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Introduction

Chordomas and chondrosarcomas are two major malignant 
bone neoplasms occurring at the skull base. Although most 
of these tumors are slow growing and rarely metastasize, 
they are locally invasive, highly recurrent, and potentially 
lethal. Because these tumors are mostly resistant to conven-
tional chemotherapies and radiotherapies, surgical resec-
tion plays a crucial role in the treatment of these tumors. 
However, for chordoma and chondrosarcoma located at the 
skull base, radical resection is rarely achieved because of 
challenges associated with the location of the tumors.

In the clinical setting, it is important to distinguish 
between these two tumor types because they have different 
prognoses [1, 2]. However, this can be challenging owing 
to their overlapping radiological and histopathological find-
ings. Indeed, chondroid chordoma, a subtype of chordoma, 
is a matrix-mimicking cartilaginous tumor [3]. Addition-
ally, in a previous report, 37% (74/200 cases) of skull base 
chondrosarcomas were initially misdiagnosed as a chor-
doma [4].

Although chordoma and chondrosarcoma, including 
those located extracranially, are not as common as other 
types of cancer, researchers have begun to carry out molec-
ular and genetic studies of these tumors. In this report, we 
review the genetic aberrations and molecular biology of 
chordoma and chondrosarcoma, including extracranially 
located tumors. Because these two types of tumors have 
distinct genetic backgrounds, molecular and genetic exami-
nations of these tumors are expected to provide useful clues 
for distinguishing between the two tumor types.
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Chordoma

Chordoma accounts for 1–4% of all bone malignancies 
[5] and 0.5% of primary intracranial central nervous sys-
tem (CNS) tumors [6]. Chordoma frequently occurs in the 
sacrum, vertebral body, and skull base, with each of these 
locations accounting for approximately one-third of all 
chordomas [7]. Chordoma is thought to be derived from 
undifferentiated notochordal remnants; this is strongly sup-
ported by the fact that aberrations in the T gene, which 
encodes an important transcription factor involved in 
notochord development, were detected in the germ-line of 
familial chordoma [8]. The current common therapeutic 
strategy for the treatment of chordomas is maximal surgical 
resection followed by unconventional radiotherapy, such 
as proton beam therapy and carbon ion radiotherapy [9]. 
Incomplete surgical resection and the absence of postopera-
tive irradiation significantly contribute to the poor progno-
sis of chordoma [10–13]. Because chordomas are resistant 
to conventional chemotherapies, researchers have attempted 
using molecular targeting agents for chordoma treatment.

T (brachyury)

In genetic analysis of chordoma, the T gene, located on 
chromosome 6q27, and its protein product brachyury, have 
been extensively studied. T was originally discovered as 
a site of mutation in the short-tailed mouse and has been 
shown to act as a transcription factor in notochord develop-
ment [14]. Additionally, a recent study showed that brachy-
ury is an essential factor for maintaining notochord cell fate 
and function [15]. Although brachyury is thought to func-
tion in the epithelial-to-mesenchymal transition (EMT) of 
malignant tumors [16, 17], a recent report showed that T 
function is dispensable for the EMT [15].

Brachyury expression is most frequently observed in 
chordomas (81–100%); it is less frequent in germ cell 
tumors and small cell lung cancers, but is rarely present 
in other types of tumor [12, 18–22]. Immunohistochemi-
cal analysis of brachyury is a useful biomarker for distin-
guishing among similar tumors, such as chondrosarcomas, 
chordoid meningiomas, and carcinomas, because of its high 
sensitivity and specificity. Furthermore, in case of skull 
base tumors, brachyury expression is a prognostic fac-
tor; patients having chordomas with brachyury expression 
exhibit significantly shorter progression-free survival (PFS) 
than patients having chordomas without brachyury expres-
sion [12].

Notably, researchers identified a duplication at the T site 
in the germ-line of familial chordomas [8]. Furthermore, 
Pillay et  al. reported that the common nonsynonymous 
single nucleotide polymorphism (SNP) rs2305089 on the 
T gene was strongly associated with chordoma risk [23]. 

These reports suggested that T plays an important role in 
the tumorigenesis of chordoma. Presneau et  al. reported 
that chromosomal aberrations resulting in gain of T were 
common in some sporadic chordomas, and that the down-
regulation of T using short hairpin RNA (shRNA) in chor-
doma cell lines decreases cell proliferation and enhances 
morphological features consistent with a senescence-
like phenotype [24]. Additionally, Hsu et  al. reported 
that silencing of brachyury using shRNA led to complete 
growth arrest in other cell lines [25]. Nelson et al. showed 
that brachyury activated oncogenic transcription through 
binding directly to 99 target genes and indirectly affecting 
the expression of 64 other genes [26]. Based on these stud-
ies, the T gene (encoding brachyury) is now a promising 
therapeutic target for the treatment of chordomas [17, 27].

