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Abstract
The paper presents new results for the existence of solutions for an evolutionary quasi-hemi-
variational inequality, which involves a semi-monotone and a pseudo-monotone map. A
crucial aspect of this research lies in the utilization of variational selection to disentangle the
monotonic and pseudo-monotonic components. By employing this technique, we can bypass
the commonly made assumption that the sum of the two maps must be monotone. Conse-
quently, we establish various new existence results for evolutionary quasi-hemi-variational
inequalities. Furthermore, we demonstrate applications of these results in solving optimal
control problems.

Keywords Evolutionary quasi-variational-hemivariational inequality · Variational
selection · Generalized solutions · Optimal control

Mathematics Subject Classification (2010) 47J20 · 58Exx · 35Kxx · 34H05 · 49J52 · 74B20

1 Introduction

Let X and Y be reflexive Banach spaces with X∗ and Y ∗ as their dual spaces, respectively.
The duality pairing of a Banach space Z and its dual space Z∗ will be denoted by 〈·, ·〉Z ,

and by ‖ · ‖Z we denote the norm on Z . Given a Banach space Z , the domain and the graph
of a multi-valued map F : Z ⇒ Z∗ are denoted by D(F) := {u ∈ Z | F(u) �= ∅} and
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G(F) := {(u, w) | u ∈ D(F), w ∈ F(u)}, respectively. Let γ : X → Y be a compact, linear
map, and let L : D(L) ⊆ X → X∗ be a linear, maximal monotone map (so, in particular,
densely defined and closed). Let A : X ⇒ X∗ and B : Y ⇒ Y ∗ be multi-valued maps, let
K be a closed and convex subset of X , let C : K ⇒ K be a multi-valued map such that
for any z ∈ K , C(z) is a nonempty, closed, and convex subset of K , and let f ∈ X∗. Let
Φ : X → R∪{+∞} be a proper functional (i.e., �≡ +∞), with its (effective) domain defined
by D(Φ) := {u ∈ X | Φ(u) < +∞}.

In this work, our primary focus is on the following evolutionary quasi-hemi-variational
inequality of finding u ∈ C(u)∩D(L)∩D(Φ) such that for some u∗ ∈ A(u) and v∗ ∈ B(γ u),
we have

〈L(u)+ u∗ − f , z− u〉X +〈v∗, γ z− γ u〉Y ≥ Φ(u)−Φ(z) for all z ∈ C(u)∩ D(L). (1)

Due to the presence of the unbounded operator L , which is the prototype of the time
derivative L(u) = u′ on a Banach space X = L p(0, τ, V ), with 1 < p < +∞, τ > 0, and a
reflexive Banach space V , the quasi-hemi-variational inequality (1) is of evolutionary nature.
Before proceeding further, we mention a few relevant special cases of (1). If B = 0 in (1),
we recover the evolutionary quasi-variational inequality of finding u ∈ C(u)∩D(L)∩D(Φ)

such that for some u∗ ∈ A(u), we have

〈L(u) + u∗ − f , z − u〉X ≥ Φ(u) − Φ(z) for all z ∈ C(u) ∩ D(L). (2)

Furthermore, if additionally the map A is single-valued with D(A) = X , Φ = 0, and L = 0,
then (2) becomes the quasi-variational inequality studied by Bensoussan and Lions [9]:

〈A(u) − f , z − u〉X ≥ 0 for every z ∈ C(u). (3)

If C(u) = K , for every u ∈ K , then (3) recovers the celebrated variational inequality of
finding u ∈ K such that

〈A(u) − f , z − u〉X ≥ 0 for every z ∈ K .

Over the past sixty years, variational inequalities have been extensively researched due to
their wide-ranging applications across various fields and deep mathematical relevance. This
exploration of diverse applied models within a variational framework has paved the way for
the emergence of several generalizations of variational inequalities. Notably, two variations
that have garnered substantial attention are quasi-variational inequalities and hemi-variational
inequalities. However, unlike variational inequalities, quasi-variational inequalities possess
a distinct characteristic wherein the underlying constraint set varies and is dependent on the
unknown solution. To be specific, notice the dependence of the constraint set C(u) in (1) on
the solution u, which presents a significant challenge when dealing with quasi-variational
inequalities. As a result, only a fraction of the theoretical and computational tools available for
variational inequalities have been adapted to address the realm of quasi-variational inequal-
ities. Interestingly, many practical models involve dynamic or moving constraints similar to
those found in (1). To highlight the wide range of applied models that can be effectively
represented as quasi-variational inequalities, we mention economic growth models [31],
elastohydrodynamics [27], energy production management [11], equilibrium problems [5],
frictional elastostatic contact [16, 46], frictionless quasistatic contact with history-dependent
stiffness [51], temperature dependent velocity constraint [19], image processing [39], Nash
game equilibrium [25, 52] and multiobjective elliptic control [10, 17, 26], reaction diffusion
[47], sandpiles formation [8], semiconductor and transistor design [38, 50], shape optimiza-
tion [1], superconductivity models [7, 49].
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We also observe that the set-valued map B in (1) aims to include a generalized deriva-
tive of a nonconvex functional. This enables (1) to encompass a wider range of problems,
including hemi-variational inequalities as a special case. At this juncture, we also note that
the notion of hemivariational inequalities was initially introduced by P.G. Panagiotopoulos
in the early 1980s to address contact mechanics problems involving non-monotone and mul-
tivalued friction laws, see, e.g., [48]. Unlike variational inequalities, which primarily deal
with problems featuring convex potentials, hemi-variational inequalities emerge frommodels
with nonconvex and nonsmooth superpotentials associated with locally Lipschitz functions.
In recent years, hemi-variational inequalities have gained significant attention due to their
broad applications in various fields, such as engineering, transportation, and economics, as
well as mathematical novelty. As a result, they have been extensively expanded and explored
in numerous directions, see e.g., [6, 13, 18, 20, 24, 40, 43].

Since the introduction of quasi-variational inequalities, the predominant approach for their
solvability has involved defining a set-valued map known as the variational selection. This
method entails temporarily fixing the varying constraints as an arbitrary parameter, solving
the resultant parametric variational inequality to obtain the image of the variational selection,
and subsequently seeking a fixed point of the variational selection.

To elucidate,wefix an elementw ∈ K arbitrarily, and consider the parametric evolutionary
hemi-variational inequality of findingu ∈ C(w)∩D(L)∩D(Φ) such that for some u∗ ∈ A(u)

and v∗ ∈ B(γ u), we have

〈L(u)+u∗ − f , z−u〉X +〈v∗, γ z−γ u〉Y ≥ Φ(u)−Φ(z) for all z ∈ C(w)∩ D(L). (4)

Thus, we can define a set-valued map, the so-called variational selection,̂S : K ⇒ K such
that for any v ∈ K , the set̂S(v) is the set of all solutions of (4) for w = v. It is evident that
if u is a fixed point of the map̂S, then u is a solution of (1).

