsatellite analysis of blood and 
tumor DNA. We designed 20 microsatellite makers for cov-
ering the chromosome 1p, 10 and 19q13 regions as follow: 
D1S2667, D1S2647, D1S2734 (located on 1p36), D1S2797 
(1p32), D1S2766, D1S435 (1p22); D10S537, D10S1649 
(10p15), D10S213 (10p11), D10S196 (10q11), D10S1652 
(10q21), D10S537 (10q22), D10S1765 (10q23, near PTEN 
region), D10S587, D10S216, D10S1655 (10q26); D19S420, 
D19S219, D19S921 (19q13.3), D19S418 (19q13.4). PCR 
and fluorescence labeling were performed according to 
previously described methods [21, 22]. Capillary electro-
phoresis was performed using 310 or 3730 Prism Genetic 
Analyzer (Applied Biosystems). Raw electrophoresis data 
were analyzed with GeneMapper analysis software (Applied 
Biosystems). Allelic status was assessed based on criteria 
established in a previous study [21].

Evaluation of IDH1/2, H3F3A, and pTERT mutation

The main driver genes (IDH1/2, H3F3A) were evaluated 
by high-resolution melting (HRM) analysis using DNA 
extracted from the frozen tissue as previously described 
[23]. TERT promoter mutations were retrospectively ana-
lyzed by direct sequencing, because it is difficult to detect 
these mutations due to the large cytosine-phosphate-guanine 
island promoter region [24].

Statistical analysis

Progression free survival (PFS) and overall survival (OS) 
were estimated by the Kaplan–Meier method. The log-rank 
test was used to compare the survival distribution of each 
molecular subgroup. The statistical analysis was performed 
using JMP 16.0 (SAS Institute, Cary, NC, USA).

Results

A total of 169 glioblastomas (GBM), 13 diffuse midline 
gliomas (DMG), H3 K27M-mutant and 118 LGGs (WHO 
grade 2–3) were diagnosed according to 2016 WHO CNS 
classification [1]. Amongst the 169 GBM, 153 IDH-wildtype 
GBM and 9 IDH-mutant GBM cases were identified, while 
4 cases were not fully analyzed for the WHO CNS 2016 
criteria and diagnosed as GBM-“not otherwise specified 
(NOS)”. Among the 153 IDH-wildtype GBM cases, 3 pedi-
atric cases showed H3.3 G34R mutation. Of the 118 LGG, 
33 cases showed IDH wildtype, including 13 diffuse astro-
cytomas and 20 anaplastic astrocytomas. Eighty-one cases 
showed IDH mutation including 22 diffuse astrocytoma, 22 
anaplastic astrocytoma, 18 oligodendroglioma 1p19q code-
leted, 19 anaplastic oligodendroglioma 1p19q codeleted, 2 
oligodendroglioma NOS, 1 anaplastic oligodendroglioma 
NOS. Only one diffuse astrocytoma was diagnosed as “dif-
fuse astrocytoma NOS” due to incomplete molecular test-
ing. Among the 182 WHO grade 4 glioma patients, 14 were 
under 18 years old and 121 were over 55 years old. Among 
the 118 patients with LGG, 6 were under 18 years old and 27 
were over 55 years old, while the remaining 85 cases ranged 
between 19 and 54 years old. The youngest patient with IDH 
mutation is 19 years old; thus all of the patients under the 
age of 18 were IDH-wildtype glioma. Among the 33 IDH-
wildtype LGGs, 14 cases are over 55 years old. All IDH-
mutant diffuse gliomas over 55 years old showed R132H 
IDH1 mutation, which is consistent with a previous report 
[25]. Among the IDH-mutant diffuse gliomas, the age dis-
tribution of 1p/19q-codeleted oligodendroglioma is higher 
than that of astrocytoma regardless WHO grading. On the 
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other hand, IDH-wildtype anaplastic astrocytoma (grade 3) 
showed higher age distribution compared with IDH-wildtype 
diffuse astrocytoma (grade 2) (Table 1).

