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Abstract
Meningiomas are the most commonly diagnosed benign intracranial adult tumors. Subsets of meningiomas that present with 
extensive invasion into surrounding brain areas have high recurrence rates, resulting in difficulties for complete resection, 
substantially increased mortality of patients, and are therapeutically challenging for neurosurgeons. Exciting new data have 
provided insights into the understanding of the molecular machinery of invasion. Moreover, clinical trials for several novel 
approaches have been launched. Here, we will highlight the mechanisms which govern brain invasion and new promising 
therapeutic approaches for brain-invasive meningiomas, including pharmacological approaches targeting three major aspects 
of tumor cell invasion: extracellular matrix degradation, cell adhesion, and growth factors, as well as other innovative treat-
ments such as immunotherapy, hormone therapy, Tumor Treating Fields, and biodegradable copolymers (wafers), impreg-
nated chemotherapy. Those ongoing studies can offer more diversified possibilities of potential treatments for brain-invasive 
meningiomas, and help to increase the survival benefits for patients.
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Abbreviations
WHO  World Health Organization
SPARC   Osteonectin or BM-40
GFAP  Glial fibrillary acidic protein
EMA  Epithelial membrane antigen
ECM  Extracellular matrix
BM  Basement membrane
HSPG  Heparin sulfate proteoglycans
MMPs  Matrix metalloproteinases
HPSE  Heparanase
TIMPs  Inhibitors of matrix metalloproteinases

PFS  Progression-free survival
uPA  Urokinase plasminogen
uPAR  Urokinase plasminogen receptor
PAI  Plasminogen activator inhibitor
HGF  Hepatocyte growth factor
PDGF  Platelet-derived growth factor
EGF  Epidermal growth factor
TGF-α  Transforming growth factor-α
VEGF  Vascular endothelial growth factor
MAPK  Mitogen-activated protein kinase
PI3K  Phosphatidylinositol-3-kinase
CTLA-4  Cytotoxic T lymphocyte antigen 4
PD-1/ PD-L1  Programmed death 1/programmed death-

ligand 1
HRT  Hormone replacement therapy
ALK  Anaplastic lymphoma kinase

Introduction

Meningiomas are primary brain tumors that originate from 
meningothelial (arachnoid) cells [1] and the proportion in 
all intracranial tumors exceeds 35% [2]. The World Health 
Organization (WHO) has defined three meningioma sub-
types based on the number of mitotic figures and malignant 
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degree: benign, atypical, and anaplastic, and account for 
70–80%, 5–20%, and 1–3%, respectively [3]. Benign men-
ingiomas usually do not disrupt the surrounding brain struc-
tures. Therefore, complete surgical resection is the preferred 
treatment for the vast majority of these meningiomas. How-
ever, even in benign cases, meningiomas have high recur-
rence rates, even after curative surgical treatment [4]. It is 
documented that recurrence rates of benign meningiomas 
can be up to 20%, even after Simpson I resections, and atypi-
cal and anaplastic tumor grades can have recurrence rates 
of up to 40% and 80%, respectively [5]. The most important 
factors affecting the recurrence of meningiomas are tumor 
grade, the extent of surgical resection, and invasion of adja-
cent brain tissue [6, 7]. Meningiomas with brain invasion 
generally show obvious edema of brain tissue around the 
tumor in T2 weighted MRI, and the tumor demonstrates the 
ability to circumvolute vessels or break through the arach-
noid under the microscope during surgery (Fig. 1). Conse-
quences of such a brain-invasion include neurological com-
promise and a further decrease in the possibility of total 
surgical resection. The latest classification by WHO of brain 
tumors proposed brain invasion as an unattached standard 
for atypia and therefore guide diagnosis and treatment for 
meningioma [3].

Despite invasion stated explicitly as neoplastic tissue 
within the adjacent brain, and no separating tissue layers 
exist in the latest edition [3], there are other evaluating cri-
teria for brain invasion. Brain-invasive meningioma was first 
defined in the WHO classification in 1993, and its definition 
was rather vague, partially including [8] or excluding, [9] 

tumor cells growing along with the Virchow-Robin spaces. 
Owing to the contributions by Perry et al. [10], a more accu-
rate definition of invasive growth was illustrated as tumor 
cells invading adjacent brain tissue without separating the 
connective tissue layer. However, sometimes the surgical 
specimens used to assess invasion lacked an infiltrative inter-
face with the brain; therefore, Rempel et al. [11] suggested 
SPARC (secreted protein, acidic and rich in cysteine) as a 
sign of brain-invasive meningioma. Beyond that, staining 
for GFAP (glial fibrillary acidic protein), CD44, and EMA 
(epithelial membrane antigen) were shown to increase the 
sensitivity of detecting brain invasions [12, 13]. Moreover, 
some studies further described the pattern of meningioma 
infiltrative growth: (1) diffuse growth (single cells diffuse 
into brain tissue) [14, 15]; (2) nests/cluster-like (islands of 
tumor cells) [14–16]; and (3) finger-like/tongue-like tumor 
expansion into the surrounding brain [13, 14, 16]. Interest-
ingly, infiltration also exhibits gender-specific patterns [14]. 
Based on previous results, Brokinkel et al. [12] recently 
recommended a more systematic and accurate detection 
standard for brain invasion in meningiomas, which con-
tains pre-, intra-, and post-operative methods and should be 
indicated in communications between neurosurgeons and 
neuropathologists.

