
Vietnam Journal of Mathematics
https://doi.org/10.1007/s10013-024-00704-z

REV IEW ART ICLE

Solving Mathematical Programs with Complementarity
Constraints Arising in Nonsmooth Optimal Control
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Abstract
This paper examines solution methods for mathematical programs with complementar-
ity constraints (MPCC) obtained from the time-discretization of optimal control problems
(OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity con-
cepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs,
which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regu-
larization/homotopy parameter is driven to zero. Such methods perform reasonably well on
currently available benchmarks. However, these results do not always generalize to MPCCs
obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces
a novel benchmark collection of such problems, which we call NOSBENCH. The problem
set includes 603 different MPCCs and we split it into a few representative subsets to accel-
erate the testing. We compare different relaxation-based methods, NLP solvers, homotopy
parameter update and relaxation parameter steering strategies. Moreover, we check whether
the obtained stationary points allow first-order descent directions, which may be the case for
some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation
(SIAM J. Optim. 11, 918–936, 2001) with IPOPT (Math. Program. 106, 25–57, 2006) as
NLP solver manages to solve 73.8% of the problems. This highlights the need for further
improvements in algorithms and software for MPCCs.
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1 Introduction

This paper investigates numerical methods for solving Mathematical Programs with Com-
plementarity Constraints (MPCCs) obtained from the time-discretization of Optimal Control
Problems (OCPs) with nonsmooth dynamical systems. We consider different types of non-
smooth dynamical systems: (a) where the vector field is nonsmooth but continuous, or (b)
nonsmooth and discontinuous (e.g., switched systems), and (c) systems with state jumps. In
many cases, the nonsmoothness and combinatorial structure in such systems can be mod-
eled by a coupling of differential algebraic equations with complementarity constraints. This
gives rise to so-called Dynamic Complementarity Systems (DCSs) [10]. A complementarity
constraint reads as 0 ≤ x ⊥ y ≥ 0, which means that all entries of the two vectors x, y ∈ R

n

must be nonnegative, i.e., xi ≥ 0, yi ≥ 0, and that at least one of the components in every
pair is zero, i.e., xi yi = 0.

A continuous-time optimal control problem (OCP) subject to a DCS has the following
form:

min
x(·),u(·),y(·)

∫ T

0
L(x(t), u(t))dt + E(x(T )) (1a)

s.t. x(0) = x̄0, (1b)

ẋ(t) = fc(x(t), y(t), u(t)), (1c)

0 = gc(x(t), y(t)), (1d)

0 ≤ Gc(y(t)) ⊥ Hc(y(t)) ≥ 0, (1e)

0 ≤ hc(x(t), u(t)), for almost all t ∈ [0, T ], (1f)

0 ≤ r(x(T )), (1g)

where x ∈ R
nx are the differential states, y ∈ R

ny the algebraic states and u ∈ R
nu the

control inputs. The function L : Rnx × R
nu → R models the stage cost and E : Rnx → R

is the terminal cost, x0 ∈ R
nx is a given parameter. The path and terminal constraints are

grouped into the functions hc : Rnx × R
nu → R

nhc and r : Rnx → R
nr , respectively. The

system (1c)–(1e) is a DCS, where the function fc : Rnx ×R
ny → R

nx models the right-hand
side of the differential equation, the function gc : Rnx × R

ny → R
ngc defines the smooth

algebraic equation in the DCS, and the functions Gc : R
ny → R

ncc , Hc : R
ny → R

ncc

define the complementarity part of the DCS. It is assumed that all functions are at least twice
continuously differentiable. Note that even if L and E are smooth and convex, fc, gc affine,
and −hc and −r smooth convex functions, the complementarity constraints render the OCP
(1) nonsmooth and nonconvex. In principle, it is also possible to have path and terminal
constraints on the algebraic variables, which we have omitted to keep the notation light here
and below in the discretization.

The DCS (1c)–(1e) abstraction allows one to model a variety of different nonsmooth sys-
tems. Examples are: Filippov differential inclusions reformulated into a DCS via Stewart’s
[83, 98] or the Heaviside step reformulation [79, 80], complementarity Lagrangian systems
(modeling rigid bodies with friction and impacts) [10], relay systems [54], projected dynam-
ical systems [46], Moreau’s sweeping processes [72], and many more [10]. Moreover, with
the use of time-freezing, several classes of systems with state jumps can be reformulated into
Filippov systems [42, 76, 77, 81], which in turn lead to DCS. A detailed overview is given
in [82].

Here, we consider a direct approach, where one first discretizes the continuous-time OCP
(1) and obtains a finite-dimensional nonlinear program. For example, in a direct transcription
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method, one can use time-stepping methods (e.g., implicit Runge–Kutta (IRK) methods) to
discretize the dynamics in time. In the case of smooth dynamical systems, direct methods are
at a very mature stage [91]. However, in the case of nonsmooth systems such as DCS, this
approach has some severe limitations. In particular, the time-stepping methods, with fixed
integration step sizes, have at best first-order accuracy and the derivatives of the solutions/state
transition maps with respect to parameters do not converge to the correct values [75, 100].
As a consequence of the wrong derivatives, an optimizer may converge to a spurious solution
close to the initial guess [75, 100].

These limitations were recently overcome by the Finite Elements with Switch Detection
(FESD)method [83, 84], which, inspired by [8], lets the integration step sizes to be degrees of
freedom and introduces additional constraints that enable exact switch detection. This allows
FESD to recover the higher-order accuracy properties of IRKmethods and to compute correct
sensitivities. This method is available in the open-source package NOSNOC [78]. In this
work, we discretize the OCP (1) with the FESD method and obtain a discrete-time OCP. We
introduce a uniform control discretization gridwith N intervals and grid points tk = tk−1+ T

N .
Note that the control interval is not the same as the integration interval, and on every control
interval [tk, tk+1] one can apply a FESD method with multiple variable integration steps.
The state approximations are denoted by xk ≈ x(tk), the control discretization is taken to be
constant on the whole interval, i.e., u(t) = uk, t ∈ [tk, tk+1].

The vector zk collects all internal variables of the FESD method, e.g., the Runge–Kutta
stage variables of the algebraic and differential states, and the approximations of the algebraic
variables yk ≈ y(tk). With a slight abuse of notation, they are summarized in the vectors

x = [
x�
0 , . . . , x�

N

]�
, z = [

z�0 , . . . , z�N−1

]�
, and u = [

u�
0 , . . . , u�

N−1

]�
. A discretized

version of the OCP (1) reads as [83]:

min
x,u,z

N−1∑
k=0

�(xk, uk) + E(xN ) (2a)

s.t. x0 = x̄0, (2b)

xk+1 = φ f (xk, zk, uk), for all k ∈ {0, . . . , N − 1}, (2c)

0 = φint(xk, zk, uk), for all k ∈ {0, . . . , N − 1}, (2d)

0 ≤ φG(zk) ⊥ φH (zk) ≥ 0, for all k ∈ {0, . . . , N − 1}, (2e)

0 ≤ hc(xk, uk), for all k ∈ {0, . . . , N − 1}, (2f)

0 ≤ r(xN ). (2g)

The functions φ f , φint, φG and φH defining a discrete time DCS are obtained by apply-
ing the FESD method to the DCS (1c)–(1e), for a detailed definition of these functions,
cf. [80, 83]. The terms �(xk, uk) approximate the stage cost integral in (1a) over the intervals
[tk, tk+1], k = 0, . . . , N − 1. The path constraints (1f) are for simplicity only evaluated at
the points tk , which yields (2f).

By settingw = [
x�, z�, u�]� ∈ R

n and defining appropriate functions: f : Rn → R for
the objective expression, g : Rn → R

ng for collecting the equality constraints, h : Rn → R
nh

for the inequality constraints, andG : Rn → R
m and H : Rn → R

m for the complementarity
functions, the discrete-time OCP (2) can be compactly written as a generic MPCC:

min
w∈Rn

f (w)

s.t. g(w) = 0,
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h(w) ≥ 0,

0 ≤ G(w) ⊥ H(w) ≥ 0.

Mathematical Programs with Equilibrium Constraints (MPEC) are NLPs that have a para-
metric variational inequality or optimization problem as an constraint [71]. Such constraints
can be under suitable conditions replaced by equivalent complementarity conditions. How-
ever, in the literature, because of the easier pronunciation, the acronym MPEC is frequently
used for the problem above. There are few equivalent ways to state the complementarity
constraints 0 ≤ G(w) ⊥ H(w) ≥ 0 as formally smooth constraints:

1. G(w) ≥ 0, H(w) ≥ 0, Gi (w)Hi (w) ≤ 0, for all i ∈ {1, . . .m},
2. G(w) ≥ 0, H(w) ≥ 0, G(w)�H(w) ≤ 0,
3. G(w) ≥ 0, H(w) ≥ 0, G(w)�H(w) = 0,
4. G(w) ≥ 0, H(w) ≥ 0, Gi (w)Hi (w) = 0, for all i ∈ {1, . . .m},
5. �C(G(w), H(w)) = 0.

In (4), �C is a so-called C-function [22], which has the property �C(G(w), H(w)) = 0
if and only if 0 ≤ G(w) ⊥ H(w) ≥ 0. C-functions can be smooth or nonsmooth. To be
consistent with most of the MPCC literature, we will work with complementarity constraints
written via the inequality constraints in (1):

min
w∈Rn

f (w) (3a)

s.t. g(w) = 0, (3b)

h(w) ≥ 0, (3c)

Gi (w) ≥ 0, Hi (w) ≥ 0, Gi (w)Hi (w) ≤ 0, for all i ∈ {1, . . .m}. (3d)

There are no significant theoretical differences or computational advantages in using one
of the other equivalent forms.

It is very common to introduce slack variables for the functions G(w) and H(w) to have
only linear functions in the complementarity conditions, i.e., instead of (3d), one has:

sG = G(w), sH = H(w), sG ≥ 0, sH ≥ 0, sG,i sH ,i ≤ 0, for all i ∈ {1, . . . ,m}.
This is called the vertical form of the MPCC. This does not change any of the theoretical
considerations and we stick to the notation of most of the MPCC literature where the slacks
are not introduced. However, for the efficacy of numerical solvers, it is often beneficial to
introduce the slacks [31], and we do so in the numerical experiments.

At this point, we mention also the class of Mathematical Programs with Vanishing Con-
straints (MPVC),where the complementarity constraints (3d) are replaced byGi (w)Hi (w) ≥
0, Hi (w) ≥ 0, for all i = {1, . . . ,m} [1]. They can be reformulated into equivalent MPCC,
but it is often numerically more beneficial to treat them directly [1]. MPVCs arise often in
the relaxation of OCPs with integer control and combinatorial constraints [55, 60].

