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Abstract
This paper studies the polynomial optimization problem whose feasible set is a union of
several basic closed semialgebraic sets. We propose a unified hierarchy of Moment-SOS
relaxations to solve it globally. Under some assumptions, we prove the asymptotic or finite
convergence of the unified hierarchy. Special properties for the univariate case are discussed.
The application for computing (p, q)-norms of matrices is also presented.
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1 Introduction

We consider the optimization problem
⎧
⎨

⎩

min f (x)

s.t. x ∈ K :=
m⋃

l=1
Kl ,

(1.1)

where each Kl is the basic closed semialgebraic set given as

Kl =
{

x ∈ R
n

∣
∣
∣
∣
∣

c(l)
i (x) = 0 (i ∈ E(l)),

c(l)
j (x) ≥ 0 ( j ∈ I(l))

}

.

Here, all functions f , c(l)
i , c(l)

j are polynomials in x := (x1, . . . , xn); all E(l) and I(l) are
finite labeling sets. We aim at finding the global minimum value fmin of (1.1) and a global
minimizer x∗ if it exists. It is worthy to note that solving (1.1) is equivalent to solving m
standard polynomial optimization problems by minimizing f (x) over each Kl separately,
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for l = 1, . . . ,m. When K is nonempty and compact, fmin is achievable at a feasible point,
and (1.1) has a minimizer. When K is unbounded, a minimizer may or may not exist. We
refer to [28, Section 5.1] for the existence of optimizers when the feasible set is unbounded.

The optimization (1.1) contains a broad class of problems. For the case m = 1, if all
functions are linear, then (1.1) is a linear program (LP); if f is quadratic and all c(l)

i , c(l)
j are

linear, then (1.1) is a quadratic program (QP); if all f , c(l)
i , c(l)

j are quadratic, then (1.1) is
a quadratically constrained quadratic program (QCQP). Polynomial optimization has wide
applications, including combinatorial optimization [4, 18], optimal control [8], stochastic
and robust optimization [34, 35, 44], generalized Nash equilibrium problems [30, 31, 33],
and tensor optimization [5, 26, 32, 36].

When the feasible set K is a single basic closed semialgebraic set (i.e., m = 1) instead
of a union of several ones, the problem (1.1) becomes a standard polynomial optimization
problem. There exists much work for solving standard polynomial optimization problems. A
classical approach for solving themglobally is the hierarchyofMoment-SOS relaxations [12].
Under the archimedeanness for constraining polynomials, this hierarchy gives a sequence of
convergent lower bounds for the minimum value fmin . TheMoment-SOS hierarchy has finite
convergence if the linear independence constraint qualification, the strict complementarity
and the second order sufficient conditions hold at every global minimizer [25]. When the
equality constraints define a finite set, this hierarchy is also tight [14, 16, 24]. We refer to the
books and surveys [8, 9, 13, 17, 28] for introductions to polynomial optimization.

Contributions When m > 1, the difficulty for solving the optimization problem (1.1)
increases. A straightforward approach to solve (1.1) is to minimize f (x) over each Kl sep-
arately, for l = 1, . . . ,m. By doing this, we reduce the problem (1.1) into m standard
polynomial optimization problems.

In this paper, we propose a unifiedMoment-SOS hierarchy for solving (1.1). The standard
kth order moment relaxation for minimizing f (x) over the subset Kl is (for l = 1, . . . ,m)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min 〈 f , y(l)〉
s.t. V

(2k)

c(l)
i

[y(l)] = 0 (i ∈ E(l)),

L(k)

c(l)
j

[y(l)] � 0 ( j ∈ I(l)),

Mk[y(l)] � 0,
y(l)
0 = 1, y(l) ∈ R

N
n
2k .

(1.2)

We refer to Section 2 for the above notation. The unified moment relaxation we propose
in this paper is ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min 〈 f , y(1)〉 + · · · + 〈 f , y(m)〉
s.t. V

(2k)

c(l)
i

[y(l)] = 0 (i ∈ E(l)),

L(k)

c(l)
j

[y(l)] � 0 ( j ∈ I(l)),

Mk[y(l)] � 0,
∑m

l=1 y
(l)
0 = 1,

y(l) ∈ R
N
n
2k , l = 1, . . . ,m.

(1.3)

For k = 1, 2, . . ., this gives a unified hierarchy of relaxations.
A major advantage of (1.3) is that it gives a unified convex relaxation for solving (1.1)

instead of solving it over each Kl separately. It gives a sequence of lower bounds for the
minimum value fmin of (1.1). Under the archimedeanness, we can prove the asymptotic
convergence of this unified hierarchy. Moreover, under some further local optimality condi-
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tions, we can prove its finite convergence. We, in addition, study the special properties for
the univariate case. When n = 1, there are nice representations for polynomials that are non-
negative over intervals. The resulting unified Moment-SOS relaxations can be expressed in a
moremathematically concisemanner.We also present numerical experiments to demonstrate
the efficiency of our unified Moment-SOS hierarchy.

