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Abstract Blood-borne substances can invade into the

extracellular spaces of the brain via endothelial cells in

sites without the blood–brain barrier (BBB), and can travel

through the interstitial fluid (ISF) of the brain parenchyma

adjacent to non-BBB sites. It has been shown that cere-

brospinal fluid (CSF) drains directly into the blood via the

arachnoid villi and also into lymph nodes via the sub-

arachnoid spaces of the brain, while ISF drains into the

cervical lymph nodes through perivascular drainage path-

ways. In addition, the glymphatic pathway of fluids, char-

acterized by para-arterial pathways, aquaporin4-dependent

passage through astroglial cytoplasm, interstitial spaces,

and paravenous routes, has been established. Meningeal

lymphatic vessels along the superior sagittal sinus were

very recently discovered. It is known that, in mice, blood-

borne substances can be transferred to areas with intact

BBB function, such as the medial regions of the hip-

pocampus, presumably through leaky vessels in non-BBB

sites. In the present paper, we review the clearance

mechanisms of interstitial substances, such as amyloid-b
peptides, as well as summarize models of BBB deteriora-

tion in response to different types of insults, including

acute ischemia followed by reperfusion, hypertension, and

chronic hypoperfusion. Lastly, we discuss the relationship

between perivascular clearance and brain disorders.
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Abbreviations

ABC ATP-binding cassette

Ab Amyloid-b
AD Alzheimer’s disease

BBB Blood–brain barrier

BCSFB Blood–cerebrospinal fluid barrier

CAA Cerebral amyloid angiopathy

CSF Cerebrospinal fluid

FPRL1 Formylpeptide receptor-like-1

IDE Insulin-degrading enzyme

ISF Interstitial fluid

LDLR Low-density-lipoprotein receptor

LRP LDLR-related protein

MRI Magnetic resonance imaging

NMO Neuromyelitis optica

P-gp P-glycoprotein

RAGE Receptor for advanced glycation end product

Blood–brain barrier (BBB) and blood–
cerebrospinal fluid (CSF) barrier (BCSFB)

The BBB of cerebral vessels has been well studied and

restricts the entry of blood-borne substances into the brain

parenchyma [1, 2]. The BBB is composed of a monolayer

of endothelial cells with no fenestrations and scarce cyto-

plasmic vesicles. The endothelial cells are reinforced by

pericytes and the basement membrane. The end-feet of the

astrocytes cover the abluminal surface of the basement
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membrane. In addition, the BCSFB is also well known, and

is mainly composed of a monolayer of epithelial cells of

the choroid plexus, that separates blood-borne substances

from the CSF [3]. Because the fenestrated endothelial cells

of the capillaries in the choroid plexus are permeable to

blood-borne substances, the BCSFB in the choroid plexus

epithelium has an important role in controlling the entry of

these substances into the CSF. In addition, previous studies

have reported that the junctions between the ependymal

cells surrounding the ventricles are open [2, 4]. The pia

mater is known to be a loose tissue with gaps or fenes-

trations, and allows flow through of fluids [3]. Therefore,

two major barriers, the BBB and the BCSFB, likely play

significant roles in the maintenance of homeostasis in the

brain.

Roles of circumventricular organs in interstitial
fluid (ISF) flow

It is known that BBB function is defective or absent in

certain periventricular regions of the brain, known as cir-

cumventricular organs [3]. It is unclear whether the

defective BBB function in the circumventricular organs has

an effect on the BBB function in areas close to the organs.

It has been demonstrated in mice that blood-borne sub-

stances enter the brain parenchyma via endothelial cells of

the subfornical organ with defective BBB function, and

moves throughout not only the white matter of the corpus

callosum [5], but also the hippocampus [6]. In addition,

horseradish peroxidase (HRP) injected intravenously was

confirmed to be transported throughout the periventricular

areas, presumably via leaky vessels in the choroid plexus

[7]. A portion of the intravenously injected HRP was also

transported throughout medial regions of the amygdala [8].

These reports suggest that, at least in mice, the leaky

vessels in the circumventricular organs likely play signifi-

cant roles in the BBB function in areas close to the organs.

Drainage pathways of CSF and ISF

The drainage pathways of CSF and ISF from the brain have

been examined in some studies [9–12]. Three major drai-

nage pathways have been proposed. The first pathway is

characterized by: CSF of the subarachnoid space drainage

directly into the blood via the arachnoid villi of the supe-

rior sagittal sinus. The second pathway is characterized by:

CSF of the subarachnoid space drainage into the lymph

nodes via the subarachnoid spaces around the olfactory

nerves and nasal lymphatics. The third pathway is char-

acterized by: ISF drainage into the cervical lymph nodes

through the basement membrane of the walls of the

capillaries and the tunica media of the arteries, and then

through the vessel walls of the internal carotid artery in the

neck [9–12].