TheMPCC (3) is a nonlinear program (NLP) forwhichwe need efficient and robust numer-
ical solution methods. If a point w∗ satisfies a Constraint Qualification (CQ), e.g., the Linear
IndependenceConstraintQualification (LICQ), then theKarush–Kuhn–Tucker (KKT) condi-
tions are necessary forw∗ to be local minimizer of (3) [73]. Standard nonlinear programming
algorithms solve the KKT conditions to find a solution candidate. Unfortunately, due to the
complementarity constraints (3d), standard CQs, such as LICQ and Mangasarian-Fromovitz
Constraint Qualification (MFCQ) are violated at all feasible points [92, 104]. This implies
both numerical and theoretical difficulties. On the one hand, the violation of MFCQ means
that the set of Lagrange multipliers is necessarily unbounded, which leads to computational
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difficulties [53]. On the other hand, because of the absence of CQs, the KKT conditions
may no longer be necessary for optimality anymore. This has led to the development of a
tailored theory and solution methods for MPCCs, which we recall in detail in the following
two sections.

A good way to assess the performance and robustness of a tailored MPCC method is to
apply it to a benchmark set. Two widely used benchmarks for MPCCs are the MPECLib [18]
and MacMPEC [64]. Baumrucker et al. [7] test several MPCC methods on the MPECLib
test set, and examples from optimal process control. Hoheisel et al. [47] compare several
relaxation-based methods on the MacMPEC problem set. All these experiments report suc-
cess rates above 90%. In MPCCs arising from nonsmooth OCPs, we did not observe such
robustness and high success rates, which motivated us to introduce a new collection of test
problems to assess the performance of MPCC methods.

Contributions To learn more about the performance of MPCC methods in solving discrete-
time nonsmooth OCPs, we introduce the NOSBENCH problem set. It contains 603 MPCCs
generated viaNOSNOC [78] from33continuous-timeOCPand simulation problems.Together
with a review of the theory and MPCC solution methods, the introduction of NOSBENCH is
the main contribution of this paper. Furthermore, we compare nine different relaxation-based
methods from the literature together with three NLP solvers: IPOPT [103], SNOPT [37] and
WORHP [12]. We also compare homotopy parameter update and steering strategies. Some
of the weaker multiplier-based MPCC stationarity concepts may allow first-order descent
directions. We check is this the case for the solutions computed in our experiments. In our
experiments, the Scholtes’ relaxation [94] with IPOPT [103] as NLP subproblem solver is
the most successful method-solver combination and solves 73.8% of the problems in the full
NOSBENCH problem set. Furthermore, we validate the correctness of our implementations
by running them on the MacMPEC test set, where we obtain results that aligns with those
reported in literature [27, 51, 101].

Outline Section 2 reviews briefly the standardMPCC theory. In Section 3, we review easy-to-
implement MPCC solution methods and comment on some other promising methods, which
yet lack good implementations. Section 4 introduces the NOSBENCH problem test set and
Section 5 discusses the results we obtain. We summarize our findings in Section 6.

2 Optimality Conditions for MPCCs

Due to the violation of the CQs, the standard NLP theory is often not applicable to MPCCs in
the form of (3). This has several negative consequences: (a) the set of Lagrange multipliers
is necessarily unbounded, (b) the gradients of the active constraints are linearly dependent
at all feasible points, and (c) the linearization of (3) can be inconsistent arbitrarily close to a
stationarity point [30].

We review first-order necessary optimality conditions and several stationarity concepts
for MPCCs. Some optimality conditions are purely geometric, others rely on Lagrange mul-
tipliers. If there exists an i such that Gi (w) = 0, Hi (w) = 0, the multiplier-based stationary
concepts may not be strong enough to characterize local minimizers. The MPCC-tailored
theory presented here has its origins in [24, 31, 71, 92, 104].

The feasible set of the MPCC (3) is denoted by �MPCC = {w ∈ R
n | g(w) = 0, h(w) ≥

0,G(w) ≥ 0, H(w) ≥ 0,Gi (w)Hi (w) ≤ 0, for all i ∈ {1, . . . ,m}.We define the following
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index sets which depend on a feasible point w ∈ �MPCC:

I+0(w) = {i ∈ {1, . . . ,m} | Gi (w) > 0, Hi (w) = 0},
I0+(w) = {i ∈ {1, . . . ,m} | Gi (w) = 0, Hi (w) > 0},
I00(w) = {i ∈ {1, . . . ,m} | Gi (w) = 0, Hi (w) = 0}.

For ease of notation, if clear from the context, we omit the argument in the index sets.
The set I00 is called the set of degenerate indices and is the source of most theoretical and
numerical difficulties. If I00 is empty, we say that a solution w∗ satisfies strict complemen-
tarity. This notion should not be confused with the notion of strict complementarity of an
inequality constraint (3c) and the corresponding Lagrange multiplier in the NLP.

For a closed set � and a point w ∈ �, a vector d is said to be tangent to � at w if there
exists a sequence wk ∈ � with wk → w, along with a sequence of positive scalar tk → 0
such that dk = wk−w

tk
→ d . The set of all vectors d that are tangent to � at a point w ∈ � is

called the tangent cone to� atw and denoted by T�(w). Hence, we denote by T�MPCC(w) the
tangent cone of a feasible point of (3). The active set of the inequality constraints h(w) ≥ 0
is defined as the set A(w) = {i ∈ {1, . . . , nh} | hi (w) = 0}. The linearized feasible cone
F�MPCC(w) of the MPCC (3) at a feasible point w ∈ �MPCC is defined as the set:

F�MPCC(w) = {d ∈ R
n | ∇g(w)�d = 0,

∇hi (w)�d ≥ 0, for all i ∈ A(w),

∇Gi (w)�d = 0, for all i ∈ I0+(w),

∇Hi (w)�d = 0, for all i ∈ I+0(w),

∇Gi (w)�d ≥ 0, for all i ∈ I00(w),

∇Hi (w)�d ≥ 0, for all i ∈ I00(w)}.

This set is a polyhedral convex cone. On the other hand, if I00 �= ∅, then the tangent
cone T�MPCC(w) is, due to the complementarity constraints, a union of polyhedral cones.
Consequently, it is possibly a nonconvex cone. To see this, regard the set � = {(w1, w2) ∈
R
2 | w1 ≥ 0, w2 ≥ 0, w1w2 ≤ 0}. It can be verified that T�(0) = �, which is nonconvex,

and F�(0) = {(d1, d2) ∈ R
2 | d1 ≥ 0, d2 ≥ 0}, which is convex. Therefore, the linearized

feasible cone cannot locally capture the structural nonconvexity of the complementarity
constraints. The KKT conditions require a CQ to hold in order to be necessary for optimality.
We can see that even the rather nonrestrictive Abadie CQ (ACQ), which simply requires
F�MPCC(w) = T�MPCC(w), cannot be expected to hold for MPCCs [25]. Only the weaker
Guignard CQ (GCQ) [39], which requires that the polar cones ofF�MPCC(w) and T�MPCC(w)

are equal, has a chance to hold [26]. However, it is difficult to verify this condition in practice.
To have a more powerful theoretical tool, the MPCC linearized feasible cone FMPCC

�MPCC
(w)

can be used [24, 86, 92]. This cone is defined at a feasible point w as

FMPCC
�MPCC

(w) = {d ∈ R
n | ∇g(w)�d = 0,

∇hi (w)�d ≥ 0, for all i ∈ A(w),

∇Gi (w)�d = 0, for all i ∈ I0+(w),

∇Hi (w)�d = 0, for all i ∈ I+0(w),

0 ≤ ∇Gi (w)�d ⊥ ∇Hi (w)�d ≥ 0, for all i ∈ I00(w)}.
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The combinatorial structure is kept for the degenerate index set I00 and the cone
FMPCC

�MPCC
(w) is nonconvex, if I00 is nonempty. In example from above, it holds that

FMPCC
� (0) = T�(0).
We proceed with stating optimality conditions and defining stationarity concepts for

MPCCs. First-order necessary optimality conditions can be stated in terms of the tangent
cone.

Theorem 1 Let w∗ ∈ �MPCC be a local minimizer of (3), then it holds that

∇ f (w∗)�d ≥ 0 for all d ∈ T�MPCC(w∗).

If a point w∗ satisfies the condition above, in the MPCC literature it is said that geometric
Bouligand stationarity (geometric B-stationarity) holds [24, 71]. For computational purposes,
algebraic stationarity concepts are more useful. The algebraic Bouligand stationarity (or just
B-stationarity) [71, 92] reads as follows.

Definition 1 (B-stationarity) A feasible point w∗ ∈ �MPCC of the MPCC (3) satisfies B-
stationarity if it holds that

∇ f (w∗)�d ≥ 0 for all d ∈ FMPCC
�MPCC

(w∗).

Or equivalently [71, 92], a point w∗ ∈ �MPCC is called B-stationary if d = 0 is a local
minimizer of the following linear program with complementarity constraints:

min
d∈Rn

∇ f (w∗)�d s.t. d ∈ FMPCC
�MPCC

(w∗). (4)

It was shown in [24] that T�MPCC(w) ⊆ FMPCC
�MPCC

(w∗). This means that B-stationarity is less
restrictive and it implies geometric B-stationarity. However, the converse is not always true,
and we discuss below conditions when this is the case and when B-stationarity is necessary
for optimality. B-stationarity is expensive to verify, as it requires the solution of a nonconvex
optimization problem. In the worst case, this may require the solution of an exponential
number of linear programs, unless some stronger regularity conditions hold.

As in the standard NLP theory, we may want to use Lagrange multiplier-based stationarity
concepts, where we hopefully do not need to solve a combinatorial problem to find a solution
candidate. As the standard CQs do not hold, we cannot use the KKT conditions of the
MPCC (3), but we apply them to some auxiliaryNonlinear Programs (NLPs). The stationarity
conditions for MPCCs are derived from more regular NLPs (defined next) which are locally
associated with the initial MPCC (3) [92].

Definition 2 (Auxiliary NLP) Let w∗ ∈ �MPCC. We define the following auxiliary NLPs:

– The Relaxed NLP (RNLP) for w∗ ∈ �MPCC is defined as

min
w∈Rn

f (w) (5a)

s.t. g(w) = 0, (5b)

h(w) ≥ 0, (5c)

Gi (w) = 0, Hi (w) ≥ 0, i ∈ I0+(w∗), (5d)

Gi (w) ≥ 0, Hi (w) = 0, i ∈ I+0(w
∗), (5e)

Gi (w) ≥ 0, Hi (w) ≥ 0, i ∈ I00(w∗). (5f)
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– The Tight NLP (TNLP) for w∗ ∈ �MPCC is defined as the RNLP (5), except that the
constraints (5f) are replaced by:

Gi (w) = 0, Hi (w) = 0, i ∈ I00(w∗).