SWI/SNF‑related, matrix‑associated, actin‑dependent 
regulator of chromatin, subfamily B, member 1 
(SMARCB1)/INI

Generally, aberrations in SMARCB1/INI1, located on 
chromosome 22q11.2, predispose patients to rhabdoid 
tumors and schwannomatosis. Mutations and deletions in 
SMARCB1/INI1 have been detected in several pediatric 
chordoma cases, accompanied by brachyury expression 
[28–31]. Recently, Hasselblatt et  al. reported that these 
chordomas had a distinct molecular background from con-
ventional chordomas [32], showing poor differentiation, 
lack of SMARCB1 expression, lack of complex chromo-
somal alterations as found in conventional chordomas, 
onset at an early age (young children), and poor prognoses. 
Furthermore, these tumors had methylation profiles distinct 
from those of atypical teratoid/rhabdoid tumors, which are 
commonly found in young children, and lacked SMARCB1 
expression. These observations strongly supported the 
existence of a subtype of chordoma.

Receptor tyrosine kinases (RTKs)

RTKs play an important role in malignant transforma-
tion and tumor proliferation in cancers. Many reports have 
shown that RTKs, such as epidermal growth factor receptor 
(EGFR) [33–37], platelet-derived growth factor receptor-α 
(PDGFRα) [33, 37–39], PDGFRβ [35, 37–39], fibroblast 
growth factor receptor (FGFR) [40], hepatocyte growth 
factor receptor (MET) [33], KIT [39], p75 receptor [41], 
tropomyosin-related kinase A (TrkA) [41], and insulin-like 
growth factor-1 receptor (IGF-1R) [42, 43], are frequently 
overexpressed and/or activated in chordoma. Addition-
ally, vascular endothelial growth factor (VEGF) [44] and 
nerve growth factor (NGF) were shown to be overexpressed 
in chordoma [41]. Although polysomy and amplifica-
tion of EGFR were frequently detected in chordomas by 
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fluorescence in situ hybridization [36], no EGFR mutation 
was detected [36, 45]. Scheipl et  al. reported the efficacy 
of EGFR inhibitors, such as sapitinib, gefitinib, and erlo-
tinib, by demonstrating that these compounds suppressed 
the phosphorylation of EGFR and activation of its down-
stream pathways in chordoma cell lines [45]. Sommer et al. 
reported that patients with chordoma who were positive for 
phospho-IGF-1R had significantly shorter median disease-
free survival [43].

Major downstream pathways

Akt/phosphoinositide 3‑kinase (PI3K)/mammalian target 
of rapamycin (mTOR) pathway

The Akt/PI3K/mTOR pathway is activated in various can-
cers, resulting in hyperproliferation and tumor growth. 
Phosphoinositide-dependent kinase-1 (PDK1) [46], Akt 
[34, 35, 43, 46, 47], tuberous sclerosis complex 2 (TSC2) 
[47], mTOR [47], s6 ribosomal protein (s6) [47], and phos-
phatase and tensin homolog (PTEN) [48] are dysregu-
lated frequently in chordomas. Schwab et al. reported that 
PI-103, an inhibitor of Akt and mTOR, blocked prolifera-
tion and induced apoptosis in a chordoma cell line [46]. 
Recently, Tauziède-Espariat reported that PIK3CA, which 
is commonly mutated or amplified in various malignant 
neoplasms but never detected in chordoma, was mutated in 
two chordoma cases [44].

Mitogen‑activated protein kinase (MAPK)/extracellular 
signal‑regulated kinase (ERK) pathway

Activation of the MAPK pathway is common in various 
types of cancers and has been detected in several studies 
of chordoma [35, 40, 43]. However, no mutations in KRAS, 
NRAS, HRAS, and BRAF have been detected [36, 40]. Long 
et al. reported that miR‑149‑3p, miR‑663a, miR‑1908, miR‑
2861, and miR‑3185 were likely to play important roles in 
dysregulation of the MAPK signaling pathway, leading to 
chordoma development [49].