For such invasive meningiomas, gross total resections are 
not always possible. Meanwhile, adjuvant irradiation strat-
egy in invasive meningiomas has only been investigated 
in a few studies and has not shown promising prognostic 
effect yet [12]. In 2014, a study reported by Sun et al. [17] 
revealed no significant prognostic impacts for radiation 

Fig. 1  Clinical cases of meningioma exhibiting biological behavior of 
brain invasion. a Magnetic resonance imaging (MRI) of brain-inva-
sive meningiomas demonstrating vanishment of interface with the 
brain tissue and marked surrounding edema. b Microscopic images 

of brain-invasive meningiomas during the surgery. Black arrows high-
light the site where the tumors penetrate the arachnoid interface and 
invade the normal brain tissues. c Pathological images of brain-inva-
sive meningiomas under different magnification
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therapy in totally resected atypical meningiomas. Consist-
ently, in a larger cohort of 50 patients, whether received 
radiation therapy or stereotactic radiosurgery for residual 
meningioma, there is a much higher recurrence risk in the 
brain-invasive meningioma group [18]. Moreover, atypical 
meningiomas with spontaneous necrosis appear to be resist-
ant to radiotherapy [18]. Thus, it is essential to review the 
underlying molecular mechanisms of brain-invasive menin-
gioma tumor cells and describe the current understanding of 
target treatment options and other promising approaches for 
brain-invasive meningiomas.

Molecular targets and related agents 
for brain‑invasive meningiomas

After undergoing surgical resection and radiotherapy, 
patients who relapse with brain-invasive meningiomas have 
limited therapeutic choices. Next, some critical molecules 
and related drugs that have potential actions against brain-
invasive meningiomas will be reviewed.

Brain invasion of meningioma involving interactions 
between meningioma cells, normal brain stromal cells, 
the extracellular matrix (ECM), and basement membranes 
(BM), which is considered a three-step process, initially deg-
radation of ECM/BM, and tumor cells migration, finally pro-
moting adhesion of meningioma cells to resident cells with 
the help of growth factors and blood-vessel formation [19, 
20], leading to local brain invasion (Fig. 2). Thus, mediators 

of the invasive behavior of meningioma tumor cells mainly 
focus on tissue-degrading enzymes, cell adhesion molecules, 
and various growth factors, which promote tumor prolifera-
tion and angiogenesis.

Extracellular matrix degradation

Degradation of the ECM/BM is thought to be one of the 
most important determinants of tumor cell invasion [21]. 
ECM/BM are rigid structures formed from macromole-
cules, such as type IV collagen, laminin, entactin, nidogen, 
fibronectin, and heparin sulfate proteoglycans (HSPG). Pro-
teases, including matrix metalloproteinases (MMPs), ser-
ine proteases, cathepsins, and heparanase (HPSE), have the 
capability of breaking down basal membranes and connec-
tive tissue [22–24]. Therefore, such enzymes play crucial 
roles in the process of meningioma invasive growth [25].

MMPs

MMPs are lysosomal endopeptidases involved in ECM deg-
radation [26]. MMPs have been grouped into the following 
four broad categories based on their substrate specificity: 
(I) interstitial collagenases (MMP-1, MMP-8, and MMP-
13) that degrade fibrillary collagens; (II) type IV colla-
genases (MMP-2 and MMP-9) that degrade the basement 
membrane collagens gelatin and elastin; (III) stromelysins 
(MMP-3, MMP-10, and MMP-11) that degrade proteogly-
cans, fibronectin, laminin, gelatin, and the globular proteins 

Fig. 2  Meningioma brain invasion is considered a three-step process 
that requires various kinds of proteases to degrade the ECM, adhesion 
molecules to promote tumor cell migration to resident cells, and dif-

ferent growth factors and neovascularization to feed and support men-
ingioma tumor cells, leading to local brain invasion
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of type IV collagens; and (IV) membrane-type MMPs 
(MMP-14, MMP-15, MMP-16, and MMP-17) that contain 
a unique transmembrane domain in their carboxyl-terminus 
that localizes these MMPs to the cell surface [27]. There are 
natural inhibitors of MMPs, inhibitors of matrix metallo-
proteinases (TIMPs), which form a complex with the active 
centers of MMPs and control their activities. Specifically, 
TIMP-1 inhibits MMP-9, whereas TIMP-2 controls MMP-2. 
Importantly, MMP-2 and MMP-9 are found to be expressed 
in a broad spectrum of meningiomas and represent valuable 
prognostic factors in predicting higher risk recurrence in 
totally resected meningiomas [28, 29]. Recently, Jalali et al. 
[28] demonstrated that MMP-16 modulates meningioma 
invasion by positively regulating MMP-2. MMP-3 is posi-
tively correlated with meningiomas having an aggressive 
character [30]. Besides, RNA interference (RNAi)-mediated 
targeting of MMP-9 significantly regressed cell invasion and 
orthotopic meningioma formation [31, 32]. Taken together, 
the results show the potential of MMP inhibitors as a prom-
ising therapy for invasive meningioma, and the synthesis 
of a wide-spectrum inhibitor of MMPs is urgently needed.

