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Introduction

The main change in the 2016 World Health Organization 
(WHO) classification of central nervous system (CNS) 
tumors is the use of molecular parameters for diagnosis [1]. 
This change is a significant advance, because genome-wide 
gene expression analyses of CNS tumors have revealed that 
tumors diagnosed in the same group (e.g., glioblastoma; 
GBM) have different gene expression profiles, which were 
recently categorized as classical, neural, pro-neural, and 
mesenchymal types [2]. In addition, therapeutic targets are 
largely dependent on the molecular mechanisms of tumors. 
Therefore, classification of CNS tumors by molecular 
parameters is appropriate.

The development of glioma involves many factors. Three 
signaling pathways, namely, p53, retinoblastoma (RB), and 
receptor tyrosine kinase (RTK), play crucial roles in GBM 
development [3, 4]. Mutations in isocitrate dehydrogenase 
1 and 2 (IDH1/2), which reduce their enzymatic activi-
ties, have been the center of attention in gliomagenesis, 
because patients with IDH mutations have a better outcome 
than those with wild-type IDHs [5, 6]. Chromosomes 1p36 
and 19q13 are frequently deleted in oligodendroglioma, 
although the genes encoded in these chromosomes have not 
been identified yet [7–9]. It has been further demonstrated 
that factors, which regulate stem cell maintenance and 
inhibit differentiation, are aberrantly activated in glioma 
[10–14]. These factors are not only diagnostic markers and 
therapeutic targets, but can also be used to establish glioma 
models with the pathological features of human tumors 
[2–15].

Based on these findings, I will summarize how these 
factors are involved in gliomagenesis and discuss future 
insights for glioma therapy.
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Molecular mechanisms of glial differentiation

Neural stem cells (NSCs) self-renew and give rise to neu-
rons, astrocytes, and oligodendrocytes [10, 11]. Many 
extrinsic and intrinsic factors have been demonstrated to 
regulate NSC self-renewal and differentiation in rodent sys-
tems (Fig.  1). Basic fibroblast growth factor (bFGF) and 
epidermal growth factor (EGF) are used to maintain NSCs 
in culture [16, 17]. Sox2, Bmi1, Hairy-and-enhancer-split 
(Hes), and Inhibitor-of-differentiation (Id) are involved 
in NSC maintenance by preventing the functions of basic 
helix-loop-helix (bHLH)-type differentiation inducers, 
such as Mash1 and neurogenin, and the cell cycle inhibitor 
Ink4a/ARF [18–21].

Bone morphogenic proteins (BMPs) and leuke-
mia inhibitory factor (LIF)/ciliary neurotrophic factor 
(CNTF) induce astrocytic differentiation through activa-
tion of Smads and STAT3 transcription factors, respec-
tively [22, 23], whereas BMPs block neuronal and oligo-
dendrocyte differentiation by induction of Ids [24, 25]. 
Many other factors also play dual functions in a similar 

manner. Notch signaling maintains NSCs and induces 
astrocytiv differentiation, but it blocks neuronal and oli-
godendrocyte differentiation by induction of Hes tran-
scription factors. Oligodendrocyte lineage transcription 
factor (Olig) 2, which is induced by hedgehog (Hh)-Gli 
signaling, is not only involved in oligodendrocyte differ-
entiation by forming a heterodimer with the homeobox 
transcription factor Nkx2.2, but also prevents astrocytic 
differentiation by blocking STAT3-p300 histone acetyl-
transferase association [26]. In addition, both Wnt and Hh 
promote oligodendrocyte differentiation and NSC self-
renewal. Oligodendrocyte differentiation is also regulated 
by platelet-derived growth factor AA (PDGFAA), thy-
roid hormone (TH), and retinoic acid (RA) [27–34]. Fyn 
kinase regulates oligodendrocyte morphology through 
activation of the integrin α6/β1 complex [35]. Although 
many factors have been identified to exclusively regulate 
NSC maintenance and glial differentiation, it remains  to 
evaluate whether the same factors regulate human NSC 
maintenance and their differentiation.