However, a major limitation of the aforementioned approach is the imposition of strict
conditions on the associated variational selection ̂S. The most demanding requirement is
that the solution set ̂S(w) must be convex for all w ∈ K . In situations where a monotone
map defines the parametric variational inequalities, the convexity of the solution set can be
established through the application of the linearization technique, commonly known as the
Minty formulation. This, in the context of (2), means that the map A is monotone. However,
when we deviate from the monotone framework and consider a more general map defining
the parametric variational inequalities, such as (1), the convexity of the solution set cannot be
established, in general. This challenge becomes especially prominent when tackling quasi-
hemi-variational inequalities. To overcome this technical constraint, numerous researchers
studying quasi-hemi-variational inequalities, which involve the summation of two operators
- often one monotone and the other pseudo-monotone - adopt a broad assumption that the
overall sum is monotone. For example, in the study of (1), it has been a common assump-
tion that (A + B) is monotone. In this context, it is worth mentioning the insightful work
of Kano, Kenmochi, and Murase [32], who have successfully extended the application of
variational selection to quasi-variational inequalities involving more general semi-monotone
maps. Semimontone maps, defined on a product space and denoted as A(u, v), incorporate
certain monotonicity properties in the second argument. The key concept employed in [32]
is to freeze the nonmonotonicity in the first argument employing the variational selection
and consider a parametric variational inequality with a monotone map. Recently, Chadli, Li,
and Mohapatra [15] independently proposed a similar approach for quasi-hemi-variational
inequalities, removing the requirement for the sum of the two operators involved to be mono-
tone.
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Motivated by the recent advancements, notably the work of [15], along with the sem-
inal ideas presented in [32], we embark on an extensive investigation of quasi-variational
inequalities, with a specific emphasis on the following innovative facets:

1. We focus on parabolic quasi-hemi-variational inequalities with semi-monotone maps.
This extends the results in [15] from the elliptic case to the parabolic case and for a more
general map even for the elliptic case.

2. As a particular case, we derive new results for parabolic quasi-variational inequalities,
extending the results in [32] from the elliptic case to the parabolic framework. The study
of the generalized solutions in our paper is also new for parabolic problems.

3. Although the key idea of defining the variational selection is the same as in [15], our
proofs are quite different and much more concise. To be specific, we bypass the use of
elliptic regularization.

4. We also consider a novel application to optimal control problemgoverned by evolutionary
quasi-hemi-variational inequalities.

We organize the contents of this paper into six sections. Section 2 collects the necessary
background material. In Section 3, we give the main existence results for the considered
evolutionary hemi-quasi variational inequality. Section 4 is devoted to the studyof generalized
solutions, whereas Section 5 gives an application to optimal control problems governed by
an evolutionary hemi-quasi variational inequality. The paper concludes with some remarks
and open questions in Section 6.

2 Preliminaries

In the following, we collect some necessary background material. For details, see [53].

Definition 2.1 Let X be a real Banach space with X∗ as its dual and let F : X ⇒ X∗ be a
set-valued map.

(a) The map F is called monotone, if 〈u − v, x − y〉X ≥ 0 for every (x, u), (y, v) ∈ G(F).
(b) The map F is called strictly monotone, if 〈u − v, x − y〉X > 0 for every (x, u), (y, v) ∈

G(F), u �= v.
(c) The map F is called maximal monotone, if F is monotone and 〈u − v, x − y〉X ≥ 0 for

every (y, v) ∈ G(F) implies (x, u) ∈ G(F).
(d) The map F is called generalized pseudo-monotone if for any sequence {(xn, wn)} ⊂

G(F) with xn⇀x and wn⇀w such that lim supn→∞〈wn, xn − x〉X ≤ 0, we have w ∈
F(x) and 〈wn, xn〉X → 〈w, x〉X .

Definition 2.2 Let X be a real Banach space with X∗ as its dual and let F : X ⇒ X∗
be a set-valued map. The set-valued map F : X ⇒ X∗ on a Banach space X is called
pseudo-monotone if it satisfies the conditions:

(PM1) For each x ∈ X , the set F(x) is nonempty, bounded, closed, and convex in X∗.
(PM2) For any sequence {(xn, wn)} ⊂ G(F) such that xn⇀x and lim supn→∞〈wn, xn −

x〉X ≤ 0, then for each y ∈ X there exists w(y) ∈ F(x) satisfying
lim infn→∞〈wn, xn − y〉X ≥ 〈w(y), x − y〉X .

(PM3) F is upper semicontinuous from each finite-dimensional subspace of X to the weak-
topology of X∗.
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Remark 2.3 A map F satisfying the condition (PM3) is often called finitely continuous.
Kenmochi [33, Lemma 1.2] noticed that a set-valued map F : X ⇒ X∗ with D(F) = X on
a reflexive Banach space X that satisfies conditions (PM1) and (PM2) of Definition 2.2 is
pseudo-monotone, provided that it satisfies the following condition:

(PM4) For each x ∈ X and for each bounded subset B of X , there exists a constant c(B, x)
such that for every (z, u) ∈ G(F) with z ∈ B, it holds 〈u, z − x〉X ≥ c(B, x).

The above condition is satisfied by any monotone, single-valued map F with D(F) = X and
by bounded maps.

Remark 2.4 A pseudo-monotone map F : X ⇒ X∗ on a reflexive Banach space X is gen-
eralized pseudo-monotone. Conversely, a generalized pseudo-monotone and bounded map
F : X ⇒ X∗ on a reflexive Banach space X satisfying (PM1) is pseudo-monotone (see [13,
Propositions 2.122, 2.123]).

Definition 2.5 Amap Ã : X × X ⇒ X∗ is called semi-monotone, if D( Ã) = X × X and the
following conditions hold:

(SM1) For any fixed v ∈ X , the map u → Ã(v, u) is maximal monotone.
(SM2) Let u be an element of X and let {vn} ⊂ X be a sequence with vn⇀v in X . Then,

for every u∗ ∈ Ã(v, u), there exists a sequence {u∗
n} such that u∗

n ∈ Ã(vn, u) and
u∗
n → u∗.

Given a semi-monotone map Ã : X × X ⇒ X∗, the map A : X ⇒ X∗ defined by
A(u) = Ã(u, u), for all u ∈ X is called the map generated by Ã.

The utility of the above concept is reflected in the following result [32]:

Theorem 2.6 Let Ã : X × X ⇒ X∗ be a semi-monotone map, and let A : X ⇒ X∗ be the
map generated by Ã. Then the following properties are satisfied:

(a) For any v, u ∈ X, Ã(v, u) is a nonempty, closed, bounded, and convex subset of X∗.
(b) Let {un} and {vn} be sequences in X such that un⇀u in X and vn⇀v in X. If u∗

n ∈
Ã(vn, un), and u∗

n⇀u∗ in X∗, and lim supn→∞〈u∗
n, un〉 ≤ 〈u∗, u〉, then u∗ ∈ Ã(v, u)

and 〈u∗
n, un〉 → 〈u∗, u〉.