The glymphatic pathway and meningeal lymphatic
vessels

Recently, Iliff et al. [13] reported that a paravascular

pathway facilitates CSF flow through the brain parenchyma

and the clearance of interstitial solutes, and proposed this

system to be named the glymphatic pathway. The glym-

phatic pathway includes multiple components. The first is

the para-arterial routes of the fluids. The second is the

convective bulk ISF flow facilitated by aquaporin4-de-

pendent astroglial water flux. The third is the paravenous

routes of fluids. Finally, the solutes and fluids may be

dispersed into the subarachnoid CSF or enter the blood-

stream across the vasculature [13]. In addition, meningeal

lymphatic vessels lining near the dural sinus were recently

discovered [14, 15]. A detailed review paper on the

glymphatic pathway and the perivascular drainage pathway

has been published [16].

These recent studies [10–16] suggest that perivascular

clearance comprises both perivascular drainage and glym-

phatic pathways (Fig. 1). Through the perivascular drai-

nage pathway, ISF flows through the basement membrane

in walls of cerebral capillaries, the tunica media of the

arteries, and the vessel walls of the internal carotid artery,

and then drains into the cervical lymph nodes. This path-

way may be affected by cellular uptake or degradation.

Through the glymphatic pathway, CSF flows through the

para-arterial routes, enters the interstitial space after

aquaporin4-dependent transport through the astroglial

cytoplasm, drains into the paravenous routes, and then

possibly disperses into the subarachnoid CSF or enters the

bloodstream across the vasculature. CSF in the subarach-

noid space drains directly into the blood via the arachnoid

villi of the dural sinus, enters the meningeal lymphatic

vessels, or drains into the cervical lymph nodes via the

subarachnoid spaces around the olfactory nerves and nasal

lymphatics.

Transporters/receptors associated with clearance
of Ab peptides through the BBB and the BCSFB
in the human brain

At present, several kinds of transporters or receptors such

as low-density-lipoprotein receptor (LDLR) [17], LDLR-

related protein 1 (LRP1) [18, 19], LRP2 [20], formylpep-

tide receptor-like-1 (FPRL1) [21], ATP-binding cassette

(ABC) transporter–A1 (ABCA1) [22], ABCC1 [23],
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ABCG4 [24], ABCB1 [25], CD36 [26], insulin-degrading

enzyme (IDE) [27], and the receptor for advanced glyca-

tion end product (RAGE) [28]) have been reported to be

associated with the clearance of Ab peptides through the

BBB and the BCSFB, although it is unclear whether Ab
peptides are transported transendothelially or transepithe-

lially via these transporters. RAGE is known as an influx

transporter of Ab at the BBB [28]. Recently, we reported

the immunohistochemical localization of transporters/re-

ceptors associated with the clearance of Ab peptides, using

autopsied human brains [29]. We observed immunoreac-

tivity of LDLR (Abnova, Taipei, Taiwan), LDLR-related

protein 1 (LRP1) (Santa Cruz, Dalla TX), LRP2 (Gene

Tex, Irvine, CA), formylpeptide receptor-like-1 (FPRL1)

(Novus, Littleton, CO), ABCA1 (Abcam, Cambridge, UK),

ABCC1 (Abcam), and ABCG4 (Bioss, Woburn, MA) in

the choroid plexus epithelium of human brains.