Fig. 1  Intrinsic and extracel-
lular factors involved in glial 
differentiation. Extracellular and 
intrinsic factors regulate mainte-
nance of neural stem cells and 
their differentiation into oligo-
dendrocytes and astrocytes
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Functions of IDHs and their mutants

Whole genome sequences of human GBMs have revealed 
IDH1 and IDH2 mutations at amino acid residues 132 
(mainly arginine to histidine) and 172 (arginine to lysine, 
methionine, or glycine), respectively [5, 6]. Surprisingly, 
IDH1 mutations have been found in more than 70% of low-
grade astrocytoma and oligodendroglioma [6]. Over 80% of 
secondary GBMs also contain the same mutation, whereas 
less than 5% of primary GBMs contain the mutation [5]. 
In addition, the Cancer Genome Atlas has shown that the 
average ages of GBM patients with wild-type or mutant 
IDH1 are 53.3 and 33.2 years, respectively [6]. Taken 
together, these data suggest that IDH1 is primarily mutated 
in gliomagenesis.

Wild-type IDH1 converts isocitrate to α-ketoglutarate 
(α-KG) by oxidation of nicotinamide adenine dinucleo-
tide phosphate (NADP+) to NADPH, whereas mutant 
IDH1 catalyzes reduction of α-KG to 2-hydroxyglutarate 
(2-HG), which is called an oncometabolite, with produc-
tion of NADP+ from NADPH (Fig.  2) [36]. Moreover, 
2-HG promotes tumorigenesis through multiple mecha-
nisms. First, 2-HG competitively inhibits the activity of 
α-KG-dependent Jumonji C domain containing histone 
demethylases (JHDMs), thereby maintaining the repressive 
histone methylation of certain chromosomal domains, such 
as trimethylation of H3K9 and H3K27, and blocking cell 
differentiation [37]. Second, 2-HG blocks α-KG-dependent 
prolyl hydroxylase (PHD) activity, which induces degrada-
tion of hypoxia-inducible factor 1α (HIF1α) through the 
proteasome pathway, and promotes activation of HIF1α 
downstream factors including nuclear factor-κB (NF-κB) 

[38]. Third, 2-HG blocks mature collagen formation by 
α-KG-dependent PHD activity [39]. Because precise colla-
gen formation is essential for the proper function of various 
types of tissues and cytoplasmic apparatus, abnormal colla-
gen, such as misfolding, might contribute to tumorigenesis 
by induction of necrosis and tumor angiogenesis. Finally, 
decreased levels of NADPH by mutant IDHs prevent the 
conversion of glutathione disulfide to glutathione, a major 
antioxidant, causing an increase of reactive oxygen species 
that induce DNA damage and genetic instability [40]. Thus, 
mutant IDH1 likely prepares tumorigenesis in multiple 
manners.

Genes encoded on human 1p36 and 19q13

Chromosomes 1p36 and 19q13 are frequently deleted in 
oligodendroglioma, thereby making this co-deletion a 
surrogate marker. Whole genome sequence analysis has 
revealed that these chromosomal regions contain many 
important genes involved in tumorigenesis and oligo-
dendrocyte differentiation, including Notch-related fac-
tors (HES2-5, MINDBOMB2, and DLL3), WNT factors 
(WNT4, DVL1, and GSK3A), oncogenes/proto-oncogenes/
tumor suppressors (p73, CHD5, SKI, HKR1, AKT2, 
TGFB1, ARHGAP35, and FOSB), apoptosis-related fac-
tors (DFFA, DFFB, CASPASE9, and BAX), and cancer-
related factors [mTOR (mammalian target of Rapamycin), 
CEACAM1, PLAUR, RELB, and DYRK1B] (Fig.  3). 
The fact that 1p36 encodes important apoptosis regulators 
DFFA, DFFB, and CASPASE 9 suggests that oligodendro-
glioma cells with 1p36 loss may not exhibit typical apop-
totic phenotypes in their death.

Among these genes, p73 and Arhgap35 (also known as 
p190RhoGAP) are involved in oligodendrocyte differentia-
tion. Overexpression of a dominant negative form of p73 
inhibits differentiation of oligodendrocyte precursor cells 
(OPCs) into mature oligodendrocytes in culture [41]. Phos-
phorylated Arhgap35 by Fyn kinase induces morphological 
changes in differentiating oligodendrocytes [42], whereas 
its overexpression induces cell cycle arrest and enhances 
process extension [43]. In addition, Arhgap35 is involved 
in cell motility and metastasis [44]. These findings suggest 
that co-deletion of 1p36 and 19q13 might maintain OPCs 
in the undifferentiated state, although it is unknown why 
co-deletion is specific to oligodendroglioma.