We recall the following result from Kenmochi [33, Proposition 4.1].

Theorem 2.7 Let F : X ⇒ X∗ be a set-valued map on a reflexive Banach space X satisfying
(PM1), (PM2), and (PM4), let C be a nonempty, closed, convex, and bounded subset of X,
let Φ : X → R ∪ {+∞} be lower semicontinuous, convex, with C ∩ D(Φ) �= ∅, and let
f ∈ X∗. Then there exists x ∈ C ∩ D(Φ) such that for some w ∈ F(x) we have

〈w − f , z − x〉X ≥ Φ(x) − Φ(z) for every z ∈ C .

We also recall the set convergence introduced by Mosco [44, 45].

Definition 2.8 Let X be a reflexive Banach space, let K be a nonempty, closed, and convex
subset of X , and letC : K ⇒ K be a set-valuedmap. ThenmapC is termed asM-continuous
if the following conditions hold:

(M1) For any sequence {xn} ⊂ K with xn⇀x , and for each y ∈ C(x), there exists a
sequence {yn} such that yn ∈ C(xn) and yn → y.
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(M2) For yn ∈ C(xn) with xn⇀x and yn⇀y, we have y ∈ C(x).

Remark 2.9 We will make use of an M-continuity property of a map C : K ⇒ K relative to
a function Φ : X → R ∪ {+∞} which is �≡ +∞, see condition [HM ].

We will also use the following result by Alber and Notik [2] concerning monotone maps.

Lemma 2.10 Let Z be a reflexive Banach space with Z∗ as its dual. Let A : Z ⇒ Z∗ be a
monotone map with x̄ ∈ int(D(A)). Then there exists a constant r = r(x̄) > 0 such that for
every (x, w) ∈ G(A) we have

〈w, x − x̄〉 ≥ r‖w‖ − (‖x − x̄‖ + r)c,

with c := sup{‖w′‖ | ‖x ′ − x̄‖ ≤ r and w′ ∈ A(x ′)} < ∞.

The following fixed point theorem by Kluge [37] will play an important role.

Theorem 2.11 Let Z be a reflexive Banach space and let D ⊂ Z be nonempty, convex,
bounded, and closed. Assume that P : D ⇒ D is a set-valued map such that for every
u ∈ D, the set P(u) is nonempty, closed, and convex, and its graph G(P) is sequentially
weakly closed. Then P has a fixed point.

Remark 2.12 In Theorem2.11, the hypothesis on the set D to be bounded in Z can be replaced
by requiring that the image P(D) be bounded. For this it is sufficient to apply Theorem 2.11
to the closed convex hull co(P(D)) of P(D) in place of D.

Finally, we recall the following existence result from Asfaw and Kartsatos [3, Corollary].

Lemma 2.13 Let X be a reflexive Banach spacewith X∗ as its dual. Let T : D(T ) ⊆ X ⇒ X∗
be a maximal monotone map with 0X ∈ D(T ) and let S : X ⇒ X∗ be finitely continuous,
generalized pseudomonotone, and satisfy condition (PM4). Assume that the following coer-
civity condition holds:

inf
w∗∈Su,u∗∈Tu

〈u∗ + w∗, u〉
‖u‖ → ∞ as ‖u‖ → ∞. (5)

Then R(T + S) = X∗.

3 Existence Results for Evolutionary Quasi-Hemi-Variational
Inequalities

Webeginwith the following existence result for evolutionary quasi-hemi-variational inequal-
ities.

Theorem 3.1 Let X and Y be reflexive Banach spaces with X∗ and Y ∗ as their dual spaces,
let γ : X → Y be a compact linear map, and let γ ∗ : Y ∗ → X∗ be the adjoint of γ . Let
K ⊂ X be a closed and convex set. We formulate the following hypotheses:

[HL ] L : D(L) ⊂ X → X∗ is a linear, maximal monotone map.
[HA] Ã : X × X ⇒ X∗ is a bounded semi-monotone map with 0X ∈ Ã(·, 0X ) that

generates the map A : X ⇒ X∗. There are constants m > 0 and p > 1 such that
for each (w, v) ∈ X × X, we have

inf
v∗∈ Ã(w,v)

〈v∗, v〉 ≥ m‖v‖p
X . (6)
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[HB ] B : Y ⇒ Y ∗ is a bounded map with sequentially strongly-weakly closed graph
and nonempty, closed, and convex values. Moreover, there are constants τ > 0 and
μ > 0 such that the following growth condition holds:

‖v∗‖Y ∗ ≤ τ‖γ v‖p−1
Y + μ for every v∗ ∈ B(γ v), v ∈ X . (7)

[HS] The following compatibility condition relates the maps A and B:

m > τ‖γ ‖p. (8)

[HΦ ] Φ : X → R ∪ {+∞} is a proper, convex, lower semicontinuous function with
K ⊂ int(D(Φ)), Φ ≥ 0, and Φ(0X ) = 0.

[HC ] C : K ⇒ K is such that for any w ∈ K, C(w) is closed, and convex with 0X ∈
int(∩w∈KC(w)).

[HM ] The following Mosco-type continuity properties hold:

(a) If {wn} ⊂ K and un ∈ C(wn) ∩ D(L) ∩ D(Φ) satisfy wn⇀w in X and un⇀u in X,
with u ∈ D(L) and L(un)⇀L(u) in X∗, then u ∈ C(w) ∩ D(Φ).

(b) For every sequence {wn} ⊂ K ∩ D(L) with wn⇀w in X and for every v ∈ C(w) ∩
D(L), there exist a subsequence {wnk } of {wn} and a sequence vk ∈ C(wnk )∩ D(L)

with vk → v in X and Φ(vk) → Φ(v).

Then the evolutionary quasi-hemi-variational inequality (1) is solvable, that is, there is at
least one u ∈ C(u)∩D(L)∩D(Φ) such that for some u∗ ∈ A(u) and for some v∗ ∈ B(γ u),
we have

〈L(u) + u∗ − f , z − u〉X + 〈v∗, γ z − γ u〉Y ≥ Φ(u) − Φ(z) for all z ∈ C(u) ∩ D(L).