Janus kinase (JAK)/signal transducer and activator 
of transcription (STAT) pathway

The JAK/STAT pathway is known to be active in sev-
eral human cancers and associated with a poor progno-
sis. Activation of components of the JAK/STAT pathway, 
such as STAT3 and the proto-oncogene tyrosine kinase 
Src, has been detected in chordomas [35, 50, 51]. Yang 
et al. reported that STAT3 inhibitors strongly blocked cell 
growth and proliferation in chordoma cell lines [50] and 
suggested that inhibition of the JAK/STAT pathway may 

represent a potential therapeutic strategy for the treatment 
of chordoma.

Retinoblastoma (RB) pathway

The RB pathway plays an important role in the control of 
cell proliferation. Loss of CDKN2A/p16 with or without 
the loss of CDKN2B has frequently been observed in chor-
doma [48, 52], and one case with promoter methylation of 
CDKN2A/p16 has been reported [48].

Other biomarkers

Triana et  al. reported that the downregulation of E-cad-
herin and upregulation of N-cadherin were correlated with 
the worse prognosis of clival chordomas [53]. Schoenfeld 
et  al. reported that positive expression of chondroitin sul-
fate proteoglycan 4 (CSPG4), a membrane-bound proteo-
glycan expressed in several types of malignant tumors, was 
associated with a higher risk of mortality and an increased 
risk of metastasis in chordomas [54]. The expression of 
fragile histidine triad protein (FHIT), a potential tumor 
suppressor, was absent or reduced in 98% of sacral chor-
domas and 67% of skull base chordomas, and the authors 
suggested that chromosome 3 aneuploidy and epigenetic 
regulation of FHIT contributed to loss of the FHIT tumor 
suppressor in chordoma [55]. Sa et  al. reported recurrent 
somatic variants, including single nucleotide variations 
in MUC4, NBPF1, and NPIPB15 and the gene fusion of 
SAMD5‑SASH1, in whole-exome and whole-transcriptome 
sequencing of 13 chordomas [56]. Rinner et  al. reported 
that 20 genes were hyper-/hypomethylated in samples 
from patients with chordoma compared with those in nor-
mal blood; among these epigenetically regulated genes, 
C3, XIST, TACSTD2, FMR1, DLEC1, RARB, HIC1,, 
KL, and RASSF1 were suggested to be the most promis-
ing candidate genes [57], with the latter three identified 
as tumor-suppressor genes. Alholle et  al. reported several 
genes (FAM181B, KANK2, NPR3, PON3, RAB32, RAI1, 
SLC16A5, and ZNF397OS) that were differentially methyl-
ated between recurrent cases and nonrecurrent cases [58]; 
among these genes, KANK2 has been shown to be a candi-
date tumor-suppressor gene.

Cytogenetics

Many researchers have evaluated chromosomal copy num-
bers in patients with chordoma. These studies have reported 
similar findings, including losses on chromosomes 1p, 3, 4, 
9, 10, 13, 14, and 18 and gains on chromosomes 1q and 7 
[12, 48, 56, 59–62]. Of these chromosomes, 1p has been 
the most intensely investigated chromosome arm, and sev-
eral studies have suggested that 1p36 may be a putative 
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tumor-suppressive locus in chordomas, as supported by 
the finding that loss of 1p36 is associated with poor prog-
nosis [63–65]. Longoni et  al. listed tumor necrosis factor 
(TNF) receptor superfamily member 8 (TNFRSF8) as a 
candidate gene on 1p36. Sawyer et al. reported that isoch-
romosome 1q and monosomy 13 were frequent structural 
abnormalities in skull base chordomas by spectral karyo-
typing, supporting the hypothesis that chromosome 1p was 
a tumor-suppressive locus [66]. Horbinski et al. suggested 
that loss of heterozygosity (LOH) on chromosome 9p was 
significantly associated with shorter survival in patients 
with skull base chordomas [11]. We previously conducted 
whole genome analyses by comparative genomic hybridiza-
tion and performed multivariate analyses with genetic and 
clinical factors; these studies suggested that gain on chro-
mosome 2p was correlated with the prognosis [12].