Bagchi et  al. identified chromodomain helicase DNA 
binding domain 5 (CHD5) encoded on 1p36 and demon-
strated that CHD5 controls cell proliferation, apoptosis, and 
senescence through the cyclin-dependent kinase inhibitor 
(CDKI) p14ARF-p53 pathway, thereby identifying CHD5 
as a new tumor suppressor gene [45]. This finding indicates 
that p53 functions should decrease in oligodendroglioma 
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Fig. 2  Metabolic regulation in mutant IDH-bearing cancer cells. 
Mutant IDH1 converts α-ketoglutarate (α-KG), which activates 
Jumonji-C domain histone demethylases (JHDMs) and TET DNA 
demethylase 2 (TET2), to 2-hydroxyglutarate (2-HG). In turn, 2-HG 
not only competes with α-KG for JHDM binding, but also inhib-
its demethylases. Reduction of α-KG suppresses the Krebs cycle 
and increases HIF1α expression. Eventually, these events induce the 
expression of stemness- and cancer-related genes
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with 1p36 loss, although 1p36 loss and p53 mutation are 
exclusive in glioma.

It is notable that 1p36 and 19q13 encode many differen-
tiation inhibitors and oncogenes/proto-oncogenes. Among 
them, both AKT2 and mTOR are key effectors in gliom-
agenesis in multiple mechanisms [46, 47]. CEACAM1, the 
plasminogen activator system, and non-canonical NF-κB 
pathway also play crucial roles in GBM-initiating cells 
[48–50]. These findings might explain the reason why 1p36 
and 19q13-co-deleted oligodendrogliomas are susceptible 
to therapy.

p53 regulates multiple functions

p53 was originally found as an essential tumor suppressor 
preventing cell cycle progression and inducing apoptosis 
[51]. External and internal stress signals, including DNA 
damage, oncogene activation, hypoxia, and nutrient stress, 
induce p53 expression at transcriptional and post-transcrip-
tional levels and regulate its activation through various 

kinds of modification, including phosphorylation, ubiqui-
tination, acetylation, methylation, glycosylation, sumoyla-
tion, and ADP ribosylation (Fig.  4) [52, 53]. It is well 
known that ubiquitination of p53 by mouse double minute 
gene 2 (Mdm2) induces its degradation via a proteasome 
pathway, whereas phosphorylation at the N-terminal blocks 
the interaction of p53 with Mdm2 and induces cell cycle 
arrest and senescence by increasing Cdki p21/Cip1 and 
plasminogen activator inhibitor 1 (Pai1) [54]. Acetylation 
of p53 at lysine 120 activates p21/Cip1 expression by bind-
ing with monocytic and promyelocytic leukemia zinc finger 
proteins or triggers cell death by inducing p53-upregulated 
modulator of apoptosis (Puma) and cofactors in a cell con-
text-dependent manner [55]. In addition, p53 induces the 
expression of other apoptosis-related factors, such as Bcl2-
associated X protein (Bax), Noxa, Fas, death receptor (DR) 
4 and DR5.

It is evident that p53 supports the oxidative phosphoryl-
ation pathway and blocks glycolysis at multiple steps. For 
example, p53 inhibits expression of glucose transporters 
Glut1 and 4, glycolytic enzyme phosphoglycerate mutase 

Fig. 3  Characteristic genes 
encoded on human 1p and 
19q chromosome loci. Both 
1p36 and 19q13 loci encode 
many differentiation inhibitors, 
oncogenes/proto-oncogenes, 
and apoptosis-related genes. Of 
note, tumor suppressor CHD5, 
which activates p53 through 
ARF, is mapped on 1p36.31

Ch1

Gene name      localization     Function
HES2 36.31 Notch effector
HES3 36.31 Notch effector
HES4 36.33 Notch effector
HES5 36.32 Notch effector
MINDBOMB2 36.33 Ubiquitin ligase for Delta (Dll)
ID3 36.13 Inhibitor of differentiation
p73 36.3 OPC differentiation regulator
WNT4 36.23 Differentiation inhibitor
DVL1 36.33 Stabilizer of β-catenin
CHD5 36.31 Tumor suppressor
SKI 36.33 Proto-oncogene
PRDM16 36.32 Stem cell maintenance
mTOR 36.2 Target of rapamycin
DFFA 36.3 DFFB inhibitor
DFFB 36.3 Caspase-dependent DNase
CASPASE9 36.21 Serine protease