– Let (I1, I2) be a partition ofI00 such thatI1∪I2 = I00 andI1∩I2 = ∅. TheBranchNLP
(BNLP(I1,I2)) for w∗ ∈ �MPCC is defined as the RNLP (5), except that the constraints
(5d)–(5f) are now replaced by:

Gi (w) ≥ 0, Hi (w) = 0, i ∈ I+0(w
∗) ∪ I1(w∗),

Gi (w) = 0, Hi (w) ≥ 0, i ∈ I0+(w∗) ∪ I2(w∗).

Figure 1 illustrates the feasible sets of the auxiliary NLPs for i ∈ I00. We denote the
feasible sets of the RNLP, TNLP, and BNLP(I1,I2) by �RNLP, �TNLP and �BNLP(I1,I2)

,
respectively.

The usual NLP concepts such as first-order optimality conditions, stationary points,
second-order conditions, and constraint qualification for MPCC are defined in terms of these
auxiliary NLP. To see that this approach makes sense we look at how these problems and
their solutions are related. It is not difficult to see that the following holds for w∗ ∈ �MPCC

[92]:

�TNLP =
⋂

(I1,I2)

�BNLP(I1,I2)
⊂ �MPCC =

⋃
(I1,I2)

�BNLP(I1,I2)
⊆ �RNLP. (6)

The same relations hold for the corresponding tangent cones at w∗ as well. Furthermore,
for a feasible point of the MPCC (3) w∗ ∈ �MPCC the following can be said [92]. If w∗ is
a local minimizer of the RNLP, then it is a local minimizer of the MPCC. The converse is
not true. If w∗ is a local minimizer of the MPCC then it is a local minimizer of the TNLP.
The point w∗ is a local minimizer of the MPCC if and only if it is a local minimizer of every
BNLP(I1,I2). The last assertion once again highlights the combinatorial nature of MPCCs,
since 2|I00| branch NLPsmust be checked to make conclusions about optimality. Fortunately,
as we will see below, under reasonable assumptions we do not have to check every branch
NLP but only the RNLP or TNLP to characterize a stationary point of the MPCC.

All these difficulties arise because of the degenerate indices i ∈ I00. If this set is empty,
all auxiliary NLPs collapse to the same problem, and there is no combinatorial structure due
to the BNLP anymore. It can be seen that the tangent cone of �MPCC will be convex since
there will be no rays that start from the degenerate point. Assuming that other constraints
in the MPCC do not cause the violation of the ACQ, then we have that the standard ACQ
holds for the MPCC and thus we can apply the KKT-conditions to verify the stationarity of
w∗ ∈ �MPCC in this fortunate case. In other words, w∗ ∈ �MPCC is a local minimizer of

Fig. 1 Feasible sets of the auxiliary NLPs as defined in Definition 2
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the MPCC if and only if it is a local minimizer of the RNLP/TNLP, which are equal in this
case [92].

Next, we define the MPCC-specific Lagrangian, CQs, and stationarity concepts. The
MPCC Lagrangian is the standard Lagrangian for the RNLP/TNLP, and reads as:

LMPCC(w, λ, μ, ν, ξ) = f (w) − λ�g(w) − μ�h(w) − ν�G(w) − ξ�H(w),

with theMPCC Lagrange multipliers λ ∈ R
ng ,μ ∈ R

nh , ν ∈ R
m and ξ ∈ R

m . It differs from
the standard Lagrangian for the MPCC (3) in omitting the bilinear terms Gi (w)Hi (w) ≤ 0
and their multipliers.

Next we define some tailored MPCC CQs.

Definition 3 The MPCC (3) is said to satisfy the MPCC-LICQ (MPCC-MFCQ) at a feasible
point w∗ if the corresponding TNLP for w∗ satisfies the LICQ (MFCQ) at the same point
w∗.

The linearized feasible cone of a TNLP is always convex, and as seen in the discussion
at the beginning of this section we can expect the standard ACQ to be violated if I00 �= ∅.
This motivated the definition of the MPCC-ACQ and MPCC-Guignard CQ (MPCC-GCQ)
in terms of the nonconvex cones [24, 25]. First, recall that given a cone K ⊆ R

n , its polar
cone is defines as K◦ = {d ∈ R

n | d�v ≤ 0, for all v ∈ K}.
Definition 4 The MPCC-ACQ (MPCC-GCQ) holds at w∗ ∈ �MPCC if and only if
FMPCC

�MPCC
(w∗) = T�MPCC(w∗) (FMPCC

�MPCC
(w∗)◦ = T�MPCC(w∗)◦).

Similar as for the standard CQ, for the MPCC CQs the following implications hold [95,
104]: MPCC-LICQ �⇒ MPCC-MFCQ �⇒ MPCC-ACQ �⇒ MPCC-GCQ.

Inspired by the KKT conditions for standard non-degenerate NLPs, several stationarity
concepts that rely on the auxiliary NLPs and their Lagrangemultipliers can be defined [92]. If
an appropriate MPCC-CQ holds, they are necessary for optimality, as we will discuss below.

Definition 5 (Stationarity concepts for MPCCs) Let w∗ be feasible for the MPCC (3).

– Weak Stationarity (W-stationarity) [92]: A point w∗ ∈ �MPCC is called W-stationary if
the corresponding TNLP admits the satisfaction of the KKT conditions, i.e., there exist
Lagrange multipliers λ∗, μ∗, ν∗ and ξ∗ such that:

∇wLMPCC(w∗, λ∗, μ∗, ν∗, ξ∗) = 0,

g(w∗) = 0,

0 ≤ μ∗ ⊥ h(w∗) ≥ 0,

Gi (w
∗) ≥ 0, ν∗

i = 0, for all i ∈ I+0(w
∗),

Hi (w
∗) ≥ 0, ξ∗

i = 0, for all i ∈ I0+(w∗),
Gi (w

∗) = 0, ν∗
i ∈ R, for all i ∈ I0+(w∗) ∪ I00(w∗),

Hi (w
∗) = 0, ξ∗

i ∈ R, for all i ∈ I+0(w
∗) ∪ I00(w∗).

– Strong Stationarity (S-stationarity) [92]: A point w∗ ∈ �MPCC is called S-stationary if it
is weakly stationary and ν∗

i ≥ 0, ξ∗
i ≥ 0 for all i ∈ I00(w∗). In other words, it is a KKT

point of the corresponding RNLP.
– Clarke Stationarity (C-stationarity) [92]: A point w∗ ∈ �MPCC is called C-stationary if

it is weakly stationary and ν∗
i ξ∗

i ≥ 0 for all i ∈ I00(w∗).
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– Mordukhovich Stationarity (M-stationarity) [92]: A point w∗ ∈ �MPCC is called M-
stationary if it is weakly stationary and if either ν∗

i > 0 and ξ∗
i > 0 or ν∗

i ξ∗
i = 0 for all

i ∈ I00(w∗).
– Abadie Stationarity (A-stationarity) [24]: A point w∗ ∈ �MPCC is called A-stationary if

it is weakly stationary and ν∗
i ≥ 0 or ξ∗

i ≥ 0 for all i ∈ I00(w∗).

The feasible sets for the MPCC multipliers ν∗ and ξ∗ are depicted in Fig. 2. Observe that
if I00 = ∅, then all multiplier-based stationarity concepts collapse to the same.

The many different stationarity concepts might be confusing and one might be wondering
if some of them are needed at all. However, these stationarity concepts are crucial for study-
ing numerical methods for MPCC. As we will see in the next section, MPCCs are usually
solved by solving a (finite) sequence of related and more regular NLPs. Depending on the
underlying assumptions, the accumulation points of these methods are some of the stationary
points defined above. Therefore, it is important to understand under which conditions these
stationarity concepts are indeed necessary for optimality. It turns out that all of them can be
necessary for local optimality if some additional specialized CQs hold [31, 92]. The results
from [31, 71, 85, 92, 104] are summarized in the diagram in Fig. 3. For the missing CQ
definitions see [95, 104].

We make a few comments on the relations in Fig. 3. As already discussed, if the ACQ
does not hold, the KKT conditions are not applicable for characterizing a geometric B-
stationary point. B-stationarity always implies geometric B-stationarity, the converse requires
additionally the MPCC-GCQ to hold [24]. Note that by Definition 1, B-stationarity does not
allow a first-order descent direction.Weaker concepts, mainly themultiplier-based ones, may
allow first-order descent directions, even if the MPCC-LICQ holds. We illustrate this in the
next example from [92].

Example 1 (Descent directions for C-stationarity) Regard the MPCC:

min
w1,w2∈R

(w1 − 1)2 + (w2 − 1)2 s.t. w1 ≥ 0, w2 ≥ 0, w1w2 ≤ 0.

This example satisfies the MPCC-LICQ at all feasible points. The point w∗ = (0, 0) is
C-stationary with the multipliers ξ = −2, ν = −2. However, it has two descent directions
d = (0, 1) and d = (1, 0), and is thus not B-stationary. The pointsw = (1, 0) andw = (0, 1)
are local minimizers and S-stationary points.

Arguably, stationarity conditions that allow first-order descent directions might be consid-
ered as too weak. S-stationarity is the only multiplier-based and non-combinatorial condition
that has a chance to be equivalent to B-stationarity. S-stationarity corresponds to the KKT
conditions of the RNLP and it implies B-stationarity because of the inclusion relation in (6).
Conversely, if the MPCC-LICQ holds, then B-stationarity implies also S-stationarity [92].

Fig. 2 Sign restrictions for MPCC multiplier in different stationarity concepts
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Fig. 3 Diagram summarizing MPCC-CQs and necessity of different stationarity concepts for optimality. This
diagram was inspired by [63, Theorem 5.13] and [59, Fig. 2]

Unfortunately, weaker conditions, e.g. the MPCC-MFCQ are already not sufficient for S-
stationarity, see [92, Example 3] for a counterexample. In particular, M-stationarity is the
strongest necessary condition under MPCC-MFCQ [26, 92]. This means that B-stationary
points that are not S-stationary can not be identified via any stationarity concept based on the
auxiliary NLPs [102]. Instead, an exponential number of linear programs (4) must be solved
for verification.