Proof We will divide the proof into five parts.
Step 1. We fix an element w ∈ K arbitrarily and consider the parametric evolutionary

variational inequality of finding u ∈ C(w)∩ D(L)∩ D(Φ) such that for some u∗ ∈ Ã(w, u)

and v∗ ∈ B(γ u), we have

〈L(u)+u∗− f , z−u〉X +〈v∗, γ z−γ u〉Y ≥ Φ(u)−Φ(z) for every z ∈ C(w)∩D(L). (9)

For the solvability of (9), with the fixed w ∈ K , we define a functional Ψ : X → R∪{+∞}
by

Ψ (u) =
{

Φ(u) if u ∈ C(w),

+∞ otherwise.

Then (9) seeks u ∈ C(w)∩D(L)∩D(Ψ ) such that for some u∗ ∈ Ã(w, u) and v∗ ∈ B(γ u),
we have

〈L(u) + u∗ − f , z − u〉X + 〈v∗, γ z − γ u〉Y ≥ Ψ (u) − Ψ (z) for every z ∈ X . (10)

It follows that (10) is equivalent to finding u ∈ D(L) ∩ D(∂Ψ ) such that

f ∈ L(u) + Ã(w, u) + γ ∗B(γ u) + ∂Ψ (u), (11)

where ∂Ψ stands for the convex subdifferential of Ψ .
We define a set-valued map T : X ⇒ X∗ by T (u) := L(u) + Ã(w, u) + ∂Ψ (u),

which is a maximal monotone map because 0X ∈ D(L) ∩ int(D(∂Φ)) that follows from
[HC ] and [HΦ ]. In particular, it holds 0X ∈ D(T ). Moreover, define a set-valued map
S : X ⇒ X∗ by S(u) = γ ∗B(γ u). Due to (6), (7), (8), and [HΦ ], the operator T + S
satisfies the coercivity condition (5). The solvability of (11) follows from Lemma 2.13,
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which confirms the solvability of (9). Thus, we can define a set-valued map P : K ⇒ K
such that for each w ∈ K , P(w) is the solution set of (9), which we have proven to be
nonempty.

Step 2.Wewill show that for eachw ∈ K , the setP(w) of all solutions of (9) is bounded.
Moreover, the following containment holds:

∪w∈K P(w) ⊂ BX (0X , c0), (12)

where BX (0X , c0) is the closed ball in X , which is centered at the origin 0X and has radius
c0.

To prove (12), we set z = 0X in (9), and rearrange the resulting inequality to obtain

〈 f , u〉X − 〈v∗, γ u〉Y ≥ 〈L(u) + u∗, u〉X + Φ(u) − Φ(0X ) ≥ m‖u‖p
X , (13)

where we used the monotonicity of L , the coercivity condition (6), and assumption [HΦ ].
Using the growth condition (7) in (13), we obtain

m‖u‖p
X ≤ ‖ f ‖X∗‖u‖X + τ‖γ ‖p‖u‖p

X + μ‖γ ‖‖u‖X .

Taking into account assumption [HS] and that p > 1, the above estimate leads to the bound:

‖u‖X ≤ (‖ f ‖X∗ + μ‖γ ‖) 1
p−1 (m − τ‖γ ‖p)

− 1
p−1 =: c0. (14)

Since w ∈ K was chosen arbitrarily, the bound (14), which is independent of w, confirms
that (12) holds.

Step 3. Let a closed ball BY ∗(0Y ∗ , c) in Y ∗, centered at the origin 0Y ∗ and of radius
c > 0 that will be fixed later. For fixed w ∈ K and χ∗ ∈ BY ∗(0Y ∗ , c), we consider the
two-parameter evolutionary variational inequality of finding u ∈ C(w)∩D(L)∩D(Φ) such
that for some u∗ ∈ Ã(w, u), we have

〈L(u)+u∗− f , z−u〉X+〈χ∗, γ z−γ u〉Y ≥ Φ(u)−Φ(z) for every z ∈ C(w)∩D(L). (15)

Note that (15) can be written in the form

〈L(u) + u∗ − f + γ ∗χ∗, z − u〉X ≥ Φ(u) − Φ(z) for every z ∈ C(w) ∩ D(L), (16)

ensuring that (15) is an evolutionary monotone variational inequality that can be solved by
Step 1 arguments.

Step 4.We define another variational selection S : K × BY ∗(0Y ∗ , c) → K that associates
to each (w, χ∗) ∈ K × BY ∗(0Y ∗ , c), the set S(w, χ∗) of all solutions of (16). For each
(w, χ∗) ∈ K × BY ∗(0Y ∗ , c), the solution set S(w, χ∗) of (16) is closed and convex, as can
be seen from [34].

Step 5. We begin with computing an upper bound on the solution set of (15). Setting
z = 0X in (15) and using assumption [HΦ ] result in the inequality

〈L(u) + u∗ − f ,−u〉X + 〈χ∗,−γ u〉Y ≥ 0.

Proceeding as in Step 2, we infer that

‖u‖X ≤ m− 1
p−1 (‖ f ‖X∗ + c‖γ ‖) 1

p−1 . (17)

Next, from [HB] and (17), we have for any v∗ ∈ B(γ u) that

‖v∗‖Y ∗ ≤ τ‖γ u‖p−1
Y + μ ≤ τ‖γ ‖p−1m−1(‖ f ‖X∗ + c‖γ ‖) + μ.
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At this point, we determine c from the equation

c = τ‖γ ‖p−1m−1(‖ f ‖X∗ + c‖γ ‖) + μ,

which gives
c = (m − τ‖γ ‖p)−1(τ‖γ ‖p−1‖ f ‖X∗ + mμ).

ForD := Kc0 × BY ∗(0Y ∗ , c), where Kc0 := K ∩ BX (0X , c0) for c and c0 as given above,
we define the set-valued map Q : D ⇒ D by

Q(w, χ∗) = (S(w, χ∗), B(γw)).

The preceding reasoning ensures that the range of Q is in D.
By the aid of Theorem 2.11, we will prove that the map Q has a fixed point. We already

know that Q(D) is bounded.
Since the map S(w, χ∗) is closed and convex valued by Step 4, and since the map B

is closed and convex valued by the assumption, the map Q is closed and convex valued.
Therefore, to ensure that Q has a fixed point by Theorem 2.11, it suffices to show that the
graph of Q is sequentially weakly closed.

Let {(hn, gn)} ⊂ G(Q) be such that hn⇀h and gn⇀g, where hn := (wn, χn), gn :=
(un, ξn), h = (w, χ), and g = (u, ξ). The containment (un, ξn) ∈ Q(wn, χn) implies two
things. Firstly, χn ∈ B(γ un). Secondly,wn ∈ K , un ∈ C(wn)∩D(L)∩D(Φ), and for some
u∗
n ∈ Ã(wn, un), we have

〈L(un)+u∗
n − f , z−un〉X +〈χn, γ z−γ un〉Y ≥ Φ(un)−Φ(z) for all z ∈ C(wn)∩D(L).