An application of (1.1) is to compute the (p, q)-norm of a matrix A:

‖A‖p,q := max
x 	=0

‖Ax‖p

‖x‖q = max‖x‖q=1
‖Ax‖p,

where p, q are positive integers. When p and q are both even, this is a standard polynomial
optimization problem. If one of them is odd, the norm ‖A‖p,q can be expressed as the optimal
value of a problem like (1.1). For instance, when p = 4 and q = 3, we can formulate this
problem as {

max (‖Ax‖4)4
s.t. |x1|3 + · · · + |xn |3 = 1.

(1.4)

The feasible set of the above can be expressed in the union form as in (1.1). It is interesting to
note that the number of sets in the union is 2n , so the difficulty of (1.4) increases substantially
as n gets larger. More details are given in Section 5.

The paper is organized as follows. Section 2 introduces the notation and some preliminary
results about polynomial optimization. Section 3 gives the unified hierarchy ofMoment-SOS
relaxations; the asymptotic and finite convergence are proved under certain assumptions.
Section 4 studies some special properties of univariate polynomial optimization. Section 5
gives numerical experiments and applications. Section 6 draws conclusions and makes some
discussions for future work.

2 Preliminaries

Notation The symbol N (resp., R) stands for the set of nonnegative integers (resp., real
numbers). For an integer m > 0, denote [m] := {1, 2, . . . ,m}. For a scalar t ∈ R, 
t�
denotes the smallest integer greater than or equal to t , and �t denotes the largest integer less
than or equal to t . For a polynomial p, deg(p) denotes its total degree and vec(p) denotes its
coefficient vector. For two vectors a and b, the notation a ⊥ b means they are perpendicular.
The superscript T denotes the transpose of a matrix or vector. For a symmetric matrix X ,
X � 0 (resp., X � 0) means that X is positive semidefinite (resp., positive definite). The
symbol Sn+ stands for the set of all n-by-n real symmetric positive semidefinite matrices. For
two symmetric matrices X and Y , the inequality X � Y (resp., X � Y ) means that X−Y � 0
(resp., X − Y � 0). For x := (x1, . . . , xn) and a power vector α := (α1, . . . , αn) ∈ N

n ,
denote |α| := α1 + · · · + αn and the monomial xα := xα1

1 · · · xαn
n . For a real number q ≥ 1,

the q-norm of x is denoted as ‖x‖q := (|x1|q + · · · + |xn |q)1/q . The notation
N
n
d := {α ∈ N

n : |α| ≤ d}
denotes the set of monomial powers with degrees at most d . The symbol RN

n
d denotes the

space of all real vectors labeled by α ∈ N
n
d . The column vector of all monomials in x and of

degrees up to d is denoted as

[x]d := [
1 x1 · · · xn x21 x1x2 · · · xdn

]T
.
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The notation R[x] := R[x1, . . . , xn] stands for the ring of polynomials in x with real
coefficients. Let R[x]d be the set of real polynomials with degrees at most d . Denote by
P(K ) the cone of polynomials that are nonnegative on K and let

Pd(K ) := P(K ) ∩ R[x]d .
In the following, we review some basics of polynomial optimization. For a tuple h :=

(h1, . . . , hs) of polynomials in R[x], let
Ideal[h] := h1 · R[x] + · · · + hs · R[x].

The 2kth truncation of Ideal[h] is

Ideal[h]2k := h1 · R[x]2k−deg(h1) + · · · + hs · R[x]2k−deg(hs ).

The real variety of h is
VR(h) = {x ∈ R

n : h(x) = 0}.
A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) if there are polynomials

q1, . . . , qt ∈ R[x] such that σ = q21 + · · · + q2t . The convex cone of all SOS polynomials in
x is denoted as �[x]. We refer to [8, 13, 17, 28] for more details. For a tuple of polynomials
g := (g1, . . . , gt ), its quadratic module is (let g0 := 1)

QM[g] :=
{

t∑

i=0

σi gi | each σi ∈ �[x]
}

.

For a positive integer k, the degree-2k truncation of QM[g] is

QM[g]2k :=
{

t∑

i=0

σi gi | σi ∈ �[x], deg(σi gi ) ≤ 2k

}

.

The quadratic module QM[g] is said to be archimedean if there exists q ∈ QM[g] such
that the set

S(q) := {x ∈ R
n | q(x) ≥ 0}

is compact.

Theorem 2.1 [39] If QM[g] is archimedean and a polynomial f > 0 on S(g), then f ∈
QM[g].

A vector y := (yα)α∈Nn
2k
is said to be a truncated multi-sequences (tms) of degree 2k. For

y ∈ R
N
n
2k , the Riesz functional determined by y is the linear functional Ly acting on R[x]2k

such that

Ly

⎛

⎝
∑

α∈Nn
2k

pαx
α

⎞

⎠ :=
∑

α∈Nn
2k

pα yα.