The urokinase plasminogen (uPA)‑uPA receptor (uPAR) 
system

The 55-kDa serine protease uPA consists of two disulfide 
bridges linked to polypeptides. It can be converted from an 
inactive precursor into an active form by the actions of vari-
ous proteases, including plasmin, cathepsins B or L [33]. 
Active uPA interact with receptor uPAR, subsequently 
requires transmembrane co-receptors for signaling transduc-
tion. Integrins family are one of those essential co-receptors 
[34, 35]. As a result, uPA-uPAR can efficiently convert plas-
minogen to active plasmin [34]. Plasmin is essential for the 
degradation of ECM in direct and indirect ways. Addition-
ally, uPA is known to exert additional activities, including 
the promotion of cellular migration, proliferation, and altera-
tion of cellular adhesive properties [34].

uPA is expressed in many tumor types, including breast, 
lung, glioblastoma, prostate, and esophageal squamous cell 
carcinomas [36–39]. It is documented that synthetic inhibi-
tors target uPA could efficiently inhibit the metastasis of 
prostate and mammary carcinoma cells [40, 41]. Regulation 
of uPA is achieved at many levels, including at least two 
types of fast-acting specific inhibitors, plasminogen activa-
tor inhibitor (PAI)-1 and PAI-2. A report by Kandenwein 
et al. [42] showed that the expression of uPA may be con-
trolled, in part, by promoter methylation and is correlated 
with pathological meningiomas. Importantly, uPA and uPAR 
interference by RNAi led to the inhibition of intracranial 
meningioma formation in a mouse model [43]. Based on 
these studies, low-molecular-weight inhibitors, which target 

the uPA-uPAR-PAI-1 system, should be considered as treat-
ment options for invasive meningiomas.

Lysosomal cysteine proteinases

Lysosomal cysteine proteinases are comprised of a large 
family of papain-like enzymes [44]. Schmitt et al. [45] pro-
posed a proteolytic cascade by cysteine proteases, which 
starts with the activation of the lysosomal enzymes cathep-
sin D and cysteine cathepsins B and L, subsequently activat-
ing cell membrane-associated pro-urokinase, inducing the 
extracellular release of plasmin from plasminogen to finally 
activate various types of MMPs and degrade collagen and 
other basal lamina proteins. It has been proved that the pro-
gression of brain tumors strongly correlated with the high 
expression of cathepsins B, L, and H [46, 47]. Three types 
of endogenous inhibitors control their activity: stefins, cys-
tatins, and kininogens [48]. Generally, stefins (stefins A and 
B) predominantly act intracellularly [47], whereas cystatins 
(cystatins C) and kininogens act extracellularly [49]. The 
balance between these inhibitors and cysteine cathepsins 
seems to be highly relevant and may serve as biomarkers 
for tumor progression. In brain tumors, the down-regulation 
of total inhibitory activity of cystatins has been observed 
and takes responsibility for early meningioma recurrence. 
Thus, it seems to especially safeguard brain tissues [50]. 
Consistently, cathepsin B and L are highly expressed in 
invasive types of benign meningiomas and are considered 
as diagnostic markers for invasive meningiomas [51]. Col-
lectively, the use of cysteine protease inhibitors may lead to 
more informed therapeutic strategies in the future.

Heparin sulfate proteoglycans (HSPG) and heparanases 
(HPSE)

Invasion by meningioma tumor cells is affected by the 
microenvironment, including components of the ECM/
BM, such as HSPG, which is composed of a core protein 
to which repeating disaccharide units have been added. The 
specific structures of heparin sulfate chains are achieved 
through several enzymatic steps that create highly charged, 
sulfated micro-domains, and are secreted as entities into the 
ECM or intracellular secretory vesicles [52, 53]. A mul-
titude of growth factors and chemokines bind to HPSG, 
regulating biological processes, and modulating the adhe-
sion and spread of tumor cells [54]. HPSE is an endo-β-D-
glucuronidase that cleaves heparin sulfate chains of HSPG 
at specific sites, into 5–7 kD sized fragments [55]. Dario 
Marchetti proposed that HPSE acts as a cellular switch from 
a non-invasive to invasive phenotype [56]. Indeed, overex-
pression of HPSE has been found in several human cancers 
and positively correlates with more extensive tumor inva-
sion and metastasis [57, 58]. Using PG545, a heparanase 
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inhibitor or a glycopolymer of HPSE efficiently reduced 
tumor cell invasion and metastasis [54, 57]. Another hep-
aranase, M402-necuparanib, is currently under phase II trial 
investigation in pancreatic cancer [59]. The compound rone-
parstat has been positively completed in a phase I study with 
dexamethasone in patients with advanced multiple myeloma 
[60]. Taken together, HPSE could be a novel therapeutic 
target for invasive brain tumors. However, the expression of 
HPSE and its functions on brain invasion in meningiomas 
still need to be defined, and whether inhibitors of HPSE have 
any effect on invasive meningiomas is largely unknown.