pTERT mutations were evaluated retrospectively for 278 
of the cases. pTERT mutation was common molecular altera-
tion among IDH-wildtype GBM and 1p/19q-codeleted oli-
godendrogliomas, 85/145 (58.6%) and 35/36 (97.2%) respec-
tively. Within IDH-wildtype astrocytoma, four out of 13 
diffuse astrocytomas and seven out of 18 anaplastic astrocy-
tomas showed this mutation. Among IDH-mutant astrocytic 
tumors, one IDH-mutant GBM and one IDH-mutant ana-
plastic astrocytoma showed pTERT mutation. On the other 
hand, all of the 3 cases with oligodendroglioma/anaplastic 
oligodendroglioma-NOS showed pTERT mutation; however, 
the “not elsewhere classified (NEC)” diagnoses would apply 
according to cIMPACT-NOW update1 at present [12].

Survival analysis was performed for 101 adult LGGs 
including 35 1p/19q-codeleted oligodendroglioma, 43 IDH-
mutant astrocytoma, 11 IDH-wildtype/pTERT-mutant astro-
cytoma and 12 IDH-wildtype/pTERT-wildtype astrocytoma. 

The median PFS for 1p/19q-codeleted oligodendroglioma, 
IDH-mutant astrocytoma, IDH-wildtype/pTERT-mutant 
astrocytoma and IDH-wildtype/pTERT-wildtype astrocy-
toma are 112, 36.6, 11.8, and 77.4 months, respectively. The 
median OS for IDH-mutant astrocytoma and IDH-wildtype/
pTERT-mutant astrocytoma are 82 and 36.6 months, respec-
tively. The median OS was not reached for the other two 
subtypes.

Survival analysis revealed that the most favorable out-
come was with 1p/19q-codeleted oligodendrogliomas. Nota-
bly, both PFS and OS of IDH-wildtype LGGs were separated 
based on their pTERT mutation (Fig. 1).

Furthermore, three IDH-wildtype LGG cases underwent 
repeat surgery, and more than two samples of each case are 
analyzed longitudinally. Notably, the longitudinal analysis 
revealed that the IDH-wildtype LGG case with pTERT muta-
tion gradually extended ch10 loss and finally showed total 
ch10 loss (Fig. 2). In contrast, the two cases without pTERT 
mutations never showed additional genetic alteration of the 
three parameters in repeat surgery.

Table 1   Age distribution for 
diffuse glioma subgroups

Grade Age median [range] Age (0–18y) Age (19–54y) Age (55y−) Total

GBM, IDHwt 4 65 [3–87] 3 35 115 153
GBM, IDHmut 4 38 [23–62] 0 6 3 9
H3 K27M 4 15 [5–46] 9 4 0 13
H3 G34V/R 4 10 [8–37] 2 1 0 3
DA, IDHmut 2 30.5 [20–57] 0 21 1 22
AA, IDHmut 3 39.5 [19–71] 0 21 1 22
DA, IDHwt 2 33 [2–70] 5 6 2 13
AA, IDHwt 3 59.5 [3–75] 1 7 12 20
OD, 1p19qcodel 2 44 [20–73] 0 14 4 18
AO, 1p19codel 3 47 [27–78] 0 13 6 19
NOS/NEC 2–4 55.5 [22–78] 0 4 4 8
Total 54 [2–87] 20 132 148 300

Fig. 1   Kaplan–Meier analysis of PFS (a) and OS (b) for lower grade 
gliomas stratified based on IDH and pTERT mutation. Oligodendro-
glioma, IDHmutant and 1p/19q codeleted show the most favorable 

outcome. Both PFS and OS of IDH-wildtype LGGs were stratified 
based on pTERT mutation
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Discussion

IDH1/2 mutation is now considered an early genetic event 
for gliomagenesis, and a critical genetic marker for diffuse 
glioma stratification [2, 3]. Combined with 1p/19q codele-
tion, diffuse glioma is classified into three major subgroups 
(IDH-mutant astrocytoma, IDH-mutant and 1p/19q-code-
leted oligodendroglioma, and IDH-wildtype astrocytoma). 
IDH-wildtype GBM and 1p/19q-codeleted oligodendro-
glioma are common genotype well characterized by several 
previous clinical studies [8, 9, 26, 27].