For convenience, we denote

〈p, y〉 := Ly(p), p ∈ R[x]2k .
The localizing matrix and localizing vector of p generated by y are respectively

L(k)
p [y] := Ly

(
p(x) · [x]s1 [x]Ts1

)
,

V(2k)
p [y] := Ly

(
p(x) · [x]s2

)
.
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In the above, the linear operator is applied component-wisely and

s1 := �k − deg(p)/2, s2 := 2k − deg(p).

We remark that L(k)
p [y] � 0 if and only if Ly ≥ 0 on QM[p]2k , and V

(2k)
p [y] = 0 if

and only if Ly = 0 on Ideal[p]2k . More details for this can be found in [13, 17, 28]. The

localizing matrix L(k)
p [y] satisfies the following equation

〈

p(x)
(
vT [x]s

)2
, y

〉

= vT
(
L(k)
p [y]

)
v

for the degree s := k − 
deg(p)/2� and for every vector v of length
(n+s

s

)
. For instance,

when n = 3, k = 3 and p = x1x2x3 − x33 ,

L(3)
p [y] =

⎡

⎢
⎢
⎣

y111 − y003 y211 − y103 y121 − y013 y112 − y004
y211 − y103 y311 − y203 y221 − y113 y212 − y104
y121 − y013 y221 − y113 y131 − y023 y122 − y014
y112 − y004 y212 − y104 y122 − y014 y113 − y005

⎤

⎥
⎥
⎦ .

In particular, for p = 1,we get themomentmatrix Mk[y] := L(k)
1 [y]. Similarly, the localizing

vector V(2k)
p [y] satisfies

〈
p(x)

(
vT [x]t

)
, y

〉
=

(
V(2k)
p [y]

)T
v

for t := 2k − deg(p). For instance, when n = 3, k = 2 and p = x21 + x22 + x23 − 1,

V(4)
p [y] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y200 + y020 + y002 − y000
y300 + y120 + y102 − y100
y210 + y030 + y012 − y010
y201 + y021 + y003 − y001
y400 + y220 + y202 − y200
y310 + y130 + y112 − y110
y301 + y121 + y103 − y101
y220 + y040 + y022 − y020
y211 + y031 + y013 − y011
y202 + y022 + y004 − y002

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is worthy to note that if L(k)
gi [y] � 0 and f ∈ QM[g]2k , then 〈 f , y〉 ≥ 0. This can be

seen as follows. For f = ∑t
i=0 giσi with σi = ∑

j p
2
i j ∈ �[x] and deg(giσi ) ≤ 2k, we

have

〈 f , y〉 =
〈

t∑

i=0

giσi , y

〉

=
∑

i, j

vec(pi j )
T

(
L(k)
gi [y]

)
vec(pi j ) ≥ 0.

A tms y ∈ R
N
n
2k is said to admit a Borel measure μ if

yα =
∫

xαdμ for all α ∈ N
n
2k .

Such μ is called a representing measure for y. The support of μ is the smallest closed set
S ⊆ R

n such that μ(Rn \ S) = 0, denoted as supp(μ). The measure μ is said to be supported
in a set K if supp(μ) ⊆ K .
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2.1 Moment Relaxation

Consider the polynomial optimization problem
⎧
⎨

⎩

min f (x)
s.t. ci (x) = 0 (i ∈ E),

c j (x) ≥ 0 ( j ∈ I),

(2.1)

where f , ci , c j are polynomials in x . The kth order moment relaxation for (2.1) is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min 〈 f , y〉
s.t. V

(2k)
ci [y] = 0 (i ∈ E),

L(k)
c j [y] � 0 ( j ∈ I),

Mk[y] � 0,
y0 = 1, y ∈ R

N
n
2k .

Suppose the tms y∗ is a minimizer of above. Denote the degree

d := max
i∈E∪I{
deg(ci )/2�}.

We can extract minimizers if y∗ satisfies the flat truncation condition: there exists an integer
k ≥ t ≥ max{d, deg( f )/2} such that

rank Mt−d [y∗] = rank Mt [y∗]. (2.2)

Interestingly, if (2.2) holds, we can extract r := rank Mt [y∗]minimizers for the optimization
problem (2.1).

The following result is based on work by Curto and Fialkow [3] and Henrion and Lasserre
[6]. The form of the result as presented here can be found in book [28, Section 2.7].

Theorem 2.2 [3, 6] If y∗ satisfies (2.2), then there exist r := rank Mt [y∗] distinct feasible
points u1, . . . , ur for (2.1) and positive scalars λ1, . . . , λr such that

y∗|2t = λ1[u1]2t + · · · + λr [ur ]2t .
In the above, the notation y∗|2t stands for its subvector of entries that are labeled by α ∈ N

n
2t .