To summarize, under suitable CQs, local optimality is sufficient for any of the stationarity
concepts defined here. However, everything weaker than S-stationarity is often considered
to be too weak, since such points may allow first-order descent directions. The problem in
practice is that iterativeMPCCmethods are often attracted byM- or C-stationary points, even
though the MPCC may have B- or S-stationary points [67]. There exist also second-order
optimality conditions tailored to MPCCs. They are defined in terms of S-stationary points
and the corresponding MPCC multipliers. We omit their statement for brevity and refer the
reader to [90, 92] for more details.

3 MPCC SolutionMethods

In the last three decades,many tailoredMPCC solutionmethods have been proposed.A recent
survey ofMPCCmethods is given in [59]. The references [34, 47, 58] provide comparisons of
several solution strategies. We classify the MPCC solution methods into two distinct classes:

(a) active-set-based/combinatorial methods,
(b) relaxation and smoothing-based methods.
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We review both classes, but give more details for the second class, because we will later
benchmark them on the OCP-based problem set.

3.1 Active-set BasedMPCCMethods

These methods explicitly treat the combinatorial nature of the complementarity constraints
(3d). They have the strongest convergence properties as they are usually guaranteed to con-
verge to B-stationary points. They can be subdivided into branching methods [6, 59], and
active-set methods [36, 40, 59, 61, 67]. These methods rely on guessing the correct active set
by solving a linear program with complementarity constraints (LPCC), such as (4) [40, 61,
67]. If d = 0 solves the LPCC subproblem, a B-stationary point is found. To promote faster
convergence rates, after fixing the active set, an equality-constrained QP can be solved [61,
67]. As the solution of an LPCC can be computationally expensive, Kirches et al. [61] regard
LPCConlywith complementarity and bound constraints. They suggest treating the remaining
equality and inequality constraints in an augmented Lagrangian fashion. This is later done by
Guo and Deng [40], where convergence to M-stationary points is proven. The main practical
drawback of this method class is the lack of robust open-source implementations. In contrast
to the next group we treat, they are not easily implementable by using an available NLP code.
For more references we refer the reader to [63, Section 5.6.2] and [59, Section 3.2].

3.2 Relaxation and Smoothing-basedMethods

The main idea behind relaxation-based methods is to replace (3d) with more regular con-
straints:

Gi (w) ≥ 0, Hi (w) ≥ 0, for all i ∈ {1, . . . ,m}, (7a)

�(Gi (w), Hi (w), σ ) ≤ 0, for all i ∈ {1, . . . ,m}, (7b)

which do not lead to the violation of LICQ and MFCQ. The function � : R×R×R → R is
a regularization function. A smaller value of σ yields a better approximation to the original
problem and for σ = 0 we recover the original constraint (3d). Next one solves a (finite)
sequence of these NLPs, by driving the parameter σ > 0 to zero. The availability of robust
NLP codes makes their implementation easy and practical. We denote the solution of the
initial MPCC (3) by w∗ and the solution of the regularized NLP by w∗(σ ). The obvious
goal is that w∗(σ ) → w∗ as σ → 0. Hoheisel et al. [47] provide a detailed numerical
and theoretical comparison of several methods from this family. If the problems are solved
exactly, under mild assumptions, accumulation points of the sequence of solutions w∗(σk)
are usually C-stationary points [47, 90, 93]. Solving the NLPs inexactly usually weakens the
convergence results [58]. Of course, stronger assumptions also result in convergence toM- or
S-stationary points. In the sequel, we discuss several examples of functions � and strategies
for driving σ to zero.

3.2.1 Direct Solution

One can use standard NLP techniques such as Sequential Quadratic Programming (SQP) and
Interior Point (IP) methods for directly solving (3) [27, 29, 65, 70]. Despite the degeneracy
discussed so far, this approach can sometimes perform surprisinglywell in practice. However,
it tends to have convergence difficulties or to converge to spurious stationary points if the
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MPCC-LICQ does not hold. Fletcher and Leyffer study the practical performance of SQP
methods on numerous MPCCs in [28] and investigate their local convergence properties in
[29]. Under the assumptions that theMPCC-LICQ and that all QPs remain feasible, and other
technical assumptions, they show quadratic convergence to S-stationary points. Interior-point
methods perform reasonably well if applied directly to the NLP formulation (3) [101]. How-
ever, their performance improveswhen pairedwith relaxation and exact penalty formulations,
as we will highlight several times below.

NLP formulations with NCP functions In this approach the complementarity constraints (3d)
are replaced by a C-function �C(G(w), H(w)) = 0. The resulting NLP is solved by a
standard globalized NLP solver. The use of SQP methods in such formulations was studied
by Leyffer [65]. If the used C-function is not differentiable at (0, 0), its subgradient can
be used [65]. Evidently, using squared versions (or higher powers) of C-functions will not
improve the situation and lead to a violation of LICQ at (0, 0) since we obtain a zero-gradient
at this point. Similar to [29], assuming MPCC-LICQ, Lipschitz continuity of the NLP func-
tions and their derivatives, and other technical assumptions, local superlinear convergence
to S-stationary points was shown. Leyffer [65] tests this approach on a wide number of test
problems and shows that differentNCP functions can lead to large differences in performance.

3.2.2 Global Relaxation/Smoothing Method by Scholtes

Scholtes introduces arguably the easiest-to-implement approach and relaxes the complemen-
tarity constraint by using [93]:

�S(Gi (w), Hi (w), σ ) = G(w)i Hi (w) − σ. (8)

An illustration of the relaxed feasible set is given in Fig. 4 (a). Alternatively, the bilinear
term might be smoothed by using �S(Gi (w), Hi (w), σ ) = 0 in (7b). Lumped versions
�S(G(w), H(w), σ ) = G(w)�H(w) − σ are also used frequently [93]. Observe that in
contrast to the smoothed variant, the relaxed version contains the feasible set �MPCC, and
one might find with it a stationary point without driving σ → 0. Assuming MPCC-LICQ,
Scholtes [93] shows convergence to C-stationary points. Hoheisel et al. [47] obtain the same
result under the weaker MPCC-MFCQ. Ralph et al. [90] study the convergence speed of this
approach and show that, under rather strict assumptions, the local solution map w∗(σ ) of the
relaxed formulation is a piecewise continuous function and that the solution converges with

a rate O(σ ). Milder assumptions result in the rate O(σ
1
2 ) for the relaxed variant and O(σ

1
4 )

for the smoothed variant.
For more efficacy, Raghunathan and Biegler [89], Liu and Sun [70] propose interior-point

methods where the relaxation parameter σ is proportional to the barrier parameter τ . Under
some stronger assumptions, this strategy is shown to converge to S-stationary points.

Fig. 4 Illustration of the regularized complementarity sets
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Smoothed NCP functions Early MPCC algorithms considered smoothed and everywhere dif-
ferentiable variants of C-functions. These methods are closely related to Scholtes’ approach
since one can often by simple algebraic manipulation obtain the same feasible set as with
using (8). In our experiments, we will test three different smoothed NCP functions: the
smoothed Fischer–Burmeister (FB) function �FB(a, b, σ ) = a + b − √

a2 + b2 + σ 2, the
Natural Residual (NR) function�NR(a, b, σ ) = (a+b−√

(a − b)2 + σ 2), the Chen–Chen–
Kanzow (CCK) [16] function�CCK(a, b, σ ) = λ(a+b−√

a2 + b2 + σ 2)+(1−λ)(ab−σ),
where λ ∈ (0, 1) is a parameter, which is set to 0.5 in our implementations. Facchinei et al.
[21] show the convergence of this approach to C-stationary points. In our implementation,
we use the smoothed versions of the NCP functions in the form of (7). Hence, we obtain
relaxations of the original problem (3).

3.2.3 The Smooth Relaxation Method by Lin and Fukushima

This method is similar to Scholtes’ regularization and replaces the complementarity condi-
tions (3) by:

Gi (w)Hi (w) ≤ σ 2, for all i ∈ {1, . . . ,m},
(Gi (w) + σ)(Hi (w) + σ) ≥ σ 2, for all i ∈ {1, . . . ,m}.

Figure 4(b) shows an illustration of the feasible set. Lin and Fukushima [68] obtain similar
convergence results as Scholtes [93]. Hoheisel et al. [47] extend this result by proving conver-
gence to C-stationary points under the MPCC-MFCQ. Moreover, they show that the feasible
points of the relaxed NLP satisfy the MFCQ in a neighborhood of a point x ∈ �MPCC.

We continue with reviewing more sophisticated regularization schemes that converge to
M-stationary points under fairly mild conditions [47]. As we will see later, this may not
always imply better performance in practice.

3.2.4 The Local Relaxation Method by Steffensen and Ulbrich

Almost all regularization methods make global changes to the feasible set. Motivated by the
fact that most difficulties arise for degenerate complementarity pairs i ∈ I00, Steffensen and
Ulbrich follow a different approach [96, 102]. Their main idea is to relax the complementarity
constraint only locally at the corner of the L-shaped set arising from the complementarity
constraints.

The relaxation is achieved by the following steps: the L-shaped set is rotated with a linear
transformation by π

4 counterclockwise for every complementarity pair, and one obtains the
graph of the abs-function. On the interval [−σ, σ ], the kink is replaced by a sufficiently
smooth function such that the continuity of the functions and their derivatives is preserved
at the interval boundaries. Finally, the inverse transformation is carried out, and a locally
relaxed set is obtained, cf. Fig. 4 (c). This reasoning expressed in equations reads as

�SU(Gi (w), Hi (w), σ ) ≤ 0, for all i ∈ {1, . . . ,m},
where�SU : R×R×R → R is defined in terms of the auxiliary functions φa

SU : R×R → R

and φb
SU : [−1, 1] → R as follows

�SU(y1, y2; σ) = y1 + y2 − φa
SU(y1 − y2, σ ),

φa
SU(z, σ ) =

{ |z| if |z| ≥ σ,

σφb
SU( z

σ
) if |z| < σ.
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The function φb
SU has to satisfy some smoothness and mononoticitiy properties [96]. For

our experiments we implement two variants of such functions proposed in [96]: φb
SU(z) =

1
8 (−z4 + 6z2 + 3) and φb

SU(z) = 2
π
sin(z π

2 + 3π
2 ) + 1. Under the MPCC-CRCQ (cf. [47,

Definition 2.4]) convergence to C-stationary and under the MPCC-LICQ to M-stationary
points is shown [96].

3.2.5 The Nonsmooth Relaxation Method by Kadrani et al.

Another interesting relaxation by Kadrani et al. [56] reads as:

Gi (w) ≥ −σ, Hi (w) ≥ −σ, for all i ∈ {1, . . . ,m},
(Gi (w) − σ)(Hi (w) − σ) ≤ 0, for all i ∈ {1, . . . ,m}.