Cell adhesion molecules

The attachment of cells to their surroundings is important 
in determining cell shape, proper cell function, and tissue 
integrity. Cell adhesion is selectively regulated by cell adhe-
sion molecules leading to migration and rearrangement of 
cell types. According to their migration properties and pri-
mary amino acid sequences, four major classes of adhesion 
molecules have been defined: integrins [61], cadherins [62], 
immunoglobulin superfamily [63], and selectins [64].

Integrins and their inhibitor, cilengitide

Integrins are cell surface adhesion molecules important for 
many cellular features, including proliferation and migra-
tion. Integrins are composed of different, non-covalently 
associated α and β chains. These subunits associate to yield 
a wide variety of heterodimers. Recently, much interest has 
focused on the role of integrins in carcinomas [65–67]. Pre-
vious studies have indicated that each histologic meningi-
oma subtype has a specific spectrum of integrin expression, 
especially αVβ3 and αVβ5 integrins [68], which contribute 
to invasive growth of meningiomas [69].

Cilengitide is a pentapeptide that targets αVβ3, αVβ5, 
and αVβ1 integrins by mimicking the Arg-Gly-Asp (RGD)-
binding site [70, 71], which has been conducted in phase 
I, II, and III clinical trials to evaluate therapeutic effects in 
cancers [72–75]. Wilisch-Neumann et. al. [76] explored the 
effects of cilengitide in meningioma cell lines and mouse 
models and found inhibition of brain invasion in mice after 
administration of cilengitide.

E‑cadherin/β‑catenin signaling pathways

Epithelial cadherin (E-cadherin) belongs to the cadherin 
family, it is a cell-surface glycoprotein that is vital for cal-
cium-dependent cell–cell adhesion and structural rigidity 
[77, 78]. The extracellular amino-terminus forms a ‘‘zipper-
like’’ structure which can act as a tight cell junction. And 
the intracellular part indirectly associates with cytoskeletal 
components at cell–cell junctions via catenin [78]. β-catenin, 

one of the four types of catenins, is a multifunctional pro-
tein [77] and forms the E-cadherin/catenin complex [79]. 
Disruption of this junction will result in diverse disorders, 
including loose cell-to-cell contacts, and loss of contact inhi-
bition, which are tightly related to tumor invasion [78, 80]. A 
study conducted by Keiyu et al. revealed that E-cadherin and 
β-catenin expression closely correlated with grading criteria 
for meningiomas [81]. Similarly, Ahmed et al. showed that 
high β-catenin expression was linked to the low incidences 
of brain invasion and recurrence. Taken together, the E-cad-
herin/catenin complex could be potential therapeutic targets 
for meningioma treatment [82].

Selectins

The selectin family represents a group of carbohydrate-
binding type I membrane glycoproteins. There are three 
members, E-, P-, and L-selectin [83]. E-selectin secretion is 
activated following local stimulation by endothelia of skin 
and bone marrow and subsequently induced by inflamma-
tory cytokines [84]. P-selectins are stored in alpha granules 
of the platelet. Through exocytosis, they translocate to the 
cell surface of activated endothelial cells and platelets [85]. 
L-selectins are expressed on granulocytes, monocytes, and 
the majority of lymphocytes and leukocytes [86]. The afore-
mentioned selectins function by interacting with the selec-
tin binding ligand, namely P-selectin glycoprotein ligand-1, 
which is expressed on the microvilli of activated leukocytes.

Selectins mainly correlate with binding, rotation, and 
extravasation of activated leukocytes, which commonly take 
place on the endothelium and also in inflammation reac-
tions [86]. Additionally, some recent studies have implied 
that selectins could help cancer cells adhere to the endothe-
lium and recruit leukocytes to promote the progression and 
metastasis of various types of cancer [85, 87]. Consistent 
with this, a lack of L-selectin was shown to inhibit metas-
tasis [87], and inhibition of P-selectin, which mediates the 
interaction of thrombocytes and endothelium, significantly 
reduced metastasis by down-regulating the thrombi assem-
bly [88]. Notably, Atukeren et al. [89] recently evaluated 
selectins expression in meningiomas and found that all three 
selectins display higher expression levels in meningiomas 
compared to control brain tissues, suggesting that selectins 
are possibly involved in the pathological mechanism of 
meningioma. Further clinical and experimental studies are 
needed to demonstrate these current findings.

Growth factors

Growth factors play a seminal role in the brain invasion pro-
cess, including the promotion of migratory, proliferative, 
and angiogenesis responses in meningioma cells. Thus, 
hepatocyte growth factor (HGF), platelet-derived growth 
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factor (PDGF), epidermal growth factor (EGF), transforming 
growth factor-α (TGF-α), and vascular endothelial growth 
factor (VEGF), and relevant inhibitors are all reviewed in 
the next section (Fig. 3).

HGF/c‑MET signaling pathways

HGF is a multifunctional protein secreted by mesenchymal 
cells and has a strong mitogenic effect on hepatocytes. HGF 
consists of a heavy chain (60 kD) with four domains and a 
light chain (32 kD). It binds to its tyrosine-kinase receptor 
(RTK), which is a product of the proto-oncogene c-MET. 
Mature c-MET is structurally distinct from most other RTKs 
and exists as a heterodimer containing an extra-cellular α 
chain and a transmembrane β chain. Once activated by HGF 
binding, c-MET is auto-phosphorylated and recruits adaptor 
proteins, activating multiple downstream effector proteins 
and signaling cascades [90].