2.2 Optimality Conditions

Suppose u is a local minimizer of (2.1). Denote the active labeling set

J (u) := { j ∈ I : c j (u) = 0}.
The linear independence constraint qualification condition (LICQC) holds at u if the

gradient set {∇ci (u)}i∈E∪J (u) is linearly independent. When LICQC holds, there exists a
Lagrange multiplier vector

λ := (λi )i∈E ∪ (λ j ) j∈I

satisfying the Karush–Kuhn–Tucker (KKT) conditions

∇ f (u) =
∑

i∈E
λi∇ci (u) +

∑

j∈I
λ j∇c j (u), (2.3)

0 ≤ c j (u) ⊥ λ j ≥ 0, for all j ∈ I. (2.4)
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The equation (2.3) is known as the first order optimality condition (FOOC), and (2.4) is
called the complementarity condition (CC). If, in addition, λ j + c j (u) > 0 for all j ∈ I, the
strict complementarity condition (SCC) is said to hold at u. For the λi satisfying (2.3)–(2.4),
the Lagrange function is

L(x) := f (x) −
∑

i∈E
λi ci (x) −

∑

j∈I
λ j c j (x).

The Hessian of the Lagrangian is

∇2L(x) := ∇2 f (x) −
∑

i∈E
λi∇2ci (x) −

∑

j∈I
λ j∇2c j (x).

If u is a local minimizer and LICQC holds, the second order necessary condition (SONC)
holds at u:

vT
(∇2L(u)

)
v ≥ 0 for all v ∈

⋂

i∈E∪J (u)

∇ci (u)⊥,

where ∇ci (u)⊥ := {v ∈ R
n | ∇ci (u)T v = 0}. Stronger than SONC is the second order

sufficient condition (SOSC):

vT
(∇2L(u)

)
v > 0 for all 0 	= v ∈

⋂

i∈E∪J (u)

∇ci (u)⊥.

If a feasible point u satisfies FOOC, SCC, and SOSC, then u must be a strict local
minimizer. We refer to the book [1] for optimality conditions in nonlinear programming.

3 A UnifiedMoment-SOS Hierarchy

In this section, we give a unified hierarchy of Moment-SOS relaxations to solve (1.1). Under
some assumptions, we prove this hierarchy has asymptotic or finite convergence.

3.1 UnifiedMoment-SOS relaxations

For convenience of description, we denote the equality and inequality constraining polyno-
mial tuples for Kl as

c(l)
eq := (c(l)

i )i∈E(l) , c(l)
in := (c(l)

j ) j∈I(l) .

Recall that Ideal[c(l)
eq ] denotes the ideal generated by c(l)

eq and QM[c(l)
in ] denotes the

quadratic module generated by c(l)
in . We refer to Section 2 for the notation. The minimum

value of (1.1) is denoted as fmin and its feasible set is K . We look for the largest scalar γ

that is a lower bound of f over K , i.e., f − γ ∈ P(K ). Since

K = K1 ∪ K2 ∪ · · · ∪ Km,

we have f − γ ≥ 0 on K if and only if f − γ ≥ 0 on Kl for every l = 1, . . . ,m. Note that
f − γ ≥ 0 on Kl is ensured by the membership (for some degree 2k)

f − γ ∈ Ideal[c(l)
eq ]2k + QM[c(l)

in ]2k .
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The kth order SOS relaxation for solving (1.1) is therefore
⎧
⎨

⎩

max γ

s.t. f − γ ∈
m⋂

l=1

[
Ideal[c(l)

eq ]2k + QM[c(l)
in ]2k

]
.

(3.1)

The dual optimization of (3.1) is then the moment relaxation
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min 〈 f , y(1)〉 + · · · + 〈 f , y(m)〉
s.t. V

(2k)

c(l)
i

[y(l)] = 0 (i ∈ E(l)),

L(k)

c(l)
j

[y(l)] � 0 ( j ∈ I(l)),

Mk[y(l)] � 0,
∑m

l=1 y
(l)
0 = 1,

y(l) ∈ R
N
n
2k , l = 1, . . . ,m.

(3.2)

The integer k is called the relaxation order. For k = 1, 2, . . ., the sequence of primal-dual
pairs (3.1)–(3.2) is called the unifiedMoment-SOS hierarchy. For each k, we denote by fsos,k
and fmom,k the optimal values of (3.1) and (3.2), respectively. We remark that the moment
relaxation (3.2) can be equivalently written in terms of Riesz functional. Let L(l) denote the
Riesz functional given by y(l), then (3.2) is equivalent to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min L(1)( f ) + · · · + L(m)( f )

s.t. L(l) = 0 on Ideal[c(l)
eq ]2k,

L(l) ≥ 0 on QM[c(l)
in ]2k,

L(1)(1) + · · · + L(m)(1) = 1,
l = 1, . . . ,m.

Proposition 3.1 For each relaxation order k, it holds that

fsos,k ≤ fmom,k ≤ fmin . (3.3)

Moreover, both sequences { fsos,k}∞k=1 and { fmom,k}∞k=1 are monotonically increasing.

Proof By the weak duality, we have fsos,k ≤ fmom,k . For every ε > 0, there exist l ′ ∈ [m]
and u ∈ Kl ′ such that f (u) ≤ fmin + ε. Let y := (y(1), . . . , y(m)) be such that y(l ′) = [u]2k
and y(l) = 0 for all l ∈ [m] \ {l ′}. Then, y is feasible for (3.2) and

fmom,k ≤ 〈 f , y(1)〉 + · · · + 〈 f , y(m)〉 = 〈 f , y(l ′)〉 = f (u) ≤ fmin + ε.