Ch19

Gene name      localization     Function
HKR1 13.12 Oncogene
DLL3 13 Notch ligand
AKT2 13.1 Serine/threonin kinase
TGFB1 13.1 Transforming growth factor
CEACAM1 13.2 Cell adhesion molecule
PLAUR 13 Plasminogen activator
RELB 13.32 NF-κB signaling factor
FOSB 13.32 Proto-oncogene
BAX 13.3 Apoptosis regulator
ARHGAP35 13.3 Inducer of OPC differentiation
GSK3A 13.2 Inducer of β-catenin degradation
HIF3A 13.32 Hypoxia inducible factor
TEAD2 13.3 Hippo signaling transcription factor
DYRK1B 13.2 Serine/threonine & tyrosine kinase
MAG 13.1 Myelin associated glycoprotein
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(Pgm), and pyruvate dehydrogenase kinase 2 (Pdk2) that 
prevent acetyl-CoA production from pyruvate. Moreover, 
p53 induces expression of Tiger, which reduces glycolysis 
indirectly, glutaminase 2 (Gls2) that produces glutamate 
from glutamine, another source of α-KG (Fig. 2), and apop-
tosis-inducing factor (Aif) that is essential for both the elec-
tron transport chain in mitochondria and DNA fragmenta-
tion in apoptosis.

There is increasing evidence that p53 induces the 
expression of autophagy-related genes, including DNA-
damaged-regulated autophagy-modulator 1 (Dram1) and 
UNC51-like autophagy-activating kinase 1 (Ulk1). Con-
versely, autophagy reduces various types of stress, such 
as DNA damage and damaged organelles, which activate 
p53. Furthermore, p53 binds to autophagy-related factors, 
such as autophagy protein 7 (ATG7) and RB1 inducible 
coiled-coil 1 (RB1CC1), and inhibits cell cycle progres-
sion and autophagy [56]. It would be of interest to further 
analyze the relationship between p53 and autophagy in 
tumorigenesis.

Taken together, these findings indicate that p53 blocks 
tumorigenesis by regulating multiple pathways, DNA 
repair, senescence, cell death, glycolysis, mitochondrial 
functions, and autophagy.

Conclusion and future perspective

There is no doubt that the molecular parameters introduced 
in the new WHO classification of CNS tumors will facili-
tate diagnosis of certain tumors with difficult pathological 
classification. Simultaneously, this raises the interesting 

question of why some tumors with different molecular 
parameters, such as GBM with wild-type or mutant IDH, 
show the same characteristics pathologically. Diagnostic 
parameters and other mutations in p53, RB, and RTK path-
ways may share targets or complement essential oncogenic 
signals [3, 4]. For example, HIF1α is activated by mutant 
IDH-dependent reduction of α-KG, while activation of 
RTKs indicues HIF1α, indicating that HIF1α is commonly 
activated in GBM with wild-type or mutant IDH in differ-
ent manners [57]. The shared regulators are likely primary 
therapeutic targets. Furthermore, such parameter-specific 
factors can be useful as selective targets.

1p36/19q13 loss and p53 mutation are exclusive mark-
ers for oligodendroglioma and astrocytoma, respectively. 
Nonetheless, the evidence that CHD5, a functional activa-
tor of p53, is encoded on 1p36, indicates that p53 functions 
may decrease in 1p36-deleted oligodendroglioma as well as 
p53-mutated astrocytoma. Billon et al. have shown that p53 
is also involved in oligodendrocyte differentiation, suggest-
ing that p53 mutations found in astrocytoma may prevent 
oligodendrocyte differentiation [41]. Thus, it is essential to 
identify factors regulating glioma phenotypes, oligoden-
droglioma, and astrocytoma on 1p36/19q13. In summary, 
further investigations of molecular mechanisms involved in 
glioma may be applied to diagnosis, new molecular classi-
fication, and therapy in the future.
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