MicroRNAs (miRNAs)

Several studies have suggested that aberrant miRNAs may 
play roles in tumorigenesis or progression of chordomas. 
Duan et  al. reported that miR‑1 and miR‑206 were down-
regulated in chordoma-derived cell lines and chordoma 
tissue, and miR‑1 expression was inversely correlated with 
MET expression [67]. In a follow-up study, they showed 
that miR‑1 expression was correlated with poor prognosis 
and that induction of miRNA expression suppressed MET 
expression and inhibited the growth of chordoma cells 
[68]. Moreover, Osaka et  al. reported that overexpression 
of Slug, a target of miR‑1, promoted cell proliferation in 
chordomas [69]. The same team reported that miR‑155 was 
downregulated in chordomas, resulting poor prognosis [70]. 
Moreover, Zou et al. reported that overexpression of miR‑
140‑3p and downregulation of miR‑1237‑3p were associ-
ated with chordoma invasion and poor prognosis in spinal 
chordomas [71, 72]. Gulluoglu et al. assessed the functions 
of miR‑31, miR‑140‑3p, miR‑148a, and miR‑222 by trans-
fecting these miRNAs into chordoma cell lines transiently. 
These miRNAs were found to target proteins such as MET, 
MAPK1(ERK2), BCL2L11, and KIT, suggesting that these 
miRNAs play roles in cell viability, cell cycle, and apop-
tosis in chordomas [73]. Additionally, as described above, 
miR‑149‑3p may facilitate chordoma development through 
the dysregulation of the MAPK signaling pathway [49].

Immune system biomarkers

Checkpoints of programmed cell death protein 1 (PD-1), 
programmed death-ligand 1 (PD-L1), and PD-L2 have been 
studied in various malignant tumors, and the expression 
of these proteins has been implicated in promoting tumor 
progression. Mathios et al. showed that PD-L1 and PD-L2 
were not constitutively expressed in chordoma cell lines, 

but could be induced by pro-inflammatory cytokines [74]. 
Using paraffin-embedded tissues, researchers also demon-
strated that PD-1 expression could be detected in tumor-
infiltrating lymphocytes (TILs) in some cases of chordoma 
and that PD-L1 was not expressed in chordoma cells but 
was expressed in tumor-infiltrating macrophages and TILs 
[74, 75]. Zou et al. reported that the expression of PD-L1 
in TILs was associated with a favorable prognosis in spinal 
chordoma [76]. However, further studies are needed to elu-
cidate the detailed mechanisms and roles of immune check-
point molecules in chordomas.

Molecular‑targeted therapy

Target therapies for these proteins have been carried out 
using cetuximab (an EGFR inhibitor) [77, 78], gefitinib 
(an EGFR inhibitor) [77, 78], erlotinib (an EGFR inhibi-
tor) [79–81], lapatinib (an inhibitor of EGFR and HER2) 
[82], imatinib (an inhibitor of PDGFR, c-Kit, and ABL) 
[83–85], sirolimus (rapamycin; an mTOR inhibitor) [85, 
86], dasatinib (an inhibitor of Src, c-Kit, and ABL) [87], 
and bevacizumab (a VEGF inhibitor) [79]. Among these 
reports, the study with the largest number of participants 
was a phase II study of imatinib in 50 PDGFβ/PDGFRβ-
positive patients with advanced chordoma [84]. The results 
showed that one patient (2%) had a partial response (PR), 
whereas 35 patients (70%) had stable disease (SD) at 6 
months. Hindi et  al. reported a retrospective series of 48 
PDGFβ/PDGFRβ-positive patients with advanced chor-
doma treated with imatinib [83]; no patients achieved PR, 
and 34 patients (74%) showed SD. Stacchiotti et al. tested 
the efficacy of imatinib plus sirolimus for nine patients with 
imatinib-resistant advanced chordoma [85]; one patient 
achieved PR, and seven patients showed SD. Additionally, 
a phase II trial of lapatinib with 18 patients with EGFR-
positive advanced chordoma showed that six patients (33%) 
achieved PR, whereas seven patients (39%) showed SD at 
6 months [82]. A phase II trial of dasatinib in patients with 
advanced chordoma showed that six patients had an objec-
tive tumor response based on Choi criteria [87]. Further-
more, bevacizumab plus erlotinib was administered to three 
patients with chordoma, resulting in SD for 2–4.5 years 
[79]. Clinical trials using new targets, including therapeutic 
vaccines targeting brachyury, PD-1, PD-L1 inhibitors, are 
planned or underway [88].