(18)
Leveraging the boundedness of the map Ã, up to a subsequence, we have u∗

n⇀u∗ in X∗. To
prove that {L(un)} is bounded, we note that due to the assumption [HC ], we can choose a
ball B in X such that B ⊂ C(wn), for all n. Then by using (18) and the density of D(L) in
X , we deduce that the sequence {L(un)} is bounded from below on the ball B, which implies
that {L(un)} is bounded in X∗. Since L is linear, maximal monotone, it has a weakly closed
graph, and hence we have u ∈ D(L) and L(un)⇀L(u) in X∗. Moreover, due to assumption
[HM ], we have that u ∈ C(w) ∩ D(Φ).

Since u ∈ C(w) ∩ D(L) ∩ D(Φ), by assumption [HM ](b), we obtain a subsequence
{wnk } of {wn} and a sequence {zk} with zk ∈ C(wnk ) ∩ D(L) such that zk → u in X and
Φ(zk) → Φ(u). We return to (18) with n = nk and z = zk to get

〈L(unk ) + u∗
nk − f , zk − unk 〉X + 〈χnk , γ zk − γ unk 〉Y ≥ Φ(unk ) − Φ(zk),

which can be written as

〈u∗
nk , unk − u〉X ≤ 〈u∗

nk , zk − u〉X + 〈L(unk ) − f , zk − unk 〉X
+〈χnk , γ zk − γ unk 〉Y + Φ(zk) − Φ(unk ). (19)

The monotonicity of L , combined with the convergence unk⇀u in X and L(unk )⇀L(u) in
X∗, yield

lim inf
k→∞ 〈L(unk ), unk 〉X ≥ 〈L(u), u〉X . (20)

Equipped with (20), we return to (19), and use [HΦ ] and the compactness of the map γ , to
obtain

lim sup
k→∞

〈u∗
nk , unk − u〉X ≤ 0,
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which further leads to

lim sup
k→∞

〈u∗
nk , unk 〉 = lim sup

k→∞
[〈u∗

nk , unk − u〉 + 〈u∗
nk , u〉] ≤ 〈u∗, u〉.

Therefore, we can invoke Theorem 2.6, which ensures that

u∗ ∈ Ã(w, u) and 〈u∗
nk , unk 〉X → 〈u∗, u〉X . (21)

Let v ∈ C(w) ∩ D(L) be arbitrary. By assumption [HM ](b), there exists vk ∈ C(wnk ) ∩
D(L) (up to a subsequence of {wnk }) such that vk → v in X and Φ(vk) → Φ(v). We return
to use (18) with z = vk and n = nk and obtain

〈L(unk ) + u∗
nk − f , vk − unk 〉X + 〈χnk , γ vk − γ unk 〉Y ≥ Φ(unk ) − Φ(vk). (22)

Letting k → ∞ in (22) and using (20) and (21) lead to

〈L(u) + u∗ − f , v − u〉X + 〈χ, γ v − γ u〉Y ≥ Φ(u) − Φ(v). (23)

We have shown that for u ∈ C(w) ∩ D(L) ∩ D(Φ), there exists u∗ ∈ Ã(w, u) such that for
every v ∈ C(w) ∩ D(L), (23) holds.

On the other hand, since ξn ∈ B(γ un), ξn⇀ξ and un⇀u, we have ξ ∈ B(γ u), thanks
to hypothesis [HB ] and to the fact that γ is compact. Consequently, we have shown that the
graph of Q is sequentially weakly closed. Therefore, we have verified all the conditions of
Theorem 2.11, and as a result, the mapQ admits a fixed point. In other words, there exists an
element (u, ξ) ∈ D such that (u, ξ) ∈ Q(u, ξ). This confirms that u ∈ C(u)∩D(L)∩D(Φ)

and for some u∗ ∈ A(u) = Ã(u, u) and some ξ ∈ B(γ u), we have

〈L(u) + u∗ − f , v − u〉X + 〈ξ, γ v − γ u〉Y ≥ Φ(u) − Φ(v) for every v ∈ C(u) ∩ D(L).

The proof is thus complete. ��
Remark 3.2 When B = 0, we can deduce the solvability of evolutionary quasi-variational
inequalities extending results in [32] from elliptic to parabolic case. Notably, in this scenario,
we can also replace the coercivity condition with a much weaker recessivity condition intro-
duced by Khan and Motreanu [34]. We note that when A is monotone, then the boundedness
restriction can be dropped by the aid of Lemma 2.10 in Theorem 4.3 in the context of the
generalized solutions. See also Khan and Motreanu [34]. This would extend the results in
[15] from elliptic to parabolic and improve the results, even for the elliptic case.

4 Generalized Solution of Evolutionary Quasi-Hemi-Variational
Inequalities

This section investigates the practicality of generalized solutions in the context of evolutionary
quasi-hemi-variational inequalities. In the preceding section, we demonstrated the existence
of solutions by seeking fixed points of the associated variational selection, leading to the
imposition of stringent data assumptions. In contrast, we propose a different approach intro-
ducing generalized solutions through a well-formulated minimization problem, effectively
addressed using a variant of the classical Weierstrass theorem. Remarkably, this alterna-
tive method requires fewer restrictive assumptions on the data. Consequently, we present a
new existence theorem for evolutionary quasi-hemi-variational inequalities to emphasize the
significant disparity between classical and generalized solutions.
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We continue studying the evolutionary quasi-hemi-variational inequality that seeks u ∈
C(u) ∩ D(L) ∩ D(Φ) such that for some u∗ ∈ A(u) and v∗ ∈ B(γ u), we have (1). We also
recall the notion of variational selection. For a fixed element w ∈ K arbitrarily, we consider
the parametric evolutionary variational inequality of finding u ∈ C(w)∩ D(L)∩ D(Φ) such
that for some u∗ ∈ A(u) and v∗ ∈ B(γ u), we have (4). The variational selection̂S : K ⇒ K
associates to each v ∈ K , the set̂S(v) of all solutions of (4).

We now introduce the following optimization problem: find (u, w) ∈ G(̂S) such that

‖u − w‖2X ≤ ‖v − s‖2X for every (v, s) ∈ G(̂S). (24)

If (u, w) ∈ G(̂S) is a minimizer of (24), then the element u ∈ K is called a generalized
solution of the evolutionary quasi-hemi-variational inequality (1).

The following connections between a generalized solution and a classical solution are
readily apparent:

◦ If (24) has a solution (u, w) such that ‖u − w‖X = 0, then (1) has a solution.
◦ If (1) has a solution, then (24) also has a solution, and the solution sets of the two coincide.

Remark 4.1 Considering the preceding observation and adopting established terminology
(see [23, Chapter 5]), the function employed in (24) may aptly be referred to as a “gap
function”. Nevertheless, it is important to note a departure from the conventional usage of
gap functions. In our current context, our focus diverges from pinpointing the optimal value
of this function to attain a solution for the quasi-variational inequalities. Instead, we aim to
find a generalized solution that is typically different from the actual solution.

