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Abstract
According to the 2016 World Health Organization (WHO) classification of central nervous system tumors, diffuse astrocytic 
and oligodendroglial tumors are differentiated by the presence of isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation and 
the combined loss of the short arm of chromosome 1 and the long arm of chromosome 19 (1p/19q co-deletion). IDH-mutant 
astrocytoma often has p53 and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutation, showing the 
alternative lengthening of telomeres (ALT) phenotype, while IDH-mutant and 1p/19q-co-deleted oligodendroglioma often 
have wild-type p53 and telomerase reverse transcriptase (TERT) promoter mutation, showing telomerase activation. This 
study analyzed IDH, ATRX, and TERT promoter mutations, and the correlation between them. Immortalized cells overcome 
the telomere-related crisis by activating telomerase or ALT. In glioma, telomerase is mainly activated by TERT promoter 
mutation, while ALT is usually associated with ATRX mutation. Although the mechanism of how ATRX mutation induces 
ALT remains unclear, ATRX loss alone is believed to be insufficient to induce ALT. Treatments targeting telomere main-
tenance are promising.
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Introduction

In the 2016 World Health Organization (WHO) classi-
fication of central nervous system (CNS) tumors, diffuse 
astrocytic and oligodendroglial tumors are differentiated by 
the presence of isocitrate dehydrogenase 1 or 2 (IDH1/2) 
mutation. IDH1/2-mutant gliomas are further subdivided 
on the basis of the presence of a combined loss of the short 
arm of chromosome 1 and the long arm of chromosome 19 
(1p/19q co-deletion). Diffuse or anaplastic astrocytoma does 
not have 1p/19q co-deletion, while oligodendroglioma or 
anaplastic oligodendroglioma shows 1p/19q co-deletion [1]. 
Astrocytoma often has p53 and alpha-thalassemia/mental 
retardation syndrome X-linked (ATRX) mutation, showing 

the alternative lengthening of telomeres (ALT) phenotype, 
while oligodendroglioma often has wild-type (WT) p53 and 
telomerase reverse transcriptase (TERT) promoter mutation, 
showing activation of telomerase [1] (Fig. 1). This study 
analyzed IDH, ATRX, and TERT promoter mutations and 
the correlation between them.

IDH mutation

IDHs are a group of enzymes that catalyze the oxidative 
decarboxylation of isocitrate to alpha-ketoglutarate (α-KG). 
The human body contains three types of IDHs: IDH1, IDH2, 
and IDH3 [2]. IDH1 is located in the cytosol/peroxisomes, 
while IDH2 and IDH3 are present in the mitochondria [3]. 
IDH1 and IDH2 are nicotinamide adenine dinucleotide 
phosphate (NADP) dependent, while IDH3 is nicotinamide 
adenine dinucleotide (NAD) dependent [4]. Only IDH3 is 
associated with the tricarboxylic acid cycle [5]. Mutant 
IDH1/2 converts α-KG into 2-hydroxyglutarate (2-HG) [6].

IDH1/2 mutation has been reported in not only glio-
mas [7] but also other tumors, such as acute myelogenous 
leukemia [8] and chondrosarcoma [9]. In addition, 2-HG 
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accumulation reportedly contributes to tumorigenesis in 
these cases [7].

After Parsons [10], many studies have been conducted 
on IDH mutations in glioma [11–14]. Nearly all IDH muta-
tions involve a single amino acid substitution. The mutation 
occurs at the arginine residue at codon 132 in IDH1 and 
codon 140 or 172 in IDH2, although R140 mutations are 
not found in glioma. The commonest is the R132H mutation 
(c.395G > A), which accounts for ~ 90% of all IDH muta-
tions. IDH1 and IDH2 mutations usually occur exclusively 
[7]. IDH1/2 mutation is reportedly detected in 80–90% of 
grade II and III glioma and 5% of primary glioblastoma [3]. 
After publication of the 2016 WHO classification of CNS 
tumors, a glioma needs to have an IDH mutation to be clas-
sified as an oligodendroglioma [1]. Since the IDH1R132H 

alteration occupies ~ 90% of IDH mutations, immunohisto-
chemistry (IHC) evaluation with the IDH1R132H antibody 
can cover ~ 90% of IDH1/2 mutation cases. In addition, 
direct DNA sequence analysis is performed to detect the 
IDH mutations, depending on the facilities.