Immunoreactivity for CD36 (ProteinTech, Chicago IL) as

well as LDLR, LRP1, LRP2, FPRL1, ABCA1, ABCC1 and

ABCG4 was observed in the ventricular ependymal cells of

the brain. In addition, another study reported the

immunoreactivity of ABCB1 in the choroid plexus

epithelium [25], although Matsumoto et al. [29] reported

that no ABCB1 staining using the antibody for ABCB1

(Calbiochem, Darmstadt, Germany) was observed in the

choroid plexus epithelium. Weak immunoreactivity for

IDE (Abcam) has been frequently observed in the choroid

plexus epithelium and ventricular ependymal cells. Clear

Fig. 1 Recent reports [10–16] suggest that perivascular clearance of

ISF (indicated by lines) comprises both perivascular drainage and

glymphatic pathways. a Through the perivascular drainage pathway

(indicated by thin red lines), ISF flows drains through the basement

membrane in walls of cerebral capillaries, the tunica media of

arteries, and through the vessel walls of the internal carotid artery, and

then drains into the cervical lymph nodes. This may be affected by

cellular uptake or degradation (#1). b Through the glymphatic

pathway (indicated by thick red lines), CSF flows through the para-

arterial routes, enters the interstitial space through aquaporin4-

dependent transport through the astroglial cytoplasm, drains into the

paravenous routes, and may be dispersed into the subarachnoid CSF

or enter the bloodstream across the vasculature (#2). CSF in the

subarachnoid space drains directly into the blood via the arachnoid

villi of the dural sinus (b-1), enters into the meningeal lymphatic

vessels (b-2), or drains into the cervical lymph nodes via the

subarachnoid spaces around the olfactory nerves and nasal lymphatics

(b-3)
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immunoreactivity for LDLR, ABCB1, and ABCG2 (Ab-

cam) has been reported to be observed in the microvessels.

In addition, expression of FPRL1, ABCA1, ABCC1, and

RAGE (LSBio, Seattle, WA) has been frequently reported

to be observed in the microvessels. Figure 2 shows the

supposed localization of these transporters or receptors

determined by immunohistochemical studies using human

brains. These findings suggest that these transporters/re-

ceptors expressed in the BBB and BCSFB complementarily

or cooperatively contribute to the clearance of amyloid-b
peptides from the brain.

Clearance of tau

The mechanism of tau clearance remains to be clarified.

Transporters that specifically transport tau through the

BBB have not yet been identified. It is thought that tau does

not undergo clearance through the BBB, and is instead

cleared from the brain primarily by degradation, ISF flow,

and CSF absorption [16, 30, 31]. It is likely that neuronal

death and increased intracellular tau concentrations or

aggregation trigger the release of tau into the extracellular

space, leading to elevated CSF tau levels [16]. Iliff et al.

[31] showed that extracellular tau is cleared from the brain

through the glymphatic pathways. In mice receiving trau-

matic brain injury, glymphatic pathway function was

reduced by approximately 60 %, with the impairment

persisting for at least 1-month post injury, followed by

development of neurofibrillary pathology and neurode-

generation. In addition, they showed that genetic knockout

of the gene encoding the astroglial water channel aqua-

porin-4, which plays an important role in paravascular

interstitial solute clearance, exacerbated the dysfunction of

the glymphatic pathway after the traumatic injury, sug-

gesting the significance of the role of the glymphatic

pathway in tau pathology.

BBB damage in pathological conditions
of the human brain and in experimental animal
models

Many papers have reported the deterioration of the BBB in

response to several types of cerebral vasculature insults

[32]. In the following sections, we will introduce the

response of the BBB against several types of insults that

are known to be associated with brain function, including

aging, cognitive dysfunction, acute ischemia followed by

reperfusion, chronic hypoperfusion, hypertension, and

hyperglycemia.

(a) BBB changes with aging

Although it had been controversial whether BBB per-

meability significantly increases with aging in human

brains, a large-scale meta-analysis study including 31 BBB

permeability studies demonstrated that BBB permeability,

evaluated by CSF/serum albumin ratios, increased with

normal aging, and further increased in patients with

dementia and with accumulation of white matter lesions

[33]. Recently, BBB breakdown was shown to be an early

event in the aging brain, beginning in the hippocampus,

and may contribute to cognitive impairment [34]. Simi-

larly, in experimental animals, BBB permeability to serum

albumin increased with aging in three different strains of

mice [35]. This increase in permeability was accelerated in

aged mice showing cognitive impairment, such as senes-

cence accelerated prone mice (SAMP8) [36–38].

(b) BBB changes in acute ischemia followed by

reperfusion

Increased BBB permeability has been observed in

magnetic resonance imaging (MRI) of acute ischemic

stroke cases. Some studies have demonstrated that ische-

mia-modified albumin, which is thought to be formed by

Fig. 2 Recent studies of autopsied human brain [25, 29], have

reported the immunohistochemical expression of LDLR, LRP1,

LRP2, FPRL1, ABCA1, ABCC1, and ABCG4 in the choroid plexus

epithelium. Immunohistochemical expression of CD36 as well as

LDLR, LRP1, LRP2, FPRL1, ABCA1, ABCC1, and ABCG4 was

also observed in the ventricular ependymal cells. Clear expression of

transporters is indicated by underlined bold type. In addition, the

study [25] reported immunohistochemical expression of ABCB1

(indicated by italic type) in the choroid plexus epithelium. Weak

expression of IDE (indicated in parentheses) was frequently observed

in choroid plexus epithelia and ventricular ependymal cells. Clear

expression of ABCB1 and ABCG2 (indicated by underlined bold

type) was observed in the microvessels, as well as LDLR. Weak

expression of RAGE (indicated in parentheses) was occasionally

observed in the microvessels
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the production of reactive oxygen species and passage