Many researchers have directed their focus towards (24) instead of (1) to harness the
benefits of a minimization formulation. While the roots of this technique can be traced
back to Mosco’s original work [45], it is important to recognize the valuable contributions
made by Bruckner [12], who investigated the relationship between simpler quasi-variational
inequalities and the associated least-squares optimization problem, see [4, 28]. It should be
noted that another advantage of (24) is its compatibility with numerous numerical procedures
designed for seeking solutions to quasi-variational inequalities by minimizing the gap ‖u −
w‖X for (u, w) ∈ G(̂S).

Based on the classical Weierstrass theorem, we can establish a general existence result
for (24).

Lemma 4.2 [12] Assume that there exists (ũ, w̃) ∈ G(̂S) such that the set

M = {(u, w) ∈ G(̂S) : ‖u − w‖X ≤ ‖ũ − w̃‖X } (25)

is sequentially weakly closed and bounded. Then (24) has a nonempty solution set.

A sufficient condition for the set M ⊂ X × X to be bounded is that the following set is
bounded in X for any constant c,

̂M = {u ∈ X : there exists w ∈ K such that (u, w) ∈ G(̂S) and ‖u − w‖X ≤ c}. (26)

Indeed setting c = ‖ũ − w̃‖X , we notice that if ̂M in (26) is bounded, thenM introduced in
(25) is bounded.

We begin with the following existence result for evolutionary quasi-hemi-variational
inequalities.
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Theorem 4.3 Let X and Y be reflexive Banach spaces with X∗ and Y ∗ as their dual spaces,
let γ : X → Y be a compact linear map, and let γ ∗ : Y ∗ → X∗ be the adjoint of γ . Let
K ⊂ X be a closed and convex set. We assume the conditions: [HL ], [HΦ ], [HC ], [HM ],
and

[HA]′ A : X ⇒ X∗ is a maximal monotone map with 0X ∈ A(0X ) and K ⊂ int(D(A)).
[HB ]′ B : Y ⇒ Y ∗ is a bounded map with sequentially strongly-weakly closed graph and

nonempty, closed, and convex values.
[HS]′ The maps A and S := γ ∗Bγ fulfill

inf
w∗∈Au,u∗∈Su

〈u∗ + w∗, u〉X
‖u‖X → ∞ as ‖u‖X → ∞, u ∈ K . (27)

Then the evolutionary quasi-hemi-variational inequality (1) has a generalized solution, that
is, the minimization problem (24) defined through the variational solution associated to (1)
has a solution.

Proof We will break down the proof into three parts, demonstrating that the set M defined
in (25) is nonempty, sequentially weakly closedness, and bounded, which will prove the
existence of a minimizer of (24), leveraging the application of Lemma 4.2. This proves the
existence of a generalized solution of (1).

Step 1.As done in the first step of Theorem 3.1, with a fixedw ∈ K , we define a functional
Ψ : X → R ∪ {+∞} by

Ψ (u) =
{

Φ(u) if u ∈ C(w),

+∞ otherwise,

and pose, for a fixed parameter w, the inclusion of finding u ∈ D(L) ∩ D(∂Ψ ) such that

f ∈ L(u) + A(u) + γ ∗B(γ u) + ∂Ψ (u).

We also define the set-valuedmap T : X ⇒ X∗ by T (u) := L(u)+A(u)+∂Ψ (u), which is a
maximal monotone map with 0 ∈ D(T ). Due to the coercivity condition (27), the solvability
of (1) follows from Lemma 2.13. Thus, for any w ∈ K , the solution set ̂S(w) of (1) is
nonempty.

Step 2. We claim that the graph G(̂S) of ̂S is sequentially weakly closed in X × X . To
verify the claim, assume that {(un, wn)} ⊂ G(̂S) is a sequence converging weakly to (w, u)

in X × X . Then, wn ∈ K , un ∈ C(wn) ∩ D(L) ∩ D(Φ) and for some u∗
n ∈ A(un) and for

some s∗
n ∈ B(γ un), we have

〈L(un)+u∗
n − f , z−un〉X +〈s∗

n , γ z−γ un〉Y ≥ Φ(un)−Φ(z) for all z ∈ C(wn)∩ D(L).

(28)
Assumption [HC ] allows us to choose a ball B in X such thatB ⊂ C(wn) for all n. Utilizing
(28), and proceeding as before in the proof of Theorem 3.1, we infer the boundedness of the
sequence {L(un)} in X∗, that u ∈ D(L), and L(un)⇀L(u) in X∗. Moreover, by assumption
[HM ] (b), we have u ∈ C(w).

We will now prove that the sequence {u∗
n} is bounded in X∗. Because u ∈ C(w) ∩ D(L),

we invoke assumption [HM ] (b) and obtain a relabeled subsequence of {wn} and a sequence
zn ∈ C(wn) ∩ D(L) with zn → u in X and Φ(zn) → Φ(u). We insert z = zn in (28) to get

〈L(un) + u∗
n − f , zn − un〉X + 〈s∗

n , γ zn − γ un〉Y + Φ(zn) − Φ(un) ≥ 0.
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We employ Lemma 2.10 for the operator A − f , and for certain constants c > 0 and r > 0
we obtain

r‖u∗
n − f ‖X ≤ 〈u∗

n − f , un − u〉X + c(r + ‖un − u‖X )

= 〈u∗
n − f , un − zn〉X + 〈u∗

n − f , zn − u〉X + c(r + ‖un − u‖X )

≤ ‖u∗
n − f ‖X∗‖zn − u‖X + c(r + ‖un − u‖X )

+〈L(un), zn − un〉X + Φ(zn) − Φ(un) + 〈s∗
n , γ zn − γ un〉Y ,

which can be written as follows:

[r − ‖zn − u‖X ]‖u∗
n − f ‖X∗ ≤ c(r + ‖un − u‖X ) + 〈L(un), zn − un〉X

+Φ(zn) − Φ(un) + 〈s∗
n , γ zn − γ un〉Y . (29)

Recalling that zn → u in X and noting that the right-hand side in (29) is bounded, we obtain
that {u∗

n} is bounded.
Moreover, since the map γ : X → Y is compact, we have that γ un → γ u in Y . Also,

leveraging [HB ]′, along a relabeled sequence, we have s∗
n⇀s∗ in Y ∗ with s∗ ∈ B(γ u).

Let v ∈ C(w) ∩ D(L). Invoking assumption [HM ] (b), there exists vk ∈ C(wnk ) ∩ D(L)

such that vk → v in X and Φ(vk) → Φ(v). From (28), with z = vk , u∗
nk ∈ A(unk ) and

s∗
nk ∈ B(γ unk ), we obtain

〈L(unk ) + u∗
nk − f , vk − unk 〉X + 〈s∗

nk , γ vk − γ unk 〉Y + Φ(vk) − Φ(unk ) ≥ 0.