Figure 4(d) illustrates the nonsmooth feasible set obtained from the constraint above. The
convergence study of [56] is carried out assuming the MPCC-LICQ. Once again, Hoheisel
et al. [47] improve the result and show convergence to M-stationary points under the MPCC-
CPLD (cf. [47, Definition 2.4], a CQ weaker than the MPCC-MFCQ and stronger than
the MPCC-ACQ). It is evident from the structure of the feasible set of this relaxation that
verifying standard CQs is more difficult.

3.2.6 The Relaxation Method by Kanzow and Schwartz

This relaxation has stronger theoretical properties than the previous one and a more satis-
factory shape of the feasible set, cf. Fig. 4 (e) [57]. In contrast to the approach of Kadrani et
al., it contains the feasible set of the MPCC. This relaxation is modeled with the following
equations:

�KS(Gi (w), Hi (w), σ ) ≤ 0, for all i ∈ {1, . . . ,m},
with �KS : R × R × R → R and φKS : R × R → R, where �KS(y1, y2, σ ) = φKS(y1 −
σ, y2 − σ) and

φKS(y1, y2) =
{
y1y2 if y1 + y2 ≥ 0,
− 1

2 (y
2
1 + y22 ) if y1 + y2 < 0.

The functionφKS is a continuously differentiableC-function [57].Under theMPCC-CPLD
(cf. [47, Definition 2.4]) convergence to M-stationary points is shown [47, 57].

3.2.7 Exact Penalty Methods

Exact penalty reformulations are one of the most often used approaches to treat degenerate
NLPs [9, 13, 37]. In exact penalty algorithms for MPCCs, the bilinear term (3d) is added to
the objective in some suitable form andmultiplied by a penalty factor ρ. To be consistent with
our notation above, and the implementations in NOSNOC [78], we use ρk = 1

σk
. Assuming

sufficient regularity of other constraints and having the bilinear term in the objective, we
obtain a regular NLP. Under suitable assumptions and for a sufficiently large and finite ρ, the
solution w∗(σ ) matches the solution w∗ of the initial MPCC after a single NLP solve [90].
In practice, a sequence of NLPs is solved to improve the convergence and to estimate the
correct penalty parameter value. One of the simplest formulations is to penalize the term
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G(w)�H(w) in the objective. This corresponds to the �1 norm of the complementarity
residual. Therefore, we solve a sequence of the following NLPs:

min
x

f (w) + 1

σk
G(w)�H(w) (9a)

s.t. g(w) = 0, (9b)

h(w) ≥ 0, (9c)

G(w) ≥ 0, H(w) ≥ 0. (9d)

This approach was first proposed in [23] for solving practical problems. Anitescu [3]
provided the first convergence analysis for the �1 penalty approach paired with active-set
SQP methods. Ralph et al. [90] show that an MPCC solution w∗ is also a solution to (9) for
a sufficiently large ρ and that regularity conditions of the MPCC (e.g., MPCC-LICQ) imply
regularity of the NLP (9). However, if the local minimizers are only B-stationary but not
S-stationary points, the penalty parameter must grow to infinity [59].

Leyffer et al. [66] propose an interior-point algorithm to solve the NLP (9) while dynam-
ically updating the penalty parameter ρ. For each fixed ρk , the barrier subproblem is solved
inexactly to a tolerance proportional to the barrier parameter τ k . Strategies to steer the penalty
parameter that avoid too large increases and unbounded subproblems are proposed as well.
Fukushima et al. [33] suggest an SQP method paired with a penalized NCP function. Hu
and Ralph [50] relate relaxation methods of [93] and give conditions for convergence to B-
stationary points. They study more general formulations than (9) and suggest for example to
use

∑m
i=1 �FB(Gi (w), Hi (w))3 as a penalty function. Furthermore, by comparing the KKT

conditions, Leyffer et al. [66] show that there exists a one-to-one correspondence between
the iterates of the penalty and a smoothing Scholtes approach (i.e., the bilinear constraint in
(3d) is replaced by Gi (w)Hi (w) = σk).

Hall et al. [43, 44] propose a Sequential Convex Programming (SCP) method for solving
the penalty problem arising from quadratic programs with complementarity constraints. In
particular, the method makes use of the fact that QP matrices do not need to be re-factorized
in an SCP approach, which enables fast and cheap iterations. The algorithm is paired with
an exact analytic line search.

The great practical difficulty in exact penalty methods is steering the penalty parameter.
Byrd et al. [13] introduce a line-search SQP �1-exact penalty method for general degenerate
NLPs. They propose penalty update rules based on solving LPs and QPs with a trust region to
predict the decrease of themerit function. Favorable theoretical properties andgoodnumerical
performance on a series of test problems including MPCCs are reported. Thierry and Biegler
[101] adapt the �1 strategy of Byrd et al. [13] including the penalty steering rules, to solve
degenerate problems with IPOPT [103]. Good practical performance is reported on the
MacMPEC test set [64] with an improvement in terms of speed and robustness compared to
a direct application of IPOPT.

Moreover, using an �∞ penalty function for MPCC is also very common [9]. The com-
plementarity constraints (3d) are replaced by:

G(w) ≥ 0, H(w) ≥ 0, Gi (w)Hi (w) ≤ s, for all i ∈ {1, . . . ,m},
where s ∈ R is a slack variable, which may have an upper bound s̄ > 0. The term 1

σ
s is added

to the objective function. This enables us to express the �∞ norm of the complementarity
constraints residual smoothly. Similarly, if the bilinear terms are lumped together, and we
use the constraint G(w)�H(w) ≤ s, we end up with an �1 formulation that is equivalent
to (9).
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A mixture of the approaches above is the elastic mode, which takes an �1 norm of the
bilinear complementarity terms and an �∞ penalization of the relaxation of the standard
equality and inequality constraints. Anitescu et al. [5] show under the MPCC-LICQ and
other assumptions the global convergence of an elastic mode SQP approach to C-, M- and S-
stationary points. The elastic mode with a fixed penalty parameter is implemented in SNOPT
as a fallback strategy if an infeasible or unbounded QP is detected [38].

Finally, we mention the family of augmented Lagrangian methods for MPCC, which also
belong to the class of penalty methods [34, 52].We do not treat them in detail here. Assuming
MPCC-LICQ, and that the sequence of Lagrange multipliers is bounded, convergence to S-
stationary points is shown in [34, 52].

3.2.8 Lifting Methods

Lifting methods are somewhat in between relaxation and penalty methods. The main idea is
to introduce lifting variables and regard a more regular feasible set in a higher-dimensional
space whose orthogonal projection is the L-shaped set, coming from the complementarity
constraints. Some of them require penalization of the lifting variables to recover the solution
of the initial problem [45], and others might require additional regularization [97]. Unfortu-
nately, they have weaker theoretical properties than regularization methods, cf. Section 3.4.
Thus, we do not implement these methods and do not treat them in further detail. Wemention
the methods of Stein [97], Hatz et al. [45], and Izmailov et al. [52].

3.3 Steering the Homotopy Parameter to Zero

The initial value for the homotopy parameter σ0 and deciding how to steer it to zero play an
important role in the practical performance of the relaxation-based methods. In our imple-
mentations, we take three different approaches in steering the relaxation in (7):

1. directly change the relaxation parameters σ outside of the homotopy loop, which is the
standard approach in most of the literature,

2. steer a single relaxation parameter with an �∞ penalty approach to zero,
3. steer several relaxation parameters with an �1 penalty approach to zero.

The ways in which the different approaches manifest in a relaxed NLP are summarized
in Table 1. In the standard approach, we simply use a fixed parameter σk for (7b) in every
NLP solve, and update the parameter after every iteration via:

σk+1 = κσk, (10)

with κ ∈ (0, 1). Alternatively, we may use the update formula (as often used in IP methods
[73]):

σk+1 = min(κσk, σ
η
k ),

with η > 1. Next, we may let the optimizer steer the relaxation, by using e.g., the same scalar
variable s in all (7b). The slack variable is pushed to zero by being more and more penalized
in the objective function, with a weight of ρk = 1

σk
. In the case of Scholtes’ relaxation, we

recover the �∞ penalty approach discussed in Section 3.2.7. Similarly, we can add a new
scalar variable si for every constraint in (7b) and penalize their deviation from zero in the
objective and weighted by ρk = 1

σk
. In the case of Scholtes’ relaxation, we recover the exact

�1 penalty approach and obtain a NLP equivalent to (9).
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Table 1 Homotopy parameter steering strategies

Standard relaxation �∞ penalty relaxation �1 penalty relaxation

min
w∈Rnw

f (w)

s.t. 0 = g(w),

0 ≤ h(w),

0 ≤ G(w),

0 ≤ H(w),

0 ≥ �(Gi (w), Hi (w), σk ),

for all i ∈ {1, . . . ,m}.

min
w∈Rnw

s∈R
f (w) + 1

σk
s

s.t. 0 = g(w)

0 ≤ h(w)

0 ≤ G(w)

0 ≤ H(w)

0 ≥ �(Gi (w), Hi (w), s),

for all i ∈ {1, . . . ,m}.

min
w∈Rnw

s∈Rm

f (w) + 1

σk

m∑
i=1

si

s.t. 0 = g(w),

0 ≤ h(w),

0 ≤ G(w),

0 ≤ H(w),

0 ≥ �(Gi (w), Hi (w), si ),

for all i ∈ {1, . . . ,m}.

In our experiment, we solve all NLPs in the homotopy loop to the same prescribed toler-
ance. Alternatively, one may solve the NLPs in the homotopy loop inexactly. Some authors
suggest updating the relaxation parameter simultaneously or tying it to other relaxation
parameters of the algorithm. Raghunathan and Biegler [89] update the parameter σ simul-
taneously with the barrier parameter τ in an IP method. Similarly, in Leyffer et al. [66] in
an IP-�1 exact penalty approach the parameter update is related to the update of τ . Lin and
Othsuka [69] use a non-interior point method with Scholtes’ relaxation. The parameter of
the Scholtes’ relaxation and the complementarity constraint relaxation parameter in the KKT
conditions are updated simultaneously.

To make the various relaxations better comparable and less dependent on the scaling of
σ , we bring them to a similar scale for a given σ . In particular, for a given σ , we want that
the distance of �(a, b, σ ) = 0 to the origin is always the same, independent of the particular
choice of �. Moreover, for a given κ we require that this distance shrinks with the same rate
for all relaxations. By simple algebraic manipulations one can find how σ needs to enter a
given relaxation function. Our initial experiments confirm that this makes the performance
more consistent and better comparable.