Since 2002, we selected upfront chemotherapy and repeat 
surgeries for patients with 1p/19q-codeleted oligodendro-
glioma to prevent cognitive dysfunction [10, 11]. Precise 
detection of 1p/19q total loss caused by unbalanced trans-
location is crucial for selecting the less intensive treatments 
[28–30]. The cIMPACT-NOW update 2 proposed that his-
tological astrocytic findings and alpha-thalassemia/mental 
retardation Syndrome X-linked helicase (ATRX)/p53 immu-
nohistochemical results were sufficient for the diagnosis 
of “Astrocytoma, IDH-mutant” without 1p/19q molecular 
testing [13]. In our institution, however, the upfront chemo-
therapy has been selected only for the patients with 1p/19q 
codeletion confirmed by molecular analysis. Combined with 
the IDH1/2 mutation, we can detect this molecular subgroup 
more precisely, because some IDH-wildtype GBM showed 

apparent 1p/19q codeletion as the part of chromosomal alter-
ations [31]. pTERT mutation is another important molecular 
marker for this subgroup. In this study, all 1p/19q-codeleted 
oligodendroglioma except one case showed pTERT muta-
tion and favorable clinical course. However, the patient 
with 1p/19q-codeleted oligodendroglioma without pTERT 
mutation showed a relatively worse prognosis, while three 
patients with 1p/19q-intact oligodendroglioma with pTERT 
mutation showed better prognosis. A recent report also 
emphasized the implication of pTERT mutation regardless 
of 1p/19q status in IDH-mutant LGGs [32]. Further molecu-
lar estimation is needed for the case showing a discrepancy 
between 1p/19q codeletion and pTERT mutation.

Within LGGs, IDH-wildtype astrocytoma is a relatively 
small subgroup that is considered to be a more aggressive 
genotype compared with IDH-mutant LGGs. Recent reports 
have revealed that IDH-wildtype LGG is a more heterogene-
ous subgroup, and all of these patients do not show a dismal 
prognosis [7, 27, 33, 34]. Further stratification is required 
based on genetic alterations for IDH-wildtype LGG because 
pediatric-type diffuse gliomas demonstrate complex molec-
ular alterations [15, 35–37]. In particular, for tiny biopsy 
specimens, appropriate genetic testing is mandatory for 
accurate diagnosis.

At our institution, we routinely evaluate the genetic alter-
ations of IDH1/2, BRAF, H3F3A and pTERT, adding to LOH 

Fig. 2   A 44-year-old male diagnosed as Molecular GBM: The patient 
underwent four surgeries. MRI showed a non-enhanced mass in the 
right temporal lobe. First diagnosis is a diffuse astrocytoma, grade 
2 without any LOH region (a). After repeat surgeries and adjuvant 

chemo-radiotherapy, MRI showed a heterogeneous enhanced mass. 
Final diagnosis is glioblastoma, grade 4 with ch10 loss (b). PFS and 
OS of this case are 4.0 and 26.6 months, respectively
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status of chromosomes 1p, 19q and 10 [22, 23, 31]. Using 
these molecular analyses, diffuse gliomas are diagnosed 
based on the 2016 CNS WHO classification. Combined 
with histological diagnosis, we identified 33 cases of IDH-
wildtype LGG. According to the cIMPACT-NOW update 3, 
we detected 11 IDH-wildtype astrocytoma with molecular 
features of glioblastoma, WHO grade 4. Considering the 
molecular test algorithm for molecular GBM, the pivotal 
molecular parameter is pTERT mutation, which was the most 
sensitive for detecting this subtype [38]. More than 60% of 
molecularly diagnosed GBM cases can be identified from 
IDH-wildtype LGG by pTERT mutation analysis alone [19].