Then, for any v∗ ∈ A(v), the above inequality can be written as follows:

〈L(v) + v∗, unk − v〉X ≤ 〈L(v) + v∗, unk − v〉X + 〈L(unk ) + u∗
nk − f , vk − unk 〉X

+Φ(vk) − Φ(unk ) + 〈s∗
nk , γ vk − γ unk 〉Y

= 〈L(unk )+u∗
nk , vk−v〉X +〈L(unk )+u∗

nk − L(v) −v∗, v− unk 〉X
+〈s∗

nk , γ vk − γ unk 〉Y + 〈 f , unk − vk〉X + Φ(vk) − Φ(unk )

≤ 〈L(unk ) + u∗
nk , vk − v〉X + 〈 f , unk − vk〉X

+Φ(vk) − Φ(unk ) + 〈s∗
nk , γ vk − γ unk 〉Y ,

where we used the monotonicity of A and L . In the limit, the above inequality reads as
follows:

〈L(v) + v∗, u − v〉X ≤ Φ(v) − Φ(u) + 〈 f , u − v〉X + 〈s∗, γ v − γ u〉Y .

Therefore, we have shown that u ∈ C(w) ∩ D(L) ∩ D(Φ) and for every v∗ ∈ A(v) and for
some s∗ ∈ B(γ u), we have

〈L(v)+v∗− f , v−u〉X+〈s∗, γ v−γ u〉Y ≥ Φ(u)−Φ(v) for every v ∈ C(w)∩D(L). (30)

We claim that (30) implies that for u ∈ C(u) ∩ D(L) ∩ D(Φ) there exists u∗ ∈ A(u) such
that

〈L(u)+u∗− f , v−u〉X +〈s∗, γ v−γ u〉Y ≥ Φ(u)−Φ(v) for all v ∈ C(w)∩D(L). (31)

Indeed, by the definition of the convex subdifferential, for all v ∈ C(u) ⊂ D(∂Φ), w∗ ∈
∂Φ(v), and z ∈ X , we have

Φ(z) − Φ(v) ≥ 〈w∗, z − v〉X .
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We set z = u in the above inequality and combine it with (30) to deduce that for any
v ∈ C(w) ∩ D(L), for any w∗ ∈ ∂Φ(v), and for any v∗ ∈ A(v), we have

〈L(v) + v∗ + w∗ + γ ∗s∗ − f , v − u〉X ≥ 0. (32)

We define a set-valued map T : X ⇒ X∗ by T := L + A + NC(w) + ∂Φ, where NC(w) is
the normal cone to C(w) (i.e., the subdifferential of the indicator function of C(w)). Then
T is a maximal monotone map with D(T ) = C(w) ∩ D(L) (see, e.g., [53, Theorem 32.1]).
Thus, for any v ∈ C(w) ∩ D(L) and for any t∗ ∈ NC(w)(v) by (32), we have

〈L(v) + v∗ + w∗ + t∗ + γ ∗s∗ − f , v − u〉X
= 〈L(v) + v∗ + w∗ + γ ∗s∗ − f , v − u〉X + 〈t∗, v − u〉X ≥ 0,

which, due to the fact that T is maximal monotone, yields f − γ ∗s∗ ∈ (L + A + ∂Φ +
NC(w))(u).

As a consequence, there are u∗ ∈ A(u), t̄∗ ∈ NC(w)(u), and s̄∗ ∈ ∂Φ(u) such that

L(u) + u∗ + t̄∗ + s̄∗ + γ ∗s∗ − f = 0.

Then the inequalities 〈t̄∗, v − u〉X ≤ 0 and Φ(v) − Φ(u) ≥ 〈s̄∗, v − u〉X for all v ∈
C(w) ∩ D(L) imply

〈L(u)+ u∗ − f , v − u〉X +〈s∗, γ v − γ u〉Y = 〈t̄∗, u − v〉X +〈s̄∗, u − v〉X ≥ Φ(u)−Φ(v),

and hence (31) holds. This proves that (u, w) ∈ G(̂S), so the graph G(̂S) is sequentially
weakly closed, thereby the set M in (25) is sequentially weakly closed.

Step 3.We claim that the setM in (25) is bounded. For this, by Lemma 4.2 it suffices to
show that the set ̂M, defined in (26), is bounded. Suppose by contradiction that the set ̂M is
unbounded. Hence, there exists a sequence {un} ⊂ ̂M such that ‖un‖X → ∞ as n → ∞.

Let wn ∈ K be such that un ∈ ̂S(wn) and ‖un − wn‖X ≤ c for all n, with a constant
c > 0. Thus, un ∈ C(wn) ∩ D(L) ∩ D(Φ) and there are u∗

n ∈ A(un) and s∗
n ∈ B(γ un) such

that (28) holds. We set z = 0X and arrive at

〈u∗
n, un〉X + 〈s∗

n , γ un〉Y ≤ C‖un‖X ,

where C > 0 is a constant, contradicting the coercivity condition (27). Therefore, the set ̂M

ought to be bounded.
Given the above three steps, all the conditions ofLemma4.2 aremet, ensuring the existence

of a generalized solution for (1). The proof is thus complete. ��

Remark 4.4 We note that the above existence result for generalized solutions does not require
the compatibility assumption that was used to prove the existence of solutions.

5 An Application to a Nonlinear Optimal Control Problem

We now focus on the optimal control of evolutionary quasi-hemi variational inequality (1).
For this, let the control space V be a reflexive Banach space, and let U ⊂ V be a nonempty,
closed, and convex set of admissible controls. Given a control w ∈ U and a compact map
G : V → X∗, the associated state u(w) = u is a solution of the following evolutionary
quasi-hemi-variational inequality of finding u ∈ C(u) ∩ D(L) ∩ D(Φ) such that for some
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u∗ ∈ A(u) and v∗ ∈ B(γ u), we have

〈L(u) + u∗ − f , z − u〉X + 〈v∗, γ z − γ u〉Y
≥ 〈G(w), z − u〉X + Φ(u) − Φ(z) for all z ∈ C(u) ∩ D(L). (33)

Given another Banach space, the so-called observation space, W , a compact map Γ :
V → W , and a target Υ ∈ W , we introduce the following cost function:

J (w) := ‖Γ (u(w)) − Υ ‖2W + ε‖w‖2V .

Here ‖ · ‖W is the norm of the observation space W , ‖ · ‖V is the norm of the control space
V , ε > 0 is the regularization parameter, and u(w) is a solution of the quasi variational
inequality (33) for control w.

We formulate the optimal control problem that seeks w ∈ U by solving the minimization
problem:

min
w∈U J (w).