IDH mutation has been detected as a common muta-
tion between primary and recurrent tumors [15–17]. It 
has also been detected as a common mutation among 
samples from multiple regions in the same patients [16]. 
Therefore, IDH mutation is considered to occur at the 
early stage of tumorigenesis and as a driver mutation in 
IDH-mutant gliomas [7, 15]. The mechanism underlying 
gliomagenesis by mutant IDH1/2 has not been clearly 
elucidated. However, several possible hypotheses are 
reported (Fig. 2). The structures of 2-HG and α-KG are 

Fig. 1  The pathological 
characteristics of diffuse 
astrocytoma, IDH-mutant, and 
oligodendroglioma, IDH-mutant 
and 1p/19q-codeleted. These 
figures show representative 
pictures of diffuse astrocytoma, 
IDH-mutant, and oligoden-
droglioma, IDH-mutant and 
1p/19q-codeleted. Both types of 
tumors are usually immunoposi-
tive for IDH1R132H. Diffuse 
astrocytoma, IDH-mutant is 
often immunopositive for p53 
and immunonegative for alpha-
thalassemia/mental retardation 
syndrome X-linked (ATRX), 
while oligodendroglioma, IDH-
mutant and 1p/19q codeleted is 
often immunonegative for p53 
and immunopositive for ATRX 
having telomerase reverse tran-
scriptase promoter mutation
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similar, and 2-HG competes with α-KG and inhibits α-KG-
dependent enzymes, such as the ten-eleven translocation 
(TET) enzyme family of five methylcytosine hydroxylases 
and Jumonji C domain-containing histone demethylases 
[15, 18]. Mutant IDH-induced 2-HG in glioma inhibits 
the TET family, which might lead to global DNA meth-
ylation in the glioma CpG island methylation phenotype 
(G-CIMP) [19]. Gliomas with G-CIMP show gene expres-
sion of the proneural type classified by Verhaak et al. [20, 
21]. These epigenetic changes are believed to affect gene 
expression, contributing to tumorigenesis. Histone dem-
ethylase inhibition by 2-HG increases histone methylation. 
This epigenetic status might also affect gene expression 
[18]. 2-HG reportedly stabilizes hypoxia-inducible factor 
1-alpha (HIF-1α) expression and subsequently results in 
an increase in HIF-1α target gene expression by inhibition 
of prolyl-hydroxylase enzymes [22]. Consequently, IDH-
mutant glioma cells escape from a hypoxic environment 

[4]. In addition, 2-HG increases reactive oxygen species 
through the NAPD/NAPDH balance, contributing to tumo-
rigenesis [23].

IDH1R132H is a main mutation among IDH mutations, 
so IHC evaluation using IDH1R132H antibody is widely 
used. To check other types of mutations, direct DNA 
sequence analysis is also performed. IHC is reportedly 100% 
sensitive and specific in detecting IDH1R132H mutations 
[24]. The consistency rate between IHC and DNA sequence 
analysis is reported to be 88% in diffuse glioma patients [25]. 
As noninvasive methods, mutant IDH1/2-induced 2-HG is 
reported to be detectable by magnetic resonance spectros-
copy [26].

IDH1/2 mutation is considered a driver mutation in IDH-
mutant glioma, and inhibition of mutant IDH1/2 is a prom-
ising treatment for such gliomas. Several clinical trials are 
ongoing [4, 27]. In experimental studies, the effects of IDH 
inhibitors are controversial. IDH inhibitors inhibit the pro-
liferation of IDH1-mutant glioma cells [28], while inhibition 
of IDH mutation is ineffective [29] or works only in a narrow 
window of time [30].