3.4 Summary of MPCCMethods

With a standard NLP solver at hand, all methods from Section 3.2 paired with the steering
strategies from Section 3.3 are easy to implement. Table 2 provides an overview of known
convergence results for direct, regularization, lifting, penalty methods, and active-set meth-
ods. Together with the diagram in Fig. 3, it can help one to decide which algorithm to choose
to compute a stationary point of the MPCC (3). The strongest multiplier-based stationarity
concept is S-stationarity, followed by M-, C-, A- and W-stationarity, sorted from stronger
to weaker. One should not be discouraged by the weaker limiting points of the relaxation
methods. In contrast to the other methods, these results are obtained under much weaker
assumptions. In general, more restrictive assumptions give a better result. For example,
the global relaxation method by Scholtes [93] converges to B-stationary points under the
MPCC-LICQ and the upper-level strict complementarity, cf. [90, Definition 2.6]. We note
that all methods converging to an S-stationary point under the MPCC-LICQ also assume
other restrictive assumptions, such as the upper-level strict complementarity [31, 45, 65, 89].
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Table 2 Overview of convergence properties of MPCC methods

Type Method CQ for MPCC Limiting
Point

Subproblem
NLP satisfies

Citation

Direct Fletcher et al. MPCC-LICQ S GCQ [29, 31]

Leyffer MPCC-LICQ S GCQ [66]

Regularization Scholtes MPCC-MFCQ C MFCQ [47, 93]

Lin-Fukushima MPCC-MFCQ C MCFQ [47, 68]

Kadrani et al. MPCC-MFCQ M GCQ [47, 56]

Steffensen-Ulbrich MPCC-CPLD C ACQ [47, 96]

Kanzow-Schwartz MPCC-CPLD M GCQ [47, 57]

Raghunathan-Biegler MPCC-LICQ C MFCQ [89]

Lifting Stein MPCC-LICQ C LICQ [97]

Izmailov-Solodov MPCC-LICQ C LICQ [51]

Hatz et al. MPCC-LICQ S GCQ [45]

Penalty �1-Penalty MPCC-LICQ S LICQ [65, 90]

Leyffer et al. MPCC-LICQ C LICQ [65, 90]

�∞-Penalty MPCC-LICQ S LICQ [9, 90]

Elastic mode MPCC-LICQ C MFCQ [4, 5]

Active-set Leyffer-Munson MPCC-MFCQ B GCQ [67]

Kirches et al. − B GCQ [61]

Guo-Deng MPCC-RCPLD M GCQ [40]

In practice, theNLP subproblems cannot be solved exactly, due to the solver tolerances and
finite arithmetic precision. However, solving the NLPs in the sequence inexactly can weaken
the convergence results [5, 58]. For example, under inexact solves the methods of Kadrani
et al., Kanzow–Schwartz [57] and Steffensen–Ulbrich [96] converge only to W-stationary
points. Surprisingly, the methods of Scholtes and Lin–Fukushima are immune to this, and
they still converge to C-stationary points [58]. However, if some stronger assumptions are not
satisfied, usually theMPCC-LICQ, they can experience slow convergence rates and converge
to weaker points. This motivated the development of combinatorial methods, which have
excellent theoretical properties but currently no mature open-source implementations.

4 A Benchmark Set of MPCC fromNonsmooth OCPs

The main contribution of this paper is the introduction of a benchmark suite of MPCCs that
come from nonsmooth optimal control and simulation problems. We discuss the problem
format, provide references for the original continuous time OCP and simulation problems,
and discuss how we generate MPCCs from them. Moreover, we split the whole problem set
into several subsets to facilitate the testing of the variety of available algorithms.
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4.1 Problem Format

In the benchmark we provide the MPCCs in a slightly different format than in (3):

min
w∈Rn

f (w, p) (11a)

s.t. �w ≤ w ≤ uw, (11b)

�g ≤ g(w, p) ≤ ug, (11c)

0 ≤ G(w, p) ⊥ H(w, p) ≥ 0, (11d)

where p ∈ R
n p a given parameter. If we disregard (11d), this format compiles with the

CasADi NLP solver interface [2]. All problem functions in (11) are CasADi functions
generated via NOSNOC. By treating the complementarity constraint with some of themethods
described in Section 3.2 we obtain an NLP that can be directly passed to the CasADi NLP
solver interface. On the benchmarks homepage1 we provide all MPCCs in the form of (11)
format using a JSON object with the following components:

– w as a string encoded CasADi variable with the key “w”, along with the �w and uw with
the labels “lbw” and “ubw”, respectively,

– f (w) as a string encoded CasADi function with the key “f_fun”,
– g(w) as a string encoded CasADi function with the key “g_fun”, along with the �g
and ug with the labels “lbg” and “ubg”, respectively,

– G(w) and H(w) as string encoded CasADi functionswith keys “G_fun” and “H_fun”,
respectively,

– parameters p and their values as string encodedCasADivariables and an array of doubles
with keys “p” and “p_val”, respectively.

From this, a user can simply reconstruct the problem by loading in all of the components
and using the provided CasADi deserialization functionality to interface their solver with
NOSBENCH problems.

4.2 Description of the Benchmark Collection

The NOSBENCH problems are generated by using the algorithmic toolchain available in
NOSNOC. In particular, we regard both simulation and optimal control problems, reformulate
them, and discretize them with the FESD method [83, 84]. We list in Table 3 the origins of
each of these problems in continuous time along with references to them in the literature.
We briefly describe each of the systems along with a classification. Moreover, we also list
the number of MPCCs we generated from the particular continuous-time problem. For more
details on each discrete-time problem, we refer the reader to the benchmark’s homepage.

4.2.1 Reformulation and Discretization Options

Depending on the reformulation and discretizationmethod, the continuous-time problems can
be reformulated into significantly different MPCCs. In order to generate problems of varying
complexity and internal structure we vary several discretization and MPCC parameters. In
all cases we obtain an MPCC of the form of (2). We list some variations, which are available
in NOSNOC:

1 NOSBENCH homepage: https://github.com/apozharski/nosbench.
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– We distinguish between simulation and optimal control problems (OCPs).
– If the system has a nonsmooth right hand side (r.h.s.), but no state jumps, we treat
it as Filippov system, which one can reformulate either via Stewart’s [83] or via the
Heaviside step reformulation [80] into a DCS. Afterwards, they are discretized with the
corresponding FESD method.

– Complementarity Lagrangian Systems (CLS) with state jumps can be either treated
directly with FESD-J [84] or reformulated via time-freezing into a Filippov system [76,
81]. Hybrid systems with hysteresis are always reformulated via time-freezing into Fil-
ippov systems.

Moreover, we can vary the discretization parameters:

– N - the number of control intervals in the OCP. The controls are piecewise constant after
the discretization. This is always set to N = 1 in the case of simulation problems.

– NFE: number of integration steps (finite elements) within a control interval.
– The number of stage points used by the selected Runge–Kutta (RK) method within each
finite element in the FESD discretization is given by ns.

– Choice of underlying RKmethod (defined by its Butcher tableau) in FESD discretization.
In our experiments, we regard the Radau-IIA or Gauss–Legendre schemes.

– There are several choices for grouping the cross-complementarity conditions in the FESD
discretization, cf. [83]. They provide different sparsity to the complementarity constraints
that enforce switch detection.

Furthermore, in some cases, we vary the problem parameters. This is done to provide some
variety in the benchmark problems and to mitigate the effects of pre-tuning which has been
done on some of these examples in the corresponding references. It also allows for simulation
problems to be tested both in cases where there are no switches and in cases where switches
must be detected.

By varying all the aforementioned parameters we generate a total of 603 distinct MPCCs
within the full problem set. Due to space limitations, we cannot provide full details in this
paper, but they are available on the benchmark’s homepage. Figure 5 shows the number
of primal variables versus the dimensions ng of g(w) in (11) and versus the number of
complementarity pairs in each problem.

Fig. 5 Size characteristics of the NOSBENCH test set
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4.2.2 Problem Naming Convention

The names of the problem files are encoded with some information about the problem. This is
done so that the formation of subsets of the whole benchmark can be done systematically. The
structure of these names is an underscore delimited string containing the following data in
order: Problemname, parameter index, N , NFE, ns, RKmethod,DCS type (“Step”, “Stewart”,
or “CLS”), cross complementarity mode, source, and a boolean flag if the problem is lifted
into the vertical form. The type of the problem is split into “FIL”, Fillipov systems, “IEC”,
problemswith only inelastic collisions, “ELC”, problemswith elastic (and possibly inelastic)
collisions, and “HYS” for problems containing hysteresis. For example the problem titled:
986EQ_001_001_003_2_GL_STEP_7_FIL_1would be the earthquake example from
[14], with the first parameter set and N = 1, Nfe = 3, ns = 2, using a Gauss-Legendre
integrator. The problem is generated using the Step reformulation and cross-complementarity
mode 7 (cf. [74]), and is lifted into the vertical form.

4.2.3 Problem Subsets

It takes a lot of CPU time to run the full suite and doing so is not necessary to gain some
first insight into the comparative performance of different solution methods. Therefore, we
provide several smaller subsets of problems that can be used to benchmark any future solvers
and are used in Section 5 to evaluate existing methods.

Simple problem benchmark - NOSBENCH-S The first subset of NOSNOC is a benchmark that
only uses 100 MPCCs which come exclusively from Fillipov systems and only contain the
simplest time-freezing and CLS examples. These tend to produce relatively easier-to-solve
MPCCs and as such this set is an effective way to identify particularly poor-performing
solvers. It contains approximately equivalent numbers of simulation and optimal control
problems and typically all of the problems can be solved with the existing state-of-the-art in
less than an hour per problem.

Representative small benchmark - NOSBENCH-RS This subset of NOSBENCH is an even
smaller but more representative benchmark. It contains 32 MPCCs that include ones from
FESD-J and time-freezing reformulations. This subset is primarily used for a second pre-
liminary screening of solvers as it provides more insight into the performance of solvers on
problems ranging from the easiest to the most difficult within NOSBENCH.

Representative large benchmark - NOSBENCH-RL This subset is a set of 167 problems that
is made up of a representative sample of all problem difficulties. This benchmark is meant to
be the main problem set that is used to benchmark solvers, and will continue to be expanded
as new and interesting problems are added to NOSBENCH.