In this cohort, one case with WHO grade 2 diffuse astro-
cytoma suffered several recurrences, and finally became 
histologically diagnosed as GBM with whole ch10 loss 
(Fig. 2). Retrospective analysis revealed that pTERT muta-
tion occurred in the initial tumor of this case. In contrast, 
two cases with IDH-wildtype LGG, which underwent repeat 
surgeries for recurrent lesion, did not show further genetic 
alterations of the three molecular markers (pTERT mutation, 
EGFR amplification, + 7/ − 10), when pTERT mutation was 
not identified in the initial operation. Furthermore, due to 
the high frequency of pTERT mutation in molecular GBM, 
pTERT mutation can be considered an earlier genetic event 
compared with the others (EGFRamplification, + 7/ − 10). 
Several reports also support that pTERT mutation pre-
cedes + 7/ − 10 in the molecular evolution of IDH-wildtype 
LGG [39–41]. In contrast, a recent report revealed that 
pTERT mutation was associated with the rapid tumor growth 
of IDH-wildtype GBM, while one or more chromosomal 
alterations (+ 7/ − 9p/ − 10) were required for the tumor 
initiation [42]. Nevertheless, pTERT mutation, similar to 
H3 K27M and G34R/V mutations, is considered to play an 
important role in the early stage of gliomagenesis [40, 43].

Diffuse glioma is well recognized as the tumor showing 
marked spatio-temporal heterogeneity. Recent longitudinal 
studies demonstrated the molecular evolution of diffuse 
glioma during disease progression [41, 42, 44]. Further-
more, the diversity of genetic/epigenetic states remains 
unclear due to the marked intratumoral heterogeneity [45, 

46]. In particular, molecular heterogeneity is becoming more 
complicated for recurrent gliomas under therapy [47]. In 
the near future, heterogeneous molecular alterations will be 
accelerated under molecular target therapy such as tyrosine 
kinase inhibitors [41, 48]. More precise genetic/epigenetic 
characterization is required to overcome the marked spatio-
temporal heterogeneity of diffuse glioma in the era of cancer 
genome medicine.

Recently the Japan Society of Brain Tumor Pathology 
proposed three levels of diagnoses for diffuse astrocytic 
and oligodendroglial tumors [49]. Especially for the sub-
group of LGG, level 3A/B analysis (1p/19q codeletion and 
IDH1/2 mutation) is required for the precise diagnosis. In 
our institution, level 3A/B molecular analysis was applied 
as advanced medical care for diffuse glioma cases. After 
IDH1/2 wildtype is defined, the tumors with H3F3A or 
BRAF mutant should be excluded for the further analysis 
of molecularly GBM. The next step was to evaluate pTERT 
mutation, the most sensitive molecular marker for molecu-
lar GBM. For IDH-wildtype LGG without pTERT muta-
tion, evaluation of EGFR amplification is required for a 
precise diagnosis. EGFR amplification is the most specific 
parameter within these three markers; however, its sensitiv-
ity is relatively low [38]. We planned to apply multiplex 
ligation-dependent probe amplification (MLPA) kit P105 
(MRC-Holland, Amsterdam, The Netherlands) for detecting 
EGFR amplification, thus, we can detect the copy number 
of this region of ch7p and EGFR variant III simultaneously 
[50]. Evaluation of whole ch7 gain is needed for the rare 
cases showing pTERT wildtype, EGFR gain and whole ch10 
loss. Furthermore, this MLPA kit can also detect CDKN2A 
homozygous deletion, which is a critical molecular marker 
for “Astrocytoma, IDH-mutant, grade 4” [16]. This step-
by-step diagnostic procedure is recommended for daily rou-
tine diagnostics of diffuse gliomas, not only for molecular 
GBM. Based on our results, the test algorism following the 
level 3A/B analysis is proposed in Fig. 3. Future treatment 
strategies should be considered based on precise molecular 
analysis.
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