Telomere length in gliomas

Telomeres are DNA–protein complexes that protect chromo-
some ends. These protein complexes are called Shelterin, 
which comprise TRF1, TRF2, POT1, TIN1, TPP1, and 
RAP1 [31]. Telomeres in vertebrates comprise a region of  
3000–20,000 TTA GGG  repeats at the ends of chromosomes 
[32]. The length of a telomere shortens after each cell divi-
sion, and cells go to the arrest stage after limitation [33]. 
To overcome this issue, many types of tumor cells maintain 
the telomere length via telomerase activation, while some 
types of tumors elongate the telomere length by telomere-
independent manner, which is known as ALT [32]. These 
oncogenic changes in glioma are generally exclusive [34]. 
Telomerase has two principle components, the 1132-amino 
acid telomerase reverse transcriptase (TERT) and an asso-
ciated telomerase RNA molecule (TERC) [35]. TERT pro-
moter mutation increases TERT expression and activates 
telomerase activity [36, 37]. Another mechanism is ALT, 
with which ATRX, death-associated protein 6 (DAXX), and 
histone H3.3 are reportedly associated [32, 38].

IDH-mutant diffuse or anaplastic astrocytoma shows the 
ALT phenotype, while IDH-mutant and 1p/19q-co-deleted 
oligodendroglioma or IDH-WT glioblastoma shows TERT 
promoter mutation [36, 39, 40]. Although both tumor types 
have the same IDH mutation, why astrocytoma selects the 
ALT phenotype and oligodendroglioma selects TERT pro-
moter mutation to resolve telomeric dysfunction and main-
tain telomere length remains unknown.

Fig. 2  The hypothesis of mutant IDH1/2-induced tumorigenesis. 
Mutant IDH1/2-induced 2-hydroxyglutarate (2-HG) competes with 
α-ketoglutaric acid (α-KG) and inhibits α-KG-dependent enzymes, 
such as the ten-eleven translocation (TET) enzyme family, histone 
demethylases, and prolyl-hydroxylase. G-CIMP induced by inhibition 
TET family, or histone methylation leads to gene expression. 2-HG 
stabilizes hypoxia-inducible factor 1-alpha (HIF-1α) and expression 
and increases the expression of HIF-1α target gene by inhibition of 
prolyl-hydroxylase. 2-HG also increases reactive oxygen species 
through the NAPD/NAPDH balance. These factors are considered to 
contribute to tumorigenesis
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Telomerase

TERT promoter mutation occurs at positions 124 and 
146  bp upstream of the TERT ATG start site, called 
C228T and C250T, respectively [34]. These mutations are 
exclusive. Messenger RNA (mRNA) expression of TERT 
increases in gliomas with TERT promoter mutation com-
pared to gliomas without TERT promoter mutation [36, 
37]. The telomere length is shorter in glioma with TERT 
promoter mutation compared to glioma without TERT pro-
moter mutation [37]. TERT promoter mutations generate 
identical 11 bp sequences that form a de novo binding site. 
The E26 transformation-specific transcription factor GA-
binding protein selectively binds to the site and activates 
TERT [41]. TERT promoter mutation is believed to be 
associated with tumorigenesis in two phases: by promot-
ing immortalization and genomic instability. In the first 
phase, TERT promoter mutation extends the cellular life 
span by extending the shortest telomeres but does not pre-
vent most telomere shortening. In the second phase, the 
critically short telomeres inducing genome instability and 
telomerase are upregulated. Consequently, cells maintain 
growth [42]. TERT promoter mutation is considered the 
main mechanism of TERT transcript upregulation; how-
ever, other mechanisms have also been reported [43, 44]. 
For example, mutant IDH activates the TERT promoter, 
increasing histone lysine methylation and c-Myc/Max 
binding at the TERT promoter [44].