Dysregulation of the HGF/c-MET signaling pathway 
has been known to induce tumor cell proliferation, motil-
ity, and invasion in several human cancers, including 
breast, lung, and hepatocellular carcinomas [91–93] and 
has recently attracted considerable attention. This pathway 
is widely expressed in human brain tumors, such as glio-
mas, meningiomas, and schwannomas [94–96], and a study 
has reported that 3 out of 17 c-MET positive meningiomas 
exhibited brain invasion activity [95]. In the last decades, 
a big effort has been made to develop related inhibitors 
and monoclonal antibodies through preclinical, phase I, 
II, or III clinical trials [90, 97–99]. As of yet, there are 
unfortunately no clinical trials focusing on meningiomas. 
Given our recent knowledge about HGF/c-MET in cancer 
cells, future clinical trials focusing on anti-HGF/c-MET 
agents should take into account whether brain-invasive 
meningiomas can benefit from these treatments.

Fig. 3  Selected signaling pathways in meningiomas and molecular 
targets for drug therapy. ECM the extracellular matrix, HSPG hepa-
rin sulfate proteoglycans, HPSE heparanase, MMPs matrix metallo-
proteinases, TIMP inhibitors of matrix metalloproteinases, uPA/uPAR 

urokinase plasminogen activator/receptor, PAI plasminogen activator 
inhibitor, HGF hepatocyte growth factor, PDGF/R Platelet-derived 
growth factor/receptor, EGF/R epidermal growth factor/receptor, 
VEGF/R vascular endothelial growth factor/receptor
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 PDGF and EGF receptors

PDGF act as a proliferation driver in normal development 
and multiple cancers [100–102]. Increasing evidence of the 
key role of PDGF in meningioma growth has been reported 
[103–105]. All histological grades of meningiomas express 
the PDGF ligands AA and BB, Interestingly, only PDGF-
β-R receptor was found, which predominantly binds to 
PDGF-BB. PDGF-BB has been shown to stimulate menin-
gioma growth and activate MAPK and induce c-Fos expres-
sion. Conversely, anti-PDGF-BB restrains cell growth [104].

Most meningiomas express both EGF and TGF-α 
mRNAs [106, 107]. Up-regulated TGF-α activity in menin-
gioma cells and tumor specimens has been proved to corre-
late with aggressive growth [108]. Meanwhile, over 60% of 
meningiomas highly expressed EGF receptor (EGFR) [109]. 
EGF or TGF-α activate their receptors, which promotes the 
proliferation of meningioma cells in in vitro study [108]. 
These findings suggest that EGFR activation by autocrine or 
paracrine mechanisms in human meningiomas may promote 
tumor growth.

Signal transduction from activated tyrosine kinase recep-
tors, including PDGFR and EGFR, is mediated in part via 
Ras/Raf/MAPK and PI3K pathways [107], indicating that 
tyrosine kinase inhibitors may be effective against meningi-
omas. Imatinib is an oral tyrosine kinase inhibitor, which tar-
gets the Bcr-Abl, PDGFR, and c-Kit receptors. Meningiomas 
often overexpress PDGFR-α and β and are potential targets 
for imatinib treatment. Moreover, imatinib increases chemo- 
and radio-sensitivities of different tumor cells in culture, 
such as glioblastoma cells, soft tissue sarcomas, and leuke-
mic cells [110–112], suggesting that imatinib may enhance 
the activity of other chemotherapeutic agents used to treat 
brain tumors. Thus, the combination of imatinib and hydrox-
yurea has been investigated in two phases II trials to test 
their efficacy in progressive meningiomas [113]. In 2018, 
data from phase II clinical trials suggest that lapatinib, a dual 
EGFR/ErbB2 small molecular kinase inhibitor, might have 
growth-inhibiting effects on meningiomas in NF-2 patients 
[114]. Although no definite conclusions due to the limited 
number of patients, well-designed and prospective clinical 
trials are urgently needed for the therapeutic management of 
invasive meningiomas. Similarly, recent single-arm phase 
II studies on the EGFR inhibitors gefitinib (NABTC 00-01) 
and erlotinib (NABTC 01-03) proved no significant activity 
against recurrent meningiomas [115].

VEGF/VEGFR and inhibitors

Invasive meningiomas cannot expand beyond the cerebral-
pial interface without an adequate blood supply. As men-
ingiomas are rich in blood vessels, their blood supply is 
predominantly derived from both the external carotid artery 

and cerebral pial vessels [116]. High expression of VEGF 
and VEGF receptor-1 was found in meningiomas [117] and 
was associated with the extent of peritumoral brain edema 
[118]. A study by Lamszus et al. [119] showed a strong and 
consistent correlation between VEGF content and meningi-
oma grade, indicating that treating invasive meningiomas 
may benefit from anti-angiogenic therapy.