The above optimal control problem encompasses several noteworthy optimal control prob-
lems as specific instances. Indeed, one can derive optimal control problems for single-valued
quasi-variational inequalities, set-valued and single-valued variational inequalities, and com-
plementarity problems by appropriately adjusting the data.

We have the following existence results for the optimal control problem:

Theorem 5.1 Assume that the hypotheses of Theorem 3.1 hold. Then the optimal control
problem (33) has at least one solution.

Proof Since the functional J is positive and coercive, there exists a minimizing sequence
{wn} ⊂ U , such that

lim
n→∞ J (wn) = lim

n→∞
{‖Γ (un) − Υ ‖2W + ε‖wn‖2V

} = inf{J (w) : w ∈ U },
where un is chosen from the set of all solutions of (33) that correspond to the controlwn, that
is, un = u(wn). Consequently, un ∈ C(un) ∩ D(L) ∩ D(Φ) such that for some u∗

n ∈ A(un)
and v∗

n ∈ B(γ un), we have

〈L(un) + u∗
n − f , z − un〉X + 〈v∗

n , γ z − γ un〉Y
≥ 〈G(wn), z − un〉X + Φ(un) − Φ(z) for all z ∈ C(un) ∩ D(L). (34)

Since ε‖wn‖2 ≤ J (wn), the sequence {wn} is bounded in the reflexive Banach space V , and
hence we can extract a weakly convergent subsequence from {wn}. Using the same notations
for all the subsequences as well, let {wn} be a subsequence that converges weakly to some
w̄ ∈ V . Moreover, the set U , being closed and convex is weakly closed, and hence, we have
w̄ ∈ U .

We next claim that the sequence {un} is bounded. For this, we insert v = 0X into (34),
and by performing a simple computation, obtain

m‖un‖p
X ≤ ‖ f ‖X∗‖un‖X + ‖G(wn)‖X∗‖un‖X + (τ‖γ un‖p−1

X + μ)‖γ ‖‖un‖X
≤ [‖ f ‖X∗ + ‖G(wn)‖X∗ ] ‖un‖X + τ‖γ ‖p‖un‖p

X + μ‖γ ‖‖un‖X ,

and consequently

‖un‖X ≤
[‖ f ‖X∗ + ‖G(wn)‖X∗ + μ‖γ ‖

m − τ‖γ ‖p

] 1
p−1

,
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which proves that {un} is bounded. Since X is a reflexive Banach space, we can extract a
weakly convergent subsequence from {un}. Keeping the same notations for subsequences, let
{un} be such a subsequence that converges weakly to some ū. We will show that ū = u(w̄).

We first note that due to [HM ](a), we have ū ∈ C(ū) ∩ D(L) ∩ D(Φ). Furthermore, as
in the proof of Theorem 3.1, we choose a ball B in X such that B ⊂ C(un) for all n. Then
(34) and the density of D(L) in X ensure that the sequence {L(un)} is uniformly bounded
from below on the ball B, which guarantees that {L(un)} is bounded in X∗. Since L is linear
and maximal monotone, it has a weakly closed graph, which implies that ū ∈ D(L) and
L(un)⇀L(ū) in X∗. Then according to assumption [HM ](a) we have ū ∈ V (w). Note that
ū ∈ D(Φ).

Since ū ∈ C(ū) ∩ D(L) ∩ D(Φ), we employ assumption corresponding to which there
exists a sequence {zn} with zn ∈ C(un) ∩ D(L), zn → ū in X and Φ(zn) → Φ(ū). We
substitute v = zn in (34) to get

〈L(un) + u∗
n − f , zn − un〉X + 〈v∗

n , γ zn − γ un〉Y ≥ 〈G(wn), zn − un〉X + Φ(un) − Φ(zn),

which can be rearranged as

〈u∗
n, un − ū〉X ≤ 〈u∗

n, znū〉X + 〈L(un) − f − G(wn), zn − un〉X
+〈v∗

n , γ zn − γ un〉Y + Φ(zn) − Φ(un). (35)

Leveraging the monotonicity of L , coupled with un⇀ū in X and L(un)⇀L(ū) in X∗, we
obtain

lim inf
n→∞ 〈L(un), un〉X ≥ 〈L(ū), ū〉X .

Since the map γ : X → Y is compact, we have that γ un → γ u in Y . Moreover, due to
[HB ], along a relabeled sequence, we have v∗

n⇀v∗ in Y ∗ with v∗ ∈ B(γ ū). Furthermore,
since the map A is bounded by assumption, up to a subsequence, we have u∗

n⇀u∗ in X∗.
Consequently, it follows from (35) that

lim sup
n→∞

〈u∗
n, un − ū〉X ≤ 0.

Wecan now invoke the key characterization of the semi-monotonemaps given in Theorem2.6
to ensure that

ū ∈ A(ū) and 〈u∗
n, un〉X → 〈u∗, ū〉X .

For any v ∈ C(u) ∩ D(L), assumption [HM ](b) permits us to find a sequence {vn} with
vn ∈ C(un) ∩ D(L) satisfying vn → v in X and Φ(vn) → Φ(v). Inserting z = vn into (35),
we have

〈L(un) + u∗
n − f , vn − un〉X + 〈v∗

n , γ vn − γ un〉Y ≥ 〈G(wn), vn − un〉X + Φ(un) − Φ(vn),

which when passed to the limit n → ∞ implies that

〈L(ū) + u∗, v − ū〉X + 〈 f , v − ū〉X + 〈v∗, γ v − γ ū〉Y
≥ 〈G(w̄), v − ū〉X + Φ(ū) − Φ(v̄) for all v ∈ C(ū) ∩ D(L),

proving that ū = u(w̄).
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Finally, we have

J (w̄) = ‖Γ (u(w̄)) − Υ ‖2 + ε‖w̄‖2
≤ lim inf

n→∞ ‖Γ (un) − Υ ‖2 + lim inf
n→∞ ε‖wn‖2

≤ lim inf
n→∞ J (wn)

= lim
n→∞ J (wn)

= inf{J (w) : w ∈ U },
ensuring that w̄ is a solution. This completes the proof. ��

6 Concluding Remarks

We gave new existence results for solutions and generalized solutions for evolutionary hemi-
quasi variational inequalities involving the sum of a semi-monotone and a pseudo-monotone
map. The main contribution is to define the variational selection to disentangle the mono-
tonic and pseudo-monotonic components, which allowed us to circumvent the frequently
assumed requirement that the sum of the two maps must be monotone. Additionally, we also
gave a new application to optimal control problems governed by evolutionary hemi-quasi
variational inequalities. It is of great interest to extend the developed theory to the inverse
problem of parameter identification in quasi-hemi variational inequalities. Regarding the
recent advancements in inverse problems research, see [14, 21, 22, 29, 30, 35, 36, 41, 42,
54–56], as well as the relevant references cited within them.
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