Several studies have reported the correlation between 
TERT promoter mutation and prognosis in glioma [39, 
45–47], but few studies have compared prognoses within 
the same diagnosis based on the 2016 WHO classifica-
tion [46]. Pekmezci et al. showed that of 291 grade II or 
III oligodendroglioma, IDH-mutant and 1p/19q-codeleted 
patients, 94% had only TERT promoter mutation, 0.69% 
had only ATRX mutation, 1.7% had both TERT promoter 
and ATRX mutation, and 4% had neither TERT promoter 
nor ATRX mutation [46]. The group with TERT promoter 
mutation had significant better overall survival (OS) com-
pared to the group with TERT promoter WT group [46]. 
Of 154 IDH-WT astrocytoma patients, 60% showed only 
TERT promoter mutation, and 2% had both TERT promoter 
and ATRX mutation. The group with TERT promoter muta-
tion had significantly worse OS compared to the TERT 
promoter WT group [46]. Akyerli et al. classified hemi-
spheric diffuse glioma using the IDH and TERT promoter 
mutation status: both IDH and TERT promoter mutation, 
only IDH mutation, only TERT promoter mutation, and 
neither IDH nor TERT promoter mutation. Every group 
had a distinct demographic, anatomical, clinical, and prog-
nostic correlation [39], and the TERT promoter mutation 
status of tumors was unchanged over time or recurred [39]. 

Similarly, in a meta-analysis, Vuong et al. classified WHO 
grade II or III glioma patients into four groups on the 
basis of the IDH and TERT promoter mutation status and 
showed the difference in OS between the groups (both IDH 
and TERT promoter mutation > only IDH mutation > nei-
ther IDH nor TERT promoter mutation > only TERT pro-
moter mutation) [47].

Telomere maintenance is expected to be a new therapeu-
tic target. Several approaches have been followed, such as 
vaccines, antisense oligonucleotides, and small-molecule 
inhibitors, to inhibit TERT, TRRC , or TERT promoter muta-
tion [48–53]. However, these reagents might be ineffective 
in tumors with the ALT phenotype.

ALT

Although telomerase activity is the most frequent mecha-
nism for maintaining telomere length, 10%–15% of cancers 
also show a telomerase-independent mechanism for elon-
gating telomeres (ALT) [54]. Although the ALT phenotype 
is uncommon in tumors, it is common in certain cancer 
subtypes, including glioma and sarcoma [32, 54]. Among 
gliomas, ALT is often detected in WHO grade II or III IDH-
mutant astrocytoma, and IDH-mutant glioblastoma [46]. 
Tumor cells with the ALT phenotype depend on the activa-
tion of a homologous recombination DNA repair mechanism 
to maintain telomere length [55]. ALT often begins with the 
loss of chromatin-remodeling proteins in telomeres, result-
ing in DNA damage response, recombination, and abnormal 
protein behavior, which reportedly initiates ALT [32, 55].

Addition of ATRX suppresses the ALT phenotype, so 
ATRX loss is associated with the ALT phenotype [56]. How-
ever, studies have reported that ATRX loss alone is insuf-
ficient to induce the ALT phenotype [56, 57]. In contrast, 
IDH1R132H overexpression in glioma cell lines downregu-
lates ATRX and induces telomere lengthening consistent 
with ALT [58]. The authors suggested that IDH1R132H 
alone is sufficient to diminish ATRX expression and induces 
ALT. Inconsistent with their findings, neither overexpressed 
IDH1R132H alone nor ATRX knockout alone induces the 
ALT phenotype [44, 57]. Exogenous IDH1R132H expres-
sion combined with ATRX mutation induces the ALT pheno-
type [57]. Mutant IDH1 downregulates a Shelterin protein, 
RAP1, which leads to telomere dysfunction. Mutant IDH1 
also downregulates XRCC, which leads to nonhomologous 
end-joining (NHEJ) inhibition. This downregulation of 
RAP1 and XRCC reportedly contributes to ALT in glioma 
cells with ATRX loss [57].