Since ε > 0 can be arbitrary, fmom,k ≤ fmin . Therefore, we get (3.3). Clearly, if γ is
feasible for (3.1) with an order k, then γ must also be feasible for (3.1) with all larger
values of k, since the feasible set gets larger as k increases. So the sequence of lower bounds
{ fsos,k}∞k=1 is monotonically increasing. On the other hand, when k increases, the feasible
set of (3.2) shrinks, so the minimum value of (3.2) increases. Therefore, { fmom,k}∞k=1 is also
monotonically increasing. ��

3.2 Extraction of Minimizers

We show how to extract minimizers of (1.1) from the unified moment relaxation. This
is a natural extension from the case m = 1 in Section 2.1. Suppose the tuple y∗ :=
(y(∗,1), . . . , y(∗,m)) is a minimizer of (3.2). Denote the degree

dl := max
i∈E(l)∪I(l)

{

deg(c(l)

i )/2�
}

.
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Wecan extractminimizers by checking the flat truncation condition: there exists an integer
t ≥ maxl∈[m]{dl , deg( f )/2} such that

rank Mt−dl [y(∗,l)] = rank Mt [y(∗,l)] for each l ∈ A, (3.4)

where the labeling set

A :=
{
l ∈ [m] : y(l)

0 > 0
}

.

Interestingly, if (3.4) holds, we can extract

r :=
∑

l∈A
rank Mt [y(∗,l)] (3.5)

minimizers for the optimization problem (1.1).

Algorithm 3.2 To solve the polynomial optimization (1.1), do the following:

Step 0: Let k := maxl∈[m]{dl , 
deg( f )/2�}.
Step 1: Solve the relaxation (3.2). If it is infeasible, output that (1.1) is infeasible and stop.

Otherwise, solve it for a minimizer y∗ := (y(∗,1), . . . , y(∗,m)).
Step 2: Check if the flat truncation (3.4) holds or not. If (3.4) holds, then the relaxation

(3.2) is tight and for each l ∈ A, the truncation y(∗,l)|2t admits a finitely atomic
measure μ(l) such that each point in supp(μ(l)) is a minimizer of (1.1). Moreover,
fmin = fmom,k .

Step 3: If (3.4) fails, let k := k + 1 and go to Step 1.

The conclusion in Step 2 is justified by the following.

Theorem 3.3 Let y∗ := (y(∗,1), . . . , y(∗,m)) be a minimizer of (3.2). Suppose (3.4) holds for
all l ∈ A. Then, the moment relaxation (3.2) is tight and for each l ∈ A, the truncation

y(∗,l)|2t := (y(∗,l)
α )α∈Nn

2t

admits a rl -atomic measure μ(l), where rl = rank Mt [y(∗,l)], and each point in supp(μ(l)) is
a minimizer of (1.1). Therefore, the total number of minimizers is r as in (3.5).

Proof By the assumption, the y(∗,l) ∈ R
N
n
2k satisfies (3.4) and

L(k)

c(l)
j

[y(∗,l)] � 0 ( j ∈ I(l)), Mk[y(∗,l)] � 0.

Then, by Theorem 2.2, there exist rl distinct points u
(l)
1 , . . . , u(l)

rl ∈ Kl and positive scalars

λ
(l)
1 , . . . , λ

(l)
rl such that

y(∗,l)|2t = λ
(l)
1 [u(l)

1 ]2t + · · · + λ(l)
rl [u(l)

rl ]2t .
The constriant

∑m
l=1 y

(l)
0 = 1 implies that

∑m
l=1

∑rl
i=1 λ

(l)
i = 1, so

m∑

l=1

rl∑

i=1

λ
(l)
i f (u(l)

i ) =
m∑

l=1

〈 f , y(∗,l)|2t 〉 =
m∑

l=1

〈 f , y(∗,l)〉 = fmom,k ≤ fmin .

For each u(l)
i ∈ Kl , we have f (u(l)

i ) ≥ fmin , so

m∑

l=1

rl∑

i=1

λ
(l)
i f (u(l)

i ) ≥
m∑

l=1

rl∑

i=1

λ
(l)
i fmin = fmin .
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Hence, fmom,k = fmin and

m∑

l=1

rl∑

i=1

λ
(l)
i

[
f (u(l)

i ) − fmin

]
= 0.

Since each λ
(l)
i > 0, then each f (u(l)

i ) = fmin , i.e., each u
(l)
i is a minimizer of (1.1). ��

In Step 2, the flat truncation condition (3.4) is used to extract minimizers. When it holds, a
numerical method is given in [6] for computing the minimizers. We refer to [28, Section 2.7]
for more details.