Bevacizumab is the anti-VEGF antibody that has been 
utilized and improved the survival for several malignancies 
including colorectal, lung, breast, and glioblastomas [120, 
121]. To date, bevacizumab has been examined in several 
retrospective analyses and two phase-II trials involving 
patients with refractory meningiomas [122]. Generally, 
these results show promise for patients with recurrent men-
ingioma. Of note, bevacizumab has several important side 
effects such as high blood pressure, hemorrhage, proteinuria, 
and colitis. Encouraged by previous results, some research-
ers have also assessed the efficacy of VEGF inhibitors in 
patients with relapsed meningiomas. The wide-spectrum 
tyrosine kinase inhibitor sunitinib, which can target VEGFR, 
PDGFR, and several other oncogenic pathways, is currently 
being used in clinical practice for several cancers. This agent 
was studied in a phase II trial of 36 patients with grade II 
and III meningiomas who had multiple recurrences and were 
heavily pretreated [123]. The calculated PFS-6 was 42%. 
However, toxicity was a significant factor, as four patients 
developed intratumoral hemorrhages, one of which was fatal. 
Another two patients developed thrombotic microangiopa-
thy. Further exploration of the role of VEGF/VEGFR inhibi-
tors in invasive meningiomas seems warranted. Hopefully, 
larger prospective studies of bevacizumab and other VEGF/
VEGFR inhibitors will be feasible for this indication in the 
near future. These agents have the potential to join the list of 
therapeutic options for treating brain-invasive meningiomas.

Other promising treatment 
for brain‑invasive meningiomas

Immunotherapy for brain‑invasive meningiomas

The complex association between the immunology and 
malignant tumorigenesis has shown huge potential on vari-
ous types of cancer management such as metastatic mela-
noma, which have been promisingly identified as sensitive 
and tolerated to inhibitors of immune checkpoint pathways 
cytotoxic T lymphocyte antigen 4 (CTLA-4), and pro-
grammed death 1 (PD-1)/PD-ligand 1 (PD-L1). This immu-
notherapeutic approach has been approved by the U.S. Food 
and Drug Administration [124]. While it currently remains 
largely unknown about the immune microenvironment in 
meningioma, immunotherapy possesses perspectival appli-
cation for managing meningiomas.
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A recent report by Du et al. demonstrated the signifi-
cant reduction of infiltrating T lymphocytes in anaplas-
tic meningiomas, such as CD4 + and CD8 + T cells with 
PD-1 expressed, which are considered inclined to invade 
peripheral brain tissue [125]. Additionally, they detected 
PD-L1 expression in meningioma at either protein or gene 
levels, and the expression was higher in anaplastic cases 
[125]. Their study however failed to detect a significant link 
between PD-L1 levels and survival outcomes due to their 
cohort was mostly composed of low-grade meningiomas 
which barely exhibited brain invasion. The prognostic sig-
nificance of PD-L1 in meningiomas has been investigated 
to identify the correlation of PD-L1 expression and the infil-
trating immune cell population and suggested that PD-L1 
possibly plays an important biologic role in the aggressive 
phenotype of higher-grade meningiomas. Besides, current 
clinical trials testing anti-PD1 drugs pembrolizumab and 
nivolumab in recurrent or residual high-grade meningiomas 

are undergoing [126]. Thus, immunotherapeutic strate-
gies such as checkpoint inhibition, or targeting mesothelin 
through vaccines/engineered T cells have the potential to 
be utilized as clinical medication in PD-L1 overexpressing 
brain-invasive meningiomas (Fig. 4a).

Hormone therapy

According to the epidemiologic evidence, the incidence 
of meningioma is commonly higher among females, espe-
cially when pregnancy and breast cancer occur [127, 128]. 
So regulation of meningioma growth and development by a 
sexual hormone is defined. Progesterone and estrogen, which 
are antagonistic to each other, function in the modulatory 
mechanism. During hormone replacement therapy (HRT) 
for some patients in menopause, estrogen-only HRT, but not 
estrogen + progesterone HRT increased the risk of suffer-
ing meningioma according to a large scale clinical study of 

Fig. 4  Schematic overview of other promising treatments for brain-
invasive meningiomas. a current immunotherapy strategy in menin-
gioma, anti-PD1 drugs pembrolizumab, and nivolumab are undergo-
ing clinical trials in recurrent or residual high-grade meningiomas. 
b hormone replacement in the treatment of brain-invasive meningi-

omas. c Tumor treating fields are identified to disrupt the mitotic pro-
cess in dividing meningioma cells which leads to violent membrane 
blebbing, subsequently induces immunogenic cell death. d schematic 
illustration of potential biodegradable copolymers (wafers) impreg-
nated chemotherapy for brain-invasive meningioma
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women [129–131]; HRT without supplementing oral con-
traceptive also play a role in meningioma formation [132].

Progesterone receptor is detected in 58–83% of menin-
giomas, while estrogen receptor is only reported in 0–8% 
of this disease [133]. The high expression rate of the pro-
gesterone receptor provides a potential therapeutic target 
for growth inhibition of meningiomas. This concept is sup-
ported by a phase II clinical study showing modest clinical 
regression of meningiomas by blocking progesterone recep-
tors with the anti-progestational agent mifepristone [134]. 
However, the recent double-blind phase III clinical trial by 

Ji et al. [135] proved that mifepristone failed to control the 
unresectable meningioma. The role of the antiandrogenic 
drug in controlling meningioma is presenting controversial 
and in need of further evidence to clarify their potential 
effect [136]. As the antagonist of progesterone, estrogen-
like exogenous exposures are associated with a lower risk 
of meningioma in men [137].