Chondrosarcoma

Chondrosarcoma is the third most frequent primary malig-
nancy of the bone after myeloma and osteosarcoma [3]; it 
is systemically more frequent than chordoma. However, 
intracranial chondrosarcomas comprise only approximately 
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1% of all chondrosarcomas [89]; consequently, it is less fre-
quent than chordoma in cases of intracranial location [90]. 
Chondrosarcomas are graded on a scale of I–III based on 
histological findings [3], reflecting the rates of local recur-
rence and metastasis. Almost all chondrosarcomas are 
grades I or II, and grade III is extremely rare (grade I: 61%, 
grade II: 36%, grade III: 3%) [91]. A similar distribution 
has been observed in skull base chondrosarcoma (grade 
I: 50.5%, contained areas of grade I and II: 28.5%, grade 
II: 21%, grade III: 0%) [4]. Generally, low-grade chon-
drosarcomas are locally invasive, but rarely metastasize; 
thus, surgical resection is the best approach for managing 
this disease [92]. For chondrosarcomas located in the skull 
base, however, radical resection is rarely achieved because 
of the difficulties associated with resection of tumors in 
this location [4]. Because conventional chemotherapy and 
radiotherapy are usually ineffective for chondrosarcomas, 
systemic therapies, including molecular-targeted therapies, 
have been attempted.

Mutations in isocitrate dehydrogenase 1 (IDH1) 
and IDH2

Recent molecular studies showed that there are two major 
groups of chondrosarcomas with distinct genetic back-
grounds: central and periosteal chondrosarcomas, which 
are related to mutations in IDH1 or IDH2; and peripheral 
chondrosarcoma, which is related to exostosin-1 (EXT1) 
or EXT2 inactivation [3]. Because IDH1/2 mutations have 
been detected in many cases of skull base chondrosarcoma 
[93, 94], these chondrosarcomas are thought to be molecu-
larly consistent with a subset of central chondrosarcomas.

Somatic mutations in IDH1/2 have been identified in 
gliomas and acute myeloid leukemia (AML). IDH1/2 muta-
tions are thought to play a tumorigenic role in the develop-
ment of these tumors. Amary et al. detected mutant IDH1/2 
in central chondrosarcoma, periosteal chondrosarcoma, and 
enchondroma [95]. The frequency of IDH1/2 mutations 
was reported to be 55–66% in central chondrosarcoma [95, 
96]. In skull base chondrosarcomas, these mutations were 
detected in 10 of 20 cases (50%) [93, 94]. Although the vast 
majority (>90%) of total IDH1 mutations detected in glio-
mas involved the R132H substitution, R132H was detected 
only in 17% of cartilaginous tumors; other substitutions are 
common in cartilaginous tumors, such as R132C, R132G, 
R132L, and R132S [93–95]. Accordingly, although immu-
nohistochemical analysis of IDH1 R132H is a useful tool 
for detection of mutated IDH1 in glioma, this is not the 
case in chondrosarcoma [3]. Li et al. reported the efficiency 
of a mutant IDH1 inhibitor in human chondrosarcoma cell 
lines [97], and phase I/II trials of an IDH1/2 inhibitor for 
IDH-mutated chondrosarcomas are ongoing [98].

RTKs

RTKs and their ligands have also been extensively inves-
tigated in chondrosarcoma and have been shown to play 
important roles in the progression of chondrosarcoma, 
including EGFR [99, 100], PDGFR [101], IGF-1 [102, 
103], and VEGF [104, 105]. EGFR is expressed in chon-
drosarcoma, and gefitinib markedly inhibits the growth of 
chondrosarcoma cell lines [99]. Sulzbacher et al. reported 
that PDGFR expression in conventional chondrosarcoma 
was positively correlated with aggressiveness and that 
PDGFR may be a potential therapeutic target [101]. IGF-1 
has been reported to positively regulate mitotic and matrix 
synthetic activities in chondrosarcoma and to play a role in 
the progression from chondroma to chondrosarcoma [102, 
103]. However, a recent study indicated that the IGF path-
way was not expected to be an effective therapeutic target 
of chondrosarcoma because it was not essential for chon-
drosarcoma growth, migration, or chemoresistance [106].

Major downstream pathways

RB pathway

Homozygous deletion, methylation, and missense muta-
tions in CDKN2A/p16 have been detected in central chon-
drosarcomas [96, 107]. Furthermore, aberrations in CDK4, 
CDK6, and Cyclin D1 were also reported [96, 108]. The 
absence of RB and CDKN2A/p16 expression is strongly 
correlated with higher grade of central chondrosarcoma, 
implying that loss of RB and CDKN2A/p16 function is an 
important event during central chondrosarcoma progres-
sion [108, 109]. Schrage et al. reported that overexpression 
of CDKN2A/p16 decreased cell viability and proliferation 
of chondrosarcoma in vitro [108].