3.3 Convergence Analysis

Recall that fmin , fsos,k and fmom,k denote the optimal values of (1.1), (3.1) and (3.2),
respectively. The unified Moment-SOS hierarchy of (3.1)–(3.2) is said to have asymptotic
convergence if fsos,k → fmin as k → ∞. If fsos,k = fmin for some k, this unified hierarchy
is said to be tight or to have finite convergence. The following theorem is a natural extension
from the case m = 1.

Theorem 3.4 (Asymptotic convergence) If Ideal[c(l)
eq ] + QM[c(l)

in ] is archimedean for every
l = 1, . . . ,m, then the Moment-SOS hierarchy of (3.1)–(3.2) has asymptotic convergence:

lim
k→∞ fsos,k = lim

k→∞ fmom,k = fmin .

Proof For ε > 0, let γ = fmin − ε. Then

f (x) − γ = f (x) − fmin + ε > 0

on Kl . Since Ideal[c(l)
eq ] + QM[c(l)

in ] is archimedean for every l, by Theorem 2.1,

f (x) − γ ∈ Ideal[c(l)
eq ]2k + QM[c(l)

in ]2k
for all k large enough. So

fmin − ε = γ ≤ fsos,k ≤ fmin �⇒ fmin − ε ≤ lim
k→∞ fsos,k ≤ fmin .

Since ε > 0 can be arbitrary, limk→∞ fsos,k = fmin . By (3.3), we get the desired conclusion.
��

Recall the linear independence constraint qualification condition (LICQC), the strict com-
plementarity condition (SCC), and the second order sufficient condition (SOSC) introduced
in Section 2.2. The following is the conclusion for the finite convergence of the unified
Moment-SOS hierarchy of (3.1)–(3.2).

Theorem 3.5 (Finite convergence) Assume Ideal[c(l)
eq ] + QM[c(l)

in ] is archimedean for every
l = 1, . . . ,m. If the LICQC, SCC, and SOSC hold at every global minimizer of (1.1) for
each Kl , then the Moment-SOS hierarchy of (3.1)–(3.2) has finite convergence, i.e.,

fsos,k = fmom,k = fmin

for all k large enough.
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Proof We denote by fmin,l the minimum value of f on the set Kl . Let

B := {l : fmin,l = fmin}.

(i) For the case l /∈ B, fmin,l > fmin ,

f (x) − fmin ≥ fmin,l − fmin > 0

on Kl . Since Ideal[c(l)
eq ] + QM[c(l)

in ] is archimedean, there exists k0 such that

f − ( fmin − ε) ∈ Ideal[c(l)
eq ]2k0 + QM[c(l)

in ]2k0

for all ε > 0.
(ii) For the case l ∈ B, fmin,l = fmin . Since the LICQC, SCC, and SOSC hold at every

global minimizer x∗ of (1.1), there exists a degree k0 such that for all ε > 0, we have

f − ( fmin − ε) ∈ Ideal[c(l)
eq ]2k0 + QM[c(l)

in ]2k0 .

This is shown in the proof of Theorem 1.1 of [25].

Combining cases (i) and (ii), we know that γ = fmin − ε is feasible for (3.1) with the
order k0. Hence, fsos,k0 ≥ γ = fmin−ε. Since ε > 0 can be arbitrary, we get fsos,k0 ≥ fmin .
By Proposition 3.1, we get fsos,k = fmom,k = fmin for all k ≥ k0. ��

4 Univariate Polynomial Optimization

In this section, we consider the special case of univariate polynomial optimization, i.e., n = 1.
The following results for the univariate case are extensions from the single interval case, and
are presented here to provide a complete and thorough understanding for convenience of
readers. The problem (1.1) can be expressed as

⎧
⎨

⎩

min f (x) := f0 + f1x + · · · + fd xd

s.t. x ∈
m⋃

l=1
Kl ,

(4.1)

where Kl = [al , bl ] with al < bl for l = 1, . . . ,m. We still denote by fmin the minimum
value of (4.1). For convenience, we only consider compact intervals. The discussions for
unbounded intervals like (−∞, b] and [a,+∞) are similar (see [28, Chapter 3]).

Let y := (y0, . . . , yd) ∈ R
d+1 be a univariate tms of degree d with d = 2d0 + 1 or

d = 2d0. The d0th order moment matrix of y is

Md0 [y] =

⎡

⎢
⎢
⎢
⎣

y0 y1 · · · yd0
y1 y2 · · · yd0+1
...

...
. . .

...

yd0 yd0+1 · · · y2d0

⎤

⎥
⎥
⎥
⎦

.
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For convenience of notation, we also denote that

Gd0 [y] :=

⎡

⎢
⎢
⎢
⎣

y2 y3 · · · yd0+1

y3 y4 · · · yd0+2
...

...
. . .

...

yd0+1 yd0+2 · · · y2d0

⎤

⎥
⎥
⎥
⎦

,

Nd0 [y] :=

⎡

⎢
⎢
⎢
⎣

y1 y2 · · · yd0+1

y2 y3 · · · yd0+2
...

...
. . .