Studies also demonstrate that the status of the GH/IGF-1 
axis is significantly associated with the progression rate of 
meningiomas. Blockade of the GH receptor on the Growth 
of the tumor cells can be inhibited in vitro by blocking the 

Table 1  Selected papers predicting/demonstrating the benefit of targeting/chemotherapy in patient with meningioma (Part I)

NF2 neurofibromatosis type 2, HU hydroxyurea, LAR long-acting Release, PTK787/ZK 22,584: 1-[4-chloroanilino]-4-[4-pyridylmethyl] phthala-
zine succinate, PFS progression-free survival

Type of trial Pertinent findings Author/Year/Reference Trial number

Phase II clinical trial Lapatinib has growth-inhibitory effects on progres-
sive meningiomas in NF2 patients

Osorio et al./2018/[114] NCT00973739

Phase II clinical trial The combination of everolimus and bevacizumab 
is well-tolerated and produces stable disease in 
patients with recurrent meningioma

Shih et al./2016/[145] NCT00972335

Phase II clinical trial No firm conclusions can be drawn about the combina-
tion of imatinib and HU

Mazza et al./2016/[113] NCT01125046, 
NCT00972335

Phase I/II clinical trial No effect of HU or verapamil on meningioma recur-
rence, PFS, and in vivo tumor burden reduction. 
Drug delivery to the tumor may be a major limita-
tion

Karsy et al./2016/[146] NCT00706810

Phase II clinical trial (90)Y-DOTATOC and (177)Lu-DOTATOC are 
promising tools for treating progressive unresect-
able meningioma

Marincek et al./2016/[147] N.A

Retrospective study Study shows a considerable response in patients with 
WHO grade II and III meningioma treated with 
bevacizumab

Furtner et al./2016/[148] N.A

Phase III randomized clinical trial Long-term administration of mifepristone is well tol-
erated but has no impact on patients with unresect-
able meningioma

Ji et al./2015/[135] N.A

Phase II clinical trial Pasireotide LAR has limited activity in recurrent 
meningiomas

Norden et al./2015/[149] N.A

Phase II clinical trial Sunitinib is active in recurrent atypical/malig-
nant meningioma patients

Kaley et al./2015/[123] NCT01125046

Phase II clinical trial Y-DOTATOC may represent a promising second- or 
third- line therapeutic option for complex meningi-
omas

Gerster-Gillieron et al./2015/[150] N.A

Phase II clinical trial The study failed to provide evidence to support the 
use of monthly long-acting somatostatin analogue 
schedule in recurrent high-grade meningiomas

Simo et al./2014/[151] N.A

Phase II clinical trial Patients with surgery and radiation refractory 
recurrent meningiomas treated with PTK787/ ZK 
222,584 show elevated PFS-6 and median PFS

Raizer et al./2014/[152] NCT 00,348,790

Phase II clinical trial Imatinib plus hydroxyurea is well tolerated among 
patients with meningioma but has modest anti-
tumor activity for this indication

Reardon et al./2012/[153] N.A

Retrospective study Study shows a significant response to bevacizumab in 
patients with atypical or anaplastic meningioma

Nayak et al./2012/[154] N.A

Retrospective study Study suggests bevacizumab activity in recurrent or 
refractory meningioma

Lou et al./2012/[155] N.A
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GH receptor [138]. The antitumor effect of a kind of GH 
receptor antagonist pegvisomant against intracranial menin-
giomas has been demonstrated in animal models [139]. But 
the clinical trial of the GH receptors’ anti-meningioma effect 
is still lacking. For the correlation between hormone and 
growth of meningioma, and unsatisfied clinical outcomes 
of hormone therapy on regressing meningioma, more stud-
ies of other hormone receptor inhibitors and the exogenous 
hormone-like supplement treatment are urgent for providing 
a novel avenue to curing meningioma (Fig. 4b).

Future perspectives

Brain invasion in meningiomas is correlated with a poor 
prognosis and an increased risk of recurrence. Once brain 
invasion has occurred, the therapeutic options for treating 
meningiomas include surgical resection, radiotherapy, and 
chemotherapy. The location and biological features of the 
tumor may limit total resectBesidesition, meningiomas are 
usually not very sensitive to radiotherapy, and conventional 

chemotherapy remains controversial. Thus, treating patients 
with brain-invasive meningiomas, particularly after surgery 
and radiotherapy, represents an unmet need in neuro-oncol-
ogy. In this article, we reviewed various aspects of brain 
invasion in meningiomas, molecular mechanisms of invasion 
and related targeting agents, and other promising strategies 
that may use as potential approaches to directly treat brain 
invasion.

Brain invasion is considered a multiple-step process with 
several factors involved, such as meningioma tumor cells, 
microenvironment resident cells, extracellular matrix com-
ponents, tissue-degrading enzymes, cell adhesion molecules, 
and various growth factors and receptors. The establishment 
of meningioma cell lines [140–142] and recent animal mod-
els [143] will surely provide a good opportunity to explore 
the molecular mechanisms involved in invasion and design 
novel therapeutic approaches to prevent repeat surgeries and 
radiotherapy. Since meningiomas are derived from arachnoi-
dal cells of the leptomeningeal layer, many agents that have 
failed for other brain tumors due to the low permeability of 
the blood–brain barrier may be effective for meningiomas. 