Hedgehog signaling

Tarpery et  al. reported that the Indian hedgehog (IHH) 
signaling pathway is involved in chondrosarcomas [96]. 
Tiet et  al. showed that hedgehog signaling is activated in 
chondrosarcomas and it plays an important role in tumor 
cell proliferation. Moreover, treatment with triparanol, an 
inhibitor of hedgehog signaling, results in decreased tumor 
volume, cellularity, and proliferation rates in xenografts of 
human chondrosarcoma in mice [110]. Furthermore, IPI-
926 (saridegib; a hedgehog inhibitor) inhibits the hedge-
hog pathway and blocks tumor growth in chondrosarcoma 
xenografts in mice [111]; however, in a phase II trial, 
saridegib did not show efficacy in patients with chondrosar-
coma [112]. miR‑30a has also been shown to be downregu-
lated in chondrosarcoma, promote cell proliferation via the 
RUNX2 expression, and encode runt-related transcription 
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factor 2, which is closely linked to IHH signaling [113]; 
accordingly, miR‑30a/RUNX2 may also represent a thera-
peutic target in the treatment of chondrosarcoma.

Akt/PI3K/mTOR pathway

Akt, mTOR, and s6 are also activated in chondrosarcomas 
[100, 114, 115]. Treatment with BEZ235 (a PI3K/mTOR 
inhibitor) significantly reduced the growth of chondro-
sarcoma cell lines [100]. The efficacy of everolimus (an 
mTOR inhibitor) in the inhibition of cell proliferation and 
tumor progression has been demonstrated using rats [116].

JAK/STAT pathway

The Src kinase family is also activated in chondrosarcomas 
[115]. Additionally, dasatinib has been shown to decrease 
cell proliferation in seven of nine cell lines and primary cul-
tures [115]. Hypoxia-inducible factor 1α (HIF1α), which is 
induced by Src and Akt, is expressed in high-grade central 
chondrosarcoma and may facilitate chemoresistance and 
radioresistance, leading to poor survival [117].

MAPK/ERK pathway

NRAS mutations have been identified in chondrosarcoma 
cell lines and six patient tissues (12%) [100]. Importantly, 
the MEK inhibitor ARRY-142886 was effective at inhibit-
ing cell growth only in cell lines with NRAS mutations and 
was not effective in other cell lines.

Other biomarkers

Tarpery et  al. reported that hypermutability of the major 
cartilage collagen gene COL2A1, i.e., insertions, deletions, 
and rearrangements, occurred in 37% of 49 chondrosar-
coma cases [96]; it is the second most frequent mutation 
in chondrosarcoma. The authors also reported the TP53 
was mutated in 20% of cases [96]. Oshiro et  al. reported 
that overexpression and/or structural alterations in TP53 
were observed in 38.1% of 158 chondrosarcomas and were 
correlated with aggressive behavior [118]. van Oosterwijk 
et  al. reported that Bcl-2, which regulates cell death, was 
expressed in chondrosarcomas and caused chemoresistance 
to doxorubicin and cisplatin in vitro [119]. Hypomethyla-
tion of maspin and 14‑3‑3σ was detected in chondrosar-
coma lines. These genes are epithelial-specific markers that 
play roles in the mesenchymal-to-epithelial transition dur-
ing chondrosarcoma development [120]. Bui et al. reported 
that the 3-O-sulfotransferase gene, which encodes a heparan 
sulfate biosynthetic enzyme, was abnormally hypermethyl-
ated, resulting in altered heparan sulfate proteoglycan sulfa-
tion and the invasive phenotype in chondrosarcomas [121]. 

Jin et al. reported that RUNX3, which plays a role in both 
normal developmental processes and carcinogenesis of the 
bone, was downregulated in specimens from patients with 
chondrosarcoma due to hypermethylation of its promoter, 
resulting in higher proliferation and lower apoptosis rates 
[122].

Cytogenetics

Although the results of various studies have differed sub-
stantially, frequent chromosomal alterations in extracranial 
chondrosarcomas include gains on chromosomes 2p, 5p, 7, 
8q, 14q, 19, 20, and 21q and losses on chromosomes 4q, 
6q, 9p, 13q, and 17 [123–128]. Among these aberrations, 
8q24.1-qter and 14q24-qter were found to be correlated 
with shorter overall survival in patients with chondrosarco-
mas [125]; loss on chromosome 6 and gain on chromosome 
12q12 were associated with high-grade chondrosarcomas 
in one report [128], and losses on chromosomes 5q14.2-
q21.3, 6q16-q25.3, 9p24.2-p12, and 9p21.3 were associated 
with high-grade chondrosarcomas in another [124]. In skull 
base chondrosarcomas, gains on chromosomes 2q22-q32, 
5qcen-q14, 8q21-q22, 15qcen-q14, and 19 were detected, 
suggesting the absence of distinct chromosomal alterations 
specific to the skull base localization of the tumors [94].