...

yd0+1 yd0+2 · · · y2d0+1

⎤

⎥
⎥
⎥
⎦

.

It is well-known that polynomials that are nonnegative over an interval can be expressed
in terms of sum of squares. The following results were known to Lukács [19], Markov [22],
Pólya and Szegö [37], Powers and Reznick [38]. For each h ∈ R[x]d that is nonnegative on
the interval [al , bl ], we have:
(i) If d = 2d0 + 1 is odd, then there exist p, q ∈ R[x]d0 such that

h = (x − al)p
2 + (bl − x)q2. (4.2)

(ii) If d = 2d0 is even, then there exist p ∈ R[x]d0 , q ∈ R[x]d0−1 such that

h = p2 + (x − al)(bl − x)q2. (4.3)

The optimization problem (4.1) can be solved by the unified Moment-SOS hierarchy of
(3.1)–(3.2). For the univariate case, they can be simplified. We discuss in two different cases
of d .

4.1 The Case d is Odd (d = 2d0 + 1)

When the degree d = 2d0 + 1 is odd, by the representation (4.2), fmin equals the maximum
value of the SOS relaxation

⎧
⎨

⎩

max γ

s.t. f − γ = (x − al)[x]Td0 Xl [x]d0 + (bl − x)[x]Td0Yl [x]d0 ,
Xl ∈ Sd0+1

+ , Yl ∈ Sd0+1
+ , l = 1, . . . ,m.

(4.4)

Its dual optimization is the moment relaxation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min 〈 f , y(1)〉 + · · · + 〈 f , y(m)〉
s.t. y(1)

0 + · · · + y(m)
0 = 1,

blMd0 [y(l)] � Nd0 [y(l)] � alMd0 [y(l)],
y(l) =

(
y(l)
0 , y(l)

1 , . . . , y(l)
2d0+1

)
,

l = 1, . . . ,m.

(4.5)

In the above,
〈 f , y(l)〉 = f0y

(l)
0 + · · · + f2d0+1y

(l)
2d0+1.

Denote by fsos and fmom the optimal values of (4.4) and (4.5) respectively. For all (Xl , Yl)
that is feasible for (4.4) and for all y(l) that is feasible for (4.5), we have

〈 f , y(1)〉 + · · · + 〈 f , y(m)〉 ≥ γ.
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This is because

blMd0 [y(l)] − Nd0 [y(l)] = L(d0+1)
bl−x [y(l)] � 0,

Nd0 [y(l)] − alMd0 [y(l)] = L(d0+1)
x−al [y(l)] � 0,

which implies that

〈 f , y(1)〉 + · · · + 〈 f , y(m)〉 − γ = 〈 f − γ, y(1)〉 + · · · + 〈 f − γ, y(m)〉

=
m∑

l=1

[〈
L(d0+1)
x−al [y(l)], Xl

〉
+

〈
L(d0+1)
bl−x [y(l)], Yl

〉]

≥ 0.

Indeed, we have the following theorem.

Theorem 4.1 For the relaxations (4.4) and (4.5), we always have

fsos = fmom = fmin .

Proof By the representation (4.2), for γ = fmin , the subtraction f − fmin can be represented
as in (4.4) for each l = 1, . . . ,m, so fsos = fmin . By the weak duality, we have fsos ≤
fmom ≤ fmin . Hence, they are all equal. ��
The optimizers for (4.1) can be obtained by the following algorithm.

Algorithm 4.2 [28,Algorithm3.3.6]Assume d = 2d0+1 and (y(1), . . . , y(m)) is aminimizer
for the moment relaxation (4.5). For each l with y(l)

0 > 0 and r = rank Md0 [y(l)], do the
following:

Step 1: Solve the linear system
⎡

⎢
⎢
⎢
⎢
⎣

y(l)
0 y(l)

1 · · · y(l)
r−1

y(l)
1 y(l)

2 · · · y(l)
r

...
...

. . .
...

y(l)
2d0−r+1 y(l)

2d0−r+2 · · · y(l)
2d0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

g(l)
0

g(l)
1
...

g(l)
r−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

y(l)
r

y(l)
r+1
...

y(l)
2d0+1

⎤

⎥
⎥
⎥
⎥
⎦

.

Step 2: Compute r distinct roots t (l)1 , . . . , t (l)r of the polynomial

g(l)(x) := g(l)
0 + g(l)

1 x + · · · + g(l)
r−1x

r−1 − xr .

Step 3: The roots t (l)1 , . . . , t (l)r are minimizers of the optimization problem (4.1).

The conclusion in Step 3 is justified by Theorem 4.6. The following is an exposition for
the above algorithm.

Example 4.3 Consider the constrained optimization problem
{
min x + 2x6 − x7

s.t. x ∈ [−2,−1] ∪ [1, 2].
The moment relaxation is

⎧
⎪⎪⎨

⎪⎪⎩

min 〈 f , y(1)〉 + 〈 f , y(2)〉
s.t. −M3[y(1)] � N3[y(1)] � −2M3[y(1)],

2M3[y(2)] � N3[y(2)] � M3[y(2)],
y(1)
0 + y(2)

0 = 1.