through an impaired BBB, is a useful serum marker for the

early diagnosis of stroke, particularly with acute ischemia

and reperfusion [39, 40]. Thus, it is likely that BBB per-

meability is increased even in the early stages of acute

stroke. The increased BBB permeability to intravenously

injected HRP was observed in the hippocampus of a

Mongolian gerbil experimental model of acute ischemia

followed by reperfusion [41].

(c) BBB changes in chronic hypoperfusion

Alterations of the BBB in white matter lesions pre-

sumably due to chronic hypoperfusion, were observed in

cerebrovascular and Alzheimer’s disease patients [42]. In

addition, BBB permeability was confirmed to be increased

in the white matter lesions of Binswanger’s disease patients

by contrast-enhanced MRI [43]. BBB permeability to

intravenously injected HRP in a Wistar rat experimental

model of chronic cerebral hypoperfusion was observed to

be increased in the corpus callosum [44].

(d) BBB changes in hypertension

High blood pressure has been reported to precede the

formation of white matter lesions, presumably accompa-

nied by impairment of the BBB [45]. In addition, it has

been reported that hypertension, as well as atherosclerosis

and cerebral amyloid angiopathy, is the most common

causes of BBB lesions [46]. BBB permeability to intra-

venously injected HRP in animal models of hypertension

was increased in the hippocampus of 3-month-old sponta-

neously hypertensive rats (SHR) and stroke-prone SHR

(SHRSP) [47, 48].

(e) BBB changes in hyperglycemia

BBB permeability was reported to be increased in

patients with type II diabetes by gadolinium MRI [49].

Although BBB permeability to naı̈ve HRP was not

increased in diabetic db/db mice, changes in the endothelial

glycocalyx were induced in a hyperglycemic state [50]. In

addition, it has been demonstrated that BBB permeability

was increased in experimental diabetic animals using sugar

derivative tracers such as 14C-labeled sucrose and fluores-

cein isothiocyanate-labeled dextrans [51, 52].

Biochemical analyses of vessels with BBB damage

Microarray and real-time quantitative reverse transcriptase-

polymerase chain reaction (RT-PCR) analyses using ves-

sels located along the hippocampal fissure in the hip-

pocampus of 3-month-old SHRSP with the BBB damage,

revealed that the increased gene expression of osteopontin,

matrix metalloproteinase-13, and CD36 [53–55].

Dysfunction of perivascular clearance and brain
disorders

Obstruction of the passage of fluids through perivascular

drainage and glymphatic pathways may induce brain

disorders, such as cerebral amyloid angiopathy. Amy-

loid-b (Ab) peptides in the brain parenchyma are

thought to be eliminated via (1) degradation by pepti-

dases [56–58], (2) cellular uptake [59–63], (3) efflux into

the blood via efflux transporters at the BBB [64–67], (4)

ISF clearance through the perivascular drainage pathway

[68, 69], (5) ISF clearance through the glymphatic

pathway, followed by CSF absorption through the

arachnoid villi and meningeal lymphatic vessels [16], or

(6) efflux into the ventricles via efflux transporters of the

BCSFB [70, 71].

Increasing attention has been paid to the effects of

interstitial or cerebrospinal fluid obstruction on the patho-

genesis of AD, as well as cerebral amyloid angiopathy [12,

72]. It was recently reported that impairment of the

glymphatic pathway aggravated glial tau pathology in

experimental animals receiving traumatic brain injury [31].

It was also reported that deletion of the Aqp4 gene sup-

pressed the clearance of soluble Ab, suggesting that this

pathway may remove Ab from the central nervous system

[13]. Expression of AQP-4 in the foot processes of astro-

cytes was confirmed to be decreased in patients suffering

from neuromyelitis optica (NMO) [73], suggesting that the

glymphatic pathway is likely to be affected in the brains of

NMO. Accordingly, detailed functional image analyses in

living bodies, as well as examination of autopsied samples,

will be useful to clarify the pathogenesis of various kinds

of neurodegenerative disorders.
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