miRNAs

Many reports have described the expression and roles of 
miRNAs in chondrosarcomas, most within the last few 
years. miR‑30a and miR‑335 are downregulated in chondro-
sarcomas, resulting in overexpression of SRY-related HMG 
box (SOX) 4, a member of the SOX gene family, which 
is related to metastasis and is a poor prognostic factor for 
low-grade chondrosarcoma [129, 130]. SOX9, which is 
overexpressed in chondrosarcomas, is induced by down-
regulation of miR‑145 and miR‑494 [131, 132]. Addition-
ally, miR‑181a, which plays a role in hypoxic regulation 
and enhances the expression of VEGF, is overexpressed in 
chondrosarcoma [104]. Tsai et  al. reported that miR‑519d 
expression was downregulated in chondrosarcoma, result-
ing in activation of p38, which is related to tumorigenesis 
and metastasis [133]. Aili et al. reported that miR‑10b was 
significantly downregulated in chondrosarcomas, result-
ing in chondrosarcoma cell migration and invasion through 
the overexpression of brain-derived neurotrophic factor 
(BDNF) [134]; thus, miR‑10b/BDNF may be potential ther-
apeutic targets for chondrosarcoma.

Immune system biomarkers

PD-L1 expression was absent in conventional chondrosar-
comas (n = 119), but was detected in some dedifferentiated 



84 Brain Tumor Pathol (2017) 34:78–90

1 3

chondrosarcomas [135]. In dedifferentiated chondrosar-
comas, PR for anti-PD1 therapy with nivolumub was 
observed [136].

Molecular‑targeted therapies

A tyrosine kinase inhibitor [137, 138], mTOR inhibi-
tor [138, 139], hedgehog inhibitor [140], and Akt inhibi-
tor [112] have been evaluated for applications in the treat-
ment of chondrosarcomas. Additionally, clinical trials of 
IDH inhibitors and anti PD-1 antibodies are ongoing [98, 
141]. Although imatinib has been tested for application 
in recurrent chondrosarcomas with PDGFRα or PDGFRβ 

expression as a phase II trial, it failed to show meaning-
ful effects in terms of both obvious responses and block-
ing progression in patients [137]. A phase II trial of cix-
utumumab and temsirolimus (inhibitors of IGF-1R and 
mTOR, respectively) showed that longer PFS occurred in 
patients with chondrosarcomas showing IGF-1R expression 
than those without IGF-1R expression [138]. Two phase II 
studies using multikinase inhibitors (regorafenib [142] and 
pazopanib [143]) are ongoing. A phase II trial of sirolimus 
plus cyclophosphamide for 10 recurrent unresectable chon-
drosarcomas resulted in one patient achieving PR and six 
patients showing SD for at least 6 months [144]. A phase 
I/II study of temsirolimus and liposomal doxorubicin for 

Table 1  Summary of genetic profiles of chordoma and chondrosarcoma

Chordoma Chondrosarcoma

T (Brachyury) [8, 23, 24] Key tumorigenesis-related genes IDH1/2 [93–96]
SMARCB1/INI1 [28–32] Other key genes COL2A1, TP53, CDKN2A/p16 [96]
Gains on 1p, 3, 4, 9, 10, 13, 14, 18
Losses on 1q, 7
[12, 48, 56, 59–62]

Major chromosomal copy number alterations Gains on 2p, 5p, 7, 8q, 14q, 19, 20, 21q
Losses on 4q, 6q, 9p, 13q, 17
[94, 123–128]

EGFR [33–37]
PDGFRα [33, 37–39]
PDGFRβ [35, 37–39]
FGFRs [40]
MET [33]
IGF-1R, IGF-1 [42, 43]
KIT [39]
p75 receptor, TrkA, NGF [41]
VEGF [44]

Major dysregulated RTKs and ligands EGFR [99, 100]
PDGFRα [101, 146]
PDGFRβ [101, 146]
IGF-1 [102, 103]
VEGF [104, 105]

PDK1 [46]
Akt [34, 35, 43, 46, 47]
TSC2, mTOR,s6 [47]
PTEN [48]
PIK3CA [44]
ERK1/2 [35, 40, 43]
FRS2a [40]
STAT3 [35, 50, 51]
Src [50]
CDKN2A/p16 [48, 52]