The full benchmark collection - NOSBENCH-F This set contains all 603MPCCs generated in
this version of NOSBENCH. We aim to test the most competitive solver-method combinations
on this set to get a clear performance picture.
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4.3 Stopping Criteria and Solution Quality

Beyond theNLP stopping criteria used in the underlyingNLP solver,we use a further stopping
criterion on the homotopy iteration that is based on the “complementarity residual” which is
defined as:

r⊥(w) = max({Gi (w)Hi (w) | for all i ∈ {1, . . . ,m}}).
The stopping condition used is the achievement of a successful NLP solve in the homotopy

loop, whose result has a complementarity residual smaller than a given tolerance. For all
the following experiments (except if otherwise noted) we use a complementarity residual
tolerance of comp_tol = 10−7. In the case of IPOPTwe treat any solution that is reported
as optimal or “solved to an acceptable level” as a successful solve.We further accept solutions
where the search direction becomes too small if they meet the complementarity tolerance as
well as are primal feasible. We set the runtime limit for a single MPCC solve for all solvers
to one hour (3600 seconds) cumulative wall time.

When analyzing the results in the next section, we include in the analysis the quality of
a given solution if the problem comes from a discretized OCP. We do not apply this check
for simulation problems as the solutions of such problems are usually unique or at least
locally isolated [83]. This verification is done by checking the relative objective value of a
given problem-solver pair against the best-known found solution.We then treat solutions that
exceed the best-known objective by at least a factor of two as failures. This approach is used
in order to better evaluate the solution methods specifically in an optimal control context as
in this context a significantly worse solution is often a sign of a failure of the solver to achieve
the goals of the controller.

5 Computational Results

In this section, several experiments are carried out to evaluate different solution methods for
MPCCs.Wefirst compare the different regularizationmethods discussed in Section 3.2 paired
with the different homotopy parameter steering strategies from Section 3.3 (and Table 1).
We then explore the space of the homotopy parameters which are used to drive the com-
plementarity regularizations toward the exact complementarity set. This is followed by a
comparison of three NLP solvers (IPOPT [103], SNOPT [37], and WORHP [12]) used to
solve the regularized NLPs. Moreover, we identify the type of stationary points to which the
solver converges. In case they are not S-stationary, we solve an LPCC to check if we have a
B-stationary point. Further numerical results on the NOSBENCH test set can be found in the
master thesis [88].

5.1 General Experiment Setups

All benchmarks are run using an Intel Xeon W-2225 4-core processor with a base clock
of 4.1 GHz and a boost clock of 4.6 GHz. In all cases where we are not explicitly vary-
ing the NLP solver, we used IPOPT [103] as the default option. It is used with its default
options except for the following changes:bound_relax_factor = 0,mu_strategy
= adaptive, mu_oracle = quality-function, acceptable_tol = 10−6,
tol =10−12, dual_inf_tol = 10−12, comp_inf_tol = 10−12. We also default
to using MA27 [20] as the linear solver in IPOPT as it has, in our experience, been the most
stable of the HSL solvers [49]. This is due to our observation that both MA57, and MA97,
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the solvers recommended as state of the art, occasionally cause IPOPT crashes due to seg-
mentation faults. The single-threaded nature of MA27 also allows us to run multiple IPOPT
instances in parallel in order to improve the throughput of the benchmark.

We measure the performance of each solver primarily using a wall time timer which sums
the real time taken to solve all NLPs, and ignore any processing time in between, both as
it is not relevant to solver performance, and as it is generally equivalent between different
solution methods as it mostly depends on the size of the problem. The benchmark results are
given in the Dolan–Moré performance profiles [19].

5.2 Validating our Implementations onMacMPEC

Before we test the MPCC methods on the NOSBENCH collection, we verify the correctness
of our the implementation of the regarded MPCC method-NLP solver combinations on the
MacMPEC problem set. The MacMPEC problem set is available in the form of a tarball of
AMPL [32] format .mod and .dat files from https://wiki.mcs.anl.gov/leyffer/index.php/
MacMPEC.We use a modified version of CasADi [2] andmanage to successfully extract 95
out 106MPCCproblems from this benchmark set. This is donebyfirst generating.nlfiles for
each problem, then reading these in and generating CasADiMPCCs of the form in (11). We
drop any problems that contain complementarities with a “body” parameter of 3, as described
in [35], which are slightly more generic than our implementation permits. This test suite is
then run on four different approaches: the direct method (Section 3.2.1), standard Scholtes

Fig. 6 Evaluating MPCC methods with different NLP solvers on the MacMPEC test set. Each solver-method
variant is compared to the other, but the results are split into four plots for better readability
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relaxation (Section 3.2.2), �1-penalty (Section 3.2.7), and the �∞-mode Scholtes relaxation
(Section 3.3), using the three NLP solvers: IPOPT [103], SNOPT [37], and WORHP [12].
These were the overall most successful variants also in the later experiments, and for the sake
of brevity we do not run the benchmark on all possible solver-method combinations.

We note that several of these approaches solve each of the 95 problems in under ten
minutes, and most solve more than 90% of the problem set in the same amount of time. These
results are summarized in Fig. 6. They align with the results reported in other papers [27, 52,
101], which validates the correctness of our implementation.

In contrast towhatwewill see in the subsequent sections,we observe better performance of
the direct method on the smaller problems in this test set, alongwithmuch better performance
from SNOPT, again tied to the smaller size of the problems. In general this supports our
assertions on the relative difficulty of the NOSBENCH test suite when compared to existing
state-of-the-art benchmarks.

5.3 Evaluating Different MPCCMethods

In this section, we compare nine variants of the relaxation-based methods discussed in
Section 3.2: Scholtes’ relaxation, three smoothed NCP functions (Fischer–Burmeister (FB),
Natural-Residual (NR) and Chen–Chen–Kanzow (CCK), cf. Section 3.2.2), the Lin–Fukush-
ima (LF) method. We also test the Steffensen–Ulbrich method with the two test functions
mentioned in Section 3.2.4 (denoted by SU1 and SU2), and the kinked relaxations by Kad-
rani et al. and Kanzow–Schwartz (KS). Each of the nine methods is tested along with one
of the three methods for steering the relaxation parameter summarized in Table 1, which
results in a total of 27 different methods. Furthermore, we solve the MPCCs directly as
NLPs (cf. Section 3.2.1) and with an exact-�1-penalty method without slacks (cf. (9)). An
implementation of all aforementioned methods is available in NOSNOC.

As we discussed in Section 3.3, the algorithms implemented in NOSNOC for solving
MPCCs have several free parameters, namely σ0, κ , and η. In these experiments we use
(10) for the σk updated with σ0 = 1, κ = 0.1. In the subsequent sections, we vary these
parameters in order to evaluate a good set of default parameters. The comparison is run on
the NOSNOC-S subset.

An overview of the relative performance of eachMPCC solutionmethodwith respect to all
others can be seen in Fig. 7. The comparison is split into four subplots for better readability.
Figure 8 summarizes the reasons for the failure of each of the 29 methods we test.

The general outcome of this benchmark is a victory for the Scholtes relaxation and the
smoothed NCP functions (which lead to the same feasible set as Scholtes’ method) in all of
its three steering strategies. From the performance plots, we can clearly see that for all three
methods of steering the relaxation parameter, the Scholtes relaxation successfully solves
almost as many or more problems than the other relaxation methods. On the other hand,
the more sophisticated local and nonsmooth relaxation methods perform worse in all cases.
This complies with the fact that these methods have weaker theoretical properties [58] if the
subproblems are solved inexactly (which is inevitable in finite precision arithmetic).

We can in detail compare the relaxations using the standard approach to drive the regular-
ization parameter to zero. The results are depicted in Fig. 7 (a). Here we see a performance
lead for the Scholtes relaxation, albeit a very slim one. Methods arising from the standard
parameter steering can be split into three different groups based on performance (in order):
the group containing the Scholtes relaxation as well as those that use NCP functions, Lin–
Fukushima and Kanzow–Schwartz which are nearly as fast but plateau earlier (i.e., solve
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Fig. 7 Evaluating regularization methods for MPCCs on the NOSBENCH-S subset

Fig. 8 Failure reasons for different regularization methods on the NOSBENCH-S subset
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fewer problems), and the Steffensen–Ulbrich and Kadrani relaxations which gain only about
10% robustness over the direct method but are somewhat slower. We note that Fig. 7 suggests
that we see very few outright victories for the standard Scholtes method, however, it is the
most robust, achieving the highest fraction of problems solved, 95%.

We then move on to our analysis of the �∞-mode relaxation with the results given in Fig. 7
(b). One can see that the Scholtes method paired with this parameter steering strategy wins,
with the largest fraction of successful solves. It maintains its lead but only reaches a solution
on about 92% of the problems. Once again we see that the NCP function relaxations approach
the performance of the Scholtes relaxation and match it in robustness. We also see the Lin–
Fukushima relaxation perform well again but not quite at the level of the Scholtes-type
group. On the other hand, we see extremely poor performance from the Steffensen–Ulbrich
relaxations and the kinky relaxations of Kadrani et al. and Kanzow–Schwartz. From Fig. 8
we see that both the Kadrani and Kanzow–Schwartz relaxations fail frequently with a point
at which the NLP solver claims it is optimal, but still has a large complementarity residual.

Finally, we analyze the performance of the �1-mode relaxations and the �1-penalty for-
mulation, given in Fig. 7(c) and (d), respectively. The �1-penalty method nearly ties the �∞
Scholtes relaxation in absolute wins, however, it fails to break the 90% of problems solved.
This performance is nearly mirrored by the �1-mode Scholtes relaxation albeit without the
outright victories of the penalty method. Here we also see the second major gap between the
Scholtes relaxation and the NCP function-based relaxations, though they remain the best-
performing group. Surprisingly, the remaining relaxations performworse than even the direct
NLP solve approach.

Another notable result is that while for about half the problems in this set the direct NLP
approach solves the problem in an acceptable time frame, it quickly stalls at that point, cf.
Fig. 7(d). Its failures, as seen in Fig. 8, are fairly evenly split between converging to unac-
ceptable local minima, and failing to converge at all, primarily due to either step calculation
failures at unacceptable points, or due to claiming infeasibility. This already points to the
usefulness of the homotopy methods as it is clear to see that those methods perform better
on a large proportion of problems with little to no impact on absolute performance.

We conclude that the best methods in terms of speed and robustness are the �∞-mode
Scholtes relaxation and the Scholtes relaxation with standard homotopy parameter steering,
respectively. The latter is certainly the choice for robustness as we will show in future exper-
iments. The robustness can even be improved by adjusting the σ0 and κ parameters which
govern the trajectory of the regularization parameter.

5.4 The Role of the Homotopy Parameters

As described in the previous section, we note that the Scholtes relaxation is the optimal choice
in its standard and �∞ forms.We do not examine further the �1 strategy, as it is not competitive
with the other two. In order to elucidate the role of homotopy parameter update strategies, we
run an experiment on NOSBENCH-RL (representative large subset), first varying the initial
regularization parameter σ0 and then varying κ , the rate at which we drive the regularization
parameter to zero. It turns out that these two parameters have a moderate influence on the
stability and speed of the homotopy solver converging to an acceptable solution.