The cIMPACT Update 2 report showed that diffuse 
astrocytic-appearing WHO grade II or III glioma with IDH 
mutation and ATRX nuclear expression loss and/or strong, 
diffuse p53 immunopositivity can be diagnosed as diffuse 
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astrocytoma, IDH-mutant or anaplastic astrocytoma, IDH-
mutant without checking the 1p/19q co-deletion status [59]. 
IHC analysis for ATRX, not sequence analysis for ATRX, 
was described in this report. Since ATRX is relatively large, 
it is difficult to perform the assay to detect the mutation as 
a routine test. Therefore, IHC analysis is usually performed 
as an alternative method for evaluating ATRX mutation. Ike-
mura et al. (2016) examined 193 patients and divided them 
into three groups: ATRX loss with staining loss in > 90% of 
tumor cells (n = 43), ATRX indeterminate with staining loss 
in 10%–90% of tumor cells (n = 0), and ATRX retained with 
staining loss in < 10% of tumor cells (n = 150) [60]. Other 
studies divided patients into two groups, with nuclear ATRX 
loss and with nuclear ATRX retention, using a cutoff value 
of 10% [61, 62].

ATRX mutation is associated with prognosis in glioma 
[63, 64]. However, in most cases, tumor diagnosis is per-
formed on the basis of pre-2016 WHO classification. Since 
most IDH-mutant astrocytomas and IDH-mutant glioblas-
tomas show ATRX loss and most IDH-mutant and 1p/19q-
co-deleted oligodendrogliomas and IDH-WT glioblastomas 
show ATRX expression, the comparison between low-grade 
gliomas or between glioblastomas might be a comparison 
between astrocytoma and oligodendroglioma or between 
IDH-WT glioblastoma and IDH-mutant glioblastoma. In a 
comparison within the same diagnosis of 220 cases of IDH-
mutant diffuse astrocytoma and 181 cases of IDH-mutant 
anaplastic astrocytoma, 78% had only ATRX mutation, 2% 
had both TERT and ATRX mutation, 5% had only TERT 
mutation, and 16% had neither TERT nor ATRX mutation. 
Neither TERT nor ATRX status was associated with survival 
[46]. In IDH-mutant glioblastoma patients, the rate of each 
mutation is similar to that in IDH-mutant WHO grade II and 
III astrocytoma patients. Sixty-three percentage had only 
ATRX mutation, 6% had both TERT and ATRX mutation, 
12% had only TERT mutation, and 20% had neither TERT 
nor ATRX mutation. Neither TERT nor ATRX status was 
associated with survival [46].

Several new treatments have been recommended for 
targeting tumor cells with the ALT phenotype [35, 54]. 
CRISPR-Cas9 screening detected Wee1 as a target in ATRX-
null tumor cells [65]. The ATR inhibitor reportedly disrupts 
ALT and triggers chromosome fragmentation and apoptosis 
in ALT cells [66]. Histone deacetylase inhibitors might sup-
press ALT through NuRD inhibition [67]. Although these 
treatments are expected to be effective in tumor cells with 
the ALT phenotype, treatments that are effective independ-
ent of activated telomerase or ALT are promising. G-quad-
ruplexes are tetra-stranded DNA structures formed by gua-
nine-rich sequences. Studies have reported a G-quadruplex 
stabilizer that activated the pathways of response to DNA 
damage and induce senescence in both telomerase-positive 
and ALT phenotype cells [68].

Conclusion

In this review, we discussed the three mutations of IDH, 
ATRX, and TERT promoter in glioma. It remains unclear 
why astrocytoma, IDH-mutant has ALT phenotype, whereas 
oligodendroglioma, IDH-mutant and 1p/19q-codeleted 
showed activated telomerase. Further studies may clarify it 
and new treatments targeting maintenance of telomere are 
promising.
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