Major dysregulated downstream effectors Akt, s6 [100, 114, 115]
mTOR [100, 114]
Src [115]
HIF1α [117]
RB [108]
CDKN2A/p16 [96, 107–109]
CDK4 [96, 108]
CDK6 [96]
Cyclin D1 [108]
PTCH1, HHIP, GLI1, SUFO [96]
RUNX2 [96, 113]
NRAS [100]
TP53 [96, 118]
Bcl-2 [119]

TNFRSF8 [63]
CDKN2A/p16, PTEN [48]
C3, XIST, TACSTD2, FMR1, HIC1, RARB, DLEC1, 

KL, RASSF1 [57]
FAM181B, NPR3, PON3, RAB32, RAI1, SLC16A5, 

ZNF397OS [58]

Genes with dysregulated methylation statuses Maspin, 14‑3‑3σ [120]
CDKN2A/p16 [107]
3‑OST [121]
RUNX3 [122]

miR‑1, miR‑206 (MET) [67–69]
miR‑31 (MET), miR‑140‑3p (ERK2, GOLT1B, CBL, 

SCAMP1), miR‑148a (BCL2L11, USP33), miR‑
222‑3p (KIT, CDKN1B) [72, 73]

miR‑149‑3p, miR‑663a, miR‑1908, miR‑2861, miR‑
3185 (MAPK signaling pathway) [49]

miR‑1237‑3p (MMP2) [71]
miR‑155 (SOCS1, TP53INP1) [70]

Dysregulated miRNAs (predicted target) miR‑10b (BDNF) [134]
miR‑30a, miR‑335 (RUNX2, SOX4) 

[113, 129, 130]
miR‑100 (mTOR) [147]
miR‑145, miR‑494 (SOX9) [131, 132]
miR‑181a (VEGF) [104]
miR‑519d (p38) [133]
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sarcomas including chondrosarcoma is currently ongoing 
[139]. Furthermore, a phase II trial of perifosine (an Akt 
inhibitor) with 33 patients showed that 3% achieved PR 
(according to Choi criteria) and 25% showed SD [112]. 
A phase II trial of GDC-0449 (vismodegib; a hedgehog 
inhibitor) in 45 patients with progressive advanced chon-
drosarcoma showed no objective response and 10 patients 
with SD for at least 6 months [140], whereas IPI-926 did 
not show clinical benefit [112].

Distinguishing between chordoma 
and chondrosarcoma

The genetic differences between chordoma and chondro-
sarcoma are summarized in Table 1. Traditionally, immu-
nohistochemical analysis of epithelial markers, such as 
cytokeratin and epithelial membrane antigen (EMA), has 
been used to distinguish between chordoma and chondro-
sarcoma. However, some cases are extremely difficult to 
judge because of intermediate staining or inconsistencies 
among these markers. As described above, immunohisto-
chemical analysis of brachyury has become a useful tool 
for differentiation because of the high positive rate in chor-
doma (81–100%) and lack of expression in chondrosarcoma 
[12, 18–22]. Additionally, IDH1/2 mutations are useful 
biomarkers to distinguish between these tumors objectively. 
Because the R132H substitution in IDH1 is not frequently 
observed in chondrosarcoma [93–95], the usefulness of 
immunohistochemical analysis of IDH1 R132H is limited. 
As an alternative to immunohistochemical analysis, direct 
sequencing of IDH1/2 could be a simple and useful tool for 
distinguishing between these tumors because of the higher 
positive rate for detecting IDH1/2 mutations in central 
chondrosarcoma (55–66%) [95, 96]. In previous studies of 
chordomas, wild-type IDH1/2 was detected in all 89 cases 
[94, 95]. In gliomas, genetic findings often provide a bet-
ter reflection of prognosis than morphological findings, and 
the importance of genetic findings has been emphasized in 
the latest World Health Organization (WHO) classification 
of CNS tumors [145]. Similarly, the results of immunohis-
tochemical examination of brachyury and direct sequencing 
of IDH1/2 may provide a more accurate reflection of the 
prognosis than morphological findings.

Conclusions

In this review, we discussed the genetic profiles of the two 
major bone tumors of the skull base, chordoma and chon-
drosarcoma. It is still unclear why these tumors, which 
have such distinct backgrounds, exhibit highly similar his-
topathological findings, and comparisons of their genetic 

backgrounds could provide important insights into the dis-
tinct pathologies of these tumors.
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