We first discuss the effect of the initial value of the homotopy parameter σ0 for which
the performance plots can be seen in Fig. 9. Once again, we compare each method with
the other, but split it into two subplots for readability. The first major takeaway from the
analysis of the performance plots is that this has a much less significant effect on the �∞-
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Fig. 9 Evaluating the influence of σ0, the initial homotopy parameter in the NOSBENCH-RL test set

mode relaxation. Intuitively this does make sense as in this mode we simply use a penalty
factor 1

σk
in order to drive the complementarity residual to zero. Thus, σk is not a limiting

factor on the complementarity residual in each step, depending of course on the scaling of
the problem at hand. However, minimal effect is not no effect and we still see a worsened
convergence if we choose a σ0 that is too small. In contrast, it is observed that for the standard
relaxation, for very small σ0 the solvers converge to points with a complementarity residual
exactly equal to σ . It is notable that this reduction in performance primarily comes from
convergence to significantly worse local minimizers as seen in Fig. 10.

On the other hand, we see much earlier and much more pronounced decay in performance
for the standard Scholtes regularization. We see almost a 30% reduction in the number of
problems solved if σ0 is chosen to small. Moreover, from Fig. 10 we see that the primary
reason for failure is the NLP solver converging to bad local minimizers, compared to the
more successful cases, e.g. with σ0 equal to 10 or 0.1. One possible reason is that, for larger

Fig. 10 Failure reasons for different values of σ0
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Fig. 11 Evaluating the influence of the homotopy slope parameter κ in the NOSBENCH-RL test set

values of σ0 the problems are more relaxed and the solver may get easier attracted by better
minimizers. In conclusion, for σ0 in the rage of 0.1 to 10 the best performance is achieved.

Next, we examine the effect of the homotopy parameter update factor κ . In the literature,
several different choices are used. Examples are κ = 0.2 in [56], κ = 0.01 in [93] and [47],
and κ = 0.1 in [96]. In this experiment, we fix σ0 = 1. In Fig. 11 one can see that the
effect of κ on the overall success is surprisingly small compared to the initial regularization
parameter σ0. In particular, we see essentially no difference in performance for the �∞-mode
regularization. This is very likely due to the fact that for a majority of problems, we see
only several (and occasionally only one) homotopy iterations before the solver converges
to an acceptable complementarity residual. The standard relaxation clearly shows both the
weakness and the strength of a relatively slow homotopy. We note that for smaller κ the
problem converges quicker due to having to take less homotopy iterations to converge to
a sufficiently accurate solution. We also see that this benefit disappears as we get to more
difficult problems. On the other hand, with larger κ , we have to solve more problems, but
they can be solved quicker since the initial guess of the previous solution is much better. We
also see a mild improvement (around 10%) in the number of problems that are solved with
the larger κ . This makes it likely that a larger homotopy update rate is particularly useful for
ensuring convergence for more difficult problems while a smaller κ (or use of the �∞-mode)
is the superior option for simpler problems. To conclude, a good default choice is κ = 0.1
and σ0 = 1 with the �∞ mode.

5.5 Evaluating Different NLP Solvers

So far we used in our experiments only IPOPT as NLP solver in the homotopy loop. Next,
we compare this solver to SNOPT [37], and WORHP [12] on the NOSBENCH-F set.

All three solvers are tested on the Scholtes relaxation with the standard and �∞ relaxation
parameter steering strategies. In this case, we use the existing default homotopy parameters
σ0 = 1 and κ = 0.1 and use the standard default settings for both SNOPT and WORHP,
except for those related to maximum iterations and timeouts which are set as for IPOPT. The
solvers are tested on the full NOSBENCH-F test suite, which contains 603MPCCs. Figure 12
shows the performance profiles for the three solvers for the two different parameter steering
strategies.
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Fig. 12 Evaluating different NLP solvers on the NOSBENCH-F test set

On some easier and smaller problems SNOPT is the fastest solver, which is expected due
to the specialization of active set methods on small to medium size problems. WORHP on the
other hand is is not particularly fast but is more robust than SNOPT, and this gap is more
prevalent in the standard relaxation. It is however clear to see that IPOPT is by far the winner
here with both the most overall wins in the �∞-mode where it successfully solves 73.8% of
the problem set. This may be caused by slightly optimized solver settings we have used for
IPOPT. Moreover, the homotopy parameters κ = 0.1, σ0 = 1 are also somewhat tuned for
IPOPT. Other values might be beneficial to the performance of the other solvers.

In Fig. 13 we also report the reasons for the failure of the NLP solver on the test set. Some
optimal control problems have very nonlinear dynamics and combined with the relaxed
complementarity constraints one obtains difficult NLP subproblems. Moreover, in the �∞
approach, the slackvariable and consequently the complementarity residual cannot bebrought
to a sufficiently small value, despite a very large penalty parameter in the objective. We note

Fig. 13 Failure reasons for different NLP solvers

123



Solving Mathematical Programs with Complementarity Constraints...

Fig. 14 Evaluating type of stationarity points in the NOSBENCH-F test set

also that some of the problems in NOSBENCH-F are very large, and they might get solved
if the solvers were allowed more time. Interestingly, in more than 5% of cases IPOPT fails
because the other approaches have found significantly better local minima. This is usually
the case for MPCCs coming from OCPs with nonsmooth systems with state jumps.

Type of stationary pointsWe report also the statistics of the type of stationarity points for the
most successful solver-method combination, namelyIPOPTwith the Scholtes relaxation and
�∞-parameter steering. The set I00 is often called the biactive complementarity constraints
Fig. 14 (a) shows the number of problems with an empty (|I00| = 0) and nonempty set
(|I00| > 0) of biactive complementarity constraints. Recall that problems with a biactive
set are more regular. The biactive set is calculated via checking the values of G(w) and
H(w). We first calculate the biactive set I00 as all i such that Gi (w) <

√
comp_tol and

Hi (w) <
√
comp_tol. We then calculate I0+ as all i not in I00 that satisfies Gi (w) <

Hi (w) and I+0 as all i not in I00 that satisfiesGi (w) > Hi (w). This however sometimes fails
to correctly identify the active set which leads the TNLP to fail to converge. In these cases we
iteratively remove elements from I00, with the pairs (Gi (w), Hi (w)) that are furthest from
the origin being removed first and added to the corresponding set based on the magnitude
of the components. We set the maximum number of iterations in this procedure to |I00|.
In the cases where the TNLP is infeasible or leads to a significantly different objective than
obtained by the homotopy approach indicates that we did not identify the active-set correctly.
We denoted these cases as Not Decided (ND).

Recall that if the biactive set is empty, then the solution is automatically S-stationary. For
those with a nonempty biactive set, we solve the corresponding TNLP (cf. Definition 2) and
asses the type of the stationary point according to Definition 5. The results are summarized
in Fig. 14 (b). It turns out none of points with a nonempty I00 is S-stationary. Next, we
check additionally for all these points if they are B-stationary, i.e., we check if they permit
first-order descent directions. This can be done by solving the nonconvex LPCC in (4). We
reformulate the LPCC into an equivalentmixed-integer linear program (MILP) [22] and solve
it with Gurobi [41]. Note that for the verification we need d = 0 to solve (4). However, this
point can be either a local or global solution, but the MILP approach always finds a global
minimizer. To address this, we add a trust region constraint ‖d‖∞ ≤ 10−2 to make sure that
we isolate the (possibly) local optimum d = 0. If this constraint becomes active, we shrink
the trust region radius down to 10−4, and if d = 0 is still not optimal, we conclude that it is
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not a local optimum and that the point w∗ is not B-stationary. Moreover, as sanity check we
confirm with the LPCC approach that all S-stationary points are indeed B-stationary. It turns
out that in almost all cases, where we could identify the stationary point the points are B-
stationary, except in a few cases of C-stationary points. This provides evidence that MPCCs
obtained from nonsmooth optimal control problems, despite sometimes being difficult to
solve, are not very degenerate. On the other hand, for the ND problems where we could
not identify the active set in the TNLP, first-order descent directions often exist. One reasons
could be that the homotopy loop terminated too early. In some cases, we noticed that lowering
the complementarity tolerance would either make the solver fail, or help to identify the more
accurate solution as B-stationary.

6 Conclusion and Outlook

The goal of this paper was to create a benchmark collection of Mathematical Programs with
Complementarity Constraints (MPCCs) obtained from the time-discretization of nonsmooth
simulation and Optimal Control Problems (OCPs) and to use it for the evaluation of tailored
MPCCsolutionmethods. This provided a large source of practicalMPCCs.However,MPCCs
violate standard constraint qualifications and thus require specialized first-order optimality
conditions and solution methods, which were reviewed in detail. The literature reports very
good numerical performance of standard MPCC methods on existing benchmarks. Unfortu-
nately, we have not observed such robust performance on MPCCs obtained from nonsmooth
OCPs.

To better assess the limitations of the current state-of-the-art and to motivate further devel-
opment of MPCC methods, we introduce a new benchmark set, which we call NOSBENCH.
The novel benchmark consists of a total of 603 problems. Moreover, we derive several sub-
sets from it to facilitate the analysis of a variety of solution methods. All the methods we
test solve a sequence of regularized nonlinear programs (NLPs) in a homotopy approach.
We compare different regularization strategies, different NLP solvers, different approaches
to controlling the degree of relaxation in the subproblems, and the influence of the homotopy
meta-parameters. We find that the oldest and simplest methods, namely Scholtes’ global
relaxation [93] and smoothed nonlinear complementarity functions [21] (which are often
equivalent to Scholtes’ approach), perform best. This is consistent with previous extensive
experiments such as those performed by [47]. Surprisingly, our implementations of the more
sophisticated regularization strategies show quite disappointing results even on easier subsets
of our test set. Two positive results are that solutions of nonsmooth OCPs are quite often
S-stationary and that the weaker stationary points rarely allow first-order descent directions.
However, in the best case, we onlymanage to solve 73.8% of the problems on the full problem
set, which is not yet satisfactory.

It would be interesting to test some of the active-set MPCC methods in the future,
should robust open-source implementations of them become available. We aim to extend
the NOSBENCH test suite by further challenging nonsmooth simulation and optimal control
problems.

In conclusion, relaxation-based MPCC methods, coupled with a robust NLP solver, can
perform reasonably well even on large and highly nonlinear problems. The experiments
performed in this paper helped us to extract some rules of thumb for the default solver settings
in NOSNOC. However, there is still room for improvement, and the benchmark collection
introduced in this paper can help to test novel methods.
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