Table 2  Selected papers predicting/demonstrating the benefit of targeting/chemotherapy in patient with meningioma (Part II)

PRRT  peptide receptor radionuclide therapy, IFN-alpha interferon alpha, TMZ temozolomide

Type of trial Pertinent findings Author/Year/Reference Trial number

Phase II clinical trial Study of subcutaneous octreotide in adults with recurrent or 
progressive meningioma

Johnson et al./2011/[156] NCT00813592

Phase II clinical trial Erlotinib or gefitinib in patients with recurrent meningioma when 
Phase II clinical trial

Norden et al./2010/[115] N.A

Phase II clinical trial Imatinib mesylate activity for treating recurrent meningioma Wen et al./2009/[157] N.A
Phase I clinical trial PRRT  with (90)Y-DOTATOC can interfere with the growth of 

meningiomas
Bartolomei et al./2009/[158] N.A

Phase II clinical trial Treatment with IFN-alpha for recurrent meningiomas is tolerated 
moderately well and modestly effective

Chamberlain and Glantz/2008/[159] N.A

Phase II clinical trial Somatostatin analogues may offer a novel, relatively nontoxic 
alternative treatment for recurrent meningiomas

Chamberlain et al./2007/[160] N.A

Phase I clinical trial Minor regression of meningioma that can result in significant clini-
cal benefit is suggested in the male and premenopausal female 
subgroups of patients treat with mifepristone

Grunberg et al./2006/[134] N.A

Phase I clinical trial Hydroxyurea treatment is of marginal efficacy for meningioma Fuentes et al./2004/[161] N.A
Phase I clinical trial Hydroxyurea has not shown effectiveness in the treatment of non-

resectable slow-growing meningiomas
Loven et al./2004/[162] N.A

Phase II clinical trial No recurrent meningioma patient demonstrated a neuroradio-
graphic complete or partial response to TMZ

Chamberlain et al./2004/[163] N.A

Phase I clinical trial Hydroxyurea arrests progression of unresectable or recurrent 
benign meningiomas

Mason et al./2002/[164] N.A

Phase II clinical trial IFN-alpha seemed to be an effective oncostatic drug for meningi-
oma

Muhr et al./2001/[165] N.A

Prospective study Hydroxyurea for treatment of unresectable and recurrent meningi-
omas: decrease in the size of meningiomas

Schrell et al./1997/[166] N.A

Phase I clinical trial IFN-alpha is effective in the treatment of recurrent malignant 
meningiomas

Kaba et al./1997/[167] N.A

Phase II clinical trial A definite recommendation for the use of tamoxifen in refractory 
meningiomas cannot be made

Goodwin et al./1993/[168] N.A
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Based on previous results, the number of potential molecular 
targets, molecular inhibitors, and drug combinations have 
increased dramatically. However, the selection of the most 
promising candidates or their combinations for clinical tri-
als is becoming particularly important. It is now established 
that targeted therapies are active only in the tumor subsets 
which feature oncogenic activation of targets, as documented 
by the impressive efficacy of BRAF inhibitors in BRAF-
mutant melanomas and anaplastic lymphoma kinase (ALK) 
inhibitors in ALK-translocated non-small cell lung cancers 
[144]. Since the molecular pathogenesis of meningiomas 
and the critical molecular changes driving the brain-invasion 
of these tumors are still poorly understood, the molecular 
targeting cores remain to be elucidated. Here, we reviewed 
the most promising brain invasion targets and related agents 
(Fig. 3) and described reports predicting or demonstrating 
the benefits of clinical trials in patients with invasive men-
ingiomas (Tables 1, 2). In the near future, more preclinical 
studies and clinical trials targeting extracellular matrix deg-
radation enzymes (such as MMPs, uPA-uPAR, lysosomal 
cysteine, HGF/c-MET), cell adhesion molecules (such as 
integrins, E-cadherin/β-catenin) and various growth fac-
tors (such as EGF/EGFR, TGF-α, PDGF/PDGFR, VEGF/
VEGFR) should be conducted to determine the efficiency of 
related inhibitors for brain-invasive meningiomas. If some 
of these options show promise, can we further functionally 
predict whether a meningioma patient will be sensitive to 
related inhibitors before treatment? For those brain-invasive 
meningiomas without a predominant genetic marker, a wide-
spectrum inhibitor that targets several important signaling 
pathways may be needed or combined with other approaches 
including immunotherapy and hormone therapy.

Conclusion

Despite excellent outcomes from surgery and radiotherapy 
in most meningioma cases, there remains a small sub-
set of patients with brain-invasive meningioma who are 
refractory to conventional therapies. It is of great impor-
tance to identify alternative therapies for these patients. 
Understanding the crucial mechanisms of brain invasion 
will promote the development of more effective targeted 
molecular agents. Moreover, the success of these poten-
tial targeted agents and therapeutic options may offer an 
opportunity to improve the therapeutic strategies for brain-
invasive meningiomas.
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