123



J. Nie and L. Zhang

The minimizer y∗ = (y(∗,1), y(∗,2)) of the above is obtained as

y(∗,1) = 0.4191 · (1,−1, 1,−1, 1,−1, 1,−1),

y(∗,2) = 0.5809 · (1, 0,−2,−6,−14,−30,−62,−126) + 0.6058 · (0, 1, 3, 7, 15, 31, 63, 127).

Applying Algorithm 4.2, we get g(1)
0 = −1, g(2)

0 = −2, g(2)
1 = 3 and the polynomials

g(1)(x) = −1 − x, g(2)(x) = −2 + 3x − x2.

Therefore, the minimizers are the distinct roots −1, 1, 2 and the global minimum value
fmin = 2.

4.2 The Case d is Even (d = 2d0)

When the degree d = 2d0 is even, by the representation (4.3), fmin equals the maximum
value of

⎧
⎨

⎩

max γ

s.t. f − γ = [x]Td0 Xl [x]d0 + (x − al)(bl − x)([x]Td0−1Yl [x]d0−1),

Xl ∈ Sd0+1
+ , Yl ∈ Sd0+ , l = 1, . . . ,m.

(4.6)

Its dual optimization is the moment relaxation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min 〈 f , y(1)〉 + · · · + 〈 f , y(m)〉
s.t. (al + bl)Nd0−1[y(l)] � albl Md0−1[y(l)] + Gd0 [y(l)],

Md0 [y(l)] � 0, y(1)
0 + · · · + y(m)

0 = 1,

y(l) =
(
y(l)
0 , y(l)

1 , . . . , y(l)
2d0

)
,

l = 1, . . . ,m.

(4.7)

We still denote by fsos and fmom the optimal values of (4.6) and (4.7), respectively. The
same conclusion in Theorem 4.1 also holds here. The optimizers for (4.1) can be obtained
by the following algorithm.

Algorithm 4.4 [28, Algorithm 3.3.6] Assume d = 2d0 and (y(1), . . . , y(m)) is a minimizer
for the moment relaxation (4.7). For each l with y(l)

0 > 0 and r = rankMd0 [y(l)], do the
following:

Step 1: If r ≤ d0, solve the linear system

⎡

⎢
⎢
⎢
⎢
⎣

y(l)
0 y(l)

1 · · · y(l)
r−1

y(l)
1 y(l)

2 · · · y(l)
r

...
...

. . .
...

y(l)
2d0−r y(l)

2d0−r+1 · · · y(l)
2d0−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

g(l)
0

g(l)
1
...

g(l)
r−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

y(l)
r

y(l)
r+1
...

y(l)
2d0

⎤

⎥
⎥
⎥
⎥
⎦

.

Step 2: If r = d0 + 1, compute the smallest value of y(l)
2d0+1 satisfying

blMd0 [y(l)] � Nd0 [y(l)] � alMd0 [y(l)],
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then solve the linear system
⎡

⎢
⎢
⎢
⎢
⎣

y(l)
0 y(l)

1 · · · y(l)
d0

y(l)
1 y(l)

2 · · · y(l)
d0+1

...
...

. . .
...

y(l)
d0

y(l)
d0+1 · · · y(l)

2d0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

g(l)
0

g(l)
1
...

g(l)
d0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

y(l)
d0+1

y(l)
d0+2
...

y(l)
2d0+1

⎤

⎥
⎥
⎥
⎥
⎦

.

Step 3: Compute r distinct roots t (l)1 , . . . , t (l)r of the polynomial

g(l)(x) := g(l)
0 + g(l)

1 x + · · · + g(l)
r−1x

r−1 − xr .

Step 4: The roots t (l)1 , . . . , t (l)r are minimizers of the optimization problem (4.1).

The conclusion in Step 4 is justified by Theorem 4.6. The following is an exposition for
the above algorithm.

Example 4.5 Consider the constrained optimization problem
{
min 4x2 + 12x3 + 13x4 + 6x5 + x6

s.t. x ∈ [−4,−2] ∪ [−1, 2].
The moment relaxation is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 〈 f , y(1)〉 + 〈 f , y(2)〉
s.t. −6N2[y(1)] � 8M2[y(1)] + G3[y(1)],

N2[y(2)] � −2M2[y(2)] + G3[y(2)],
M3[y(1)] � 0, M3[y(2)] � 0,
y(1)
0 + y(2)

0 = 1.

The minimizer y∗ = (y(∗,1), y(∗,2)) of the above is obtained as

y(∗,1) = 0.0110 · (1,−2, 4,−8, 16,−32, 64),

y(∗,2) = 0.9890 · (1, 0, 0, 0, 0, 0, 0) + 0.2190 · (0,−1, 1,−1, 1,−1, 1).

Applying Algorithm 4.4, we get g(1)
0 = −2, g(2)

0 = 0, g(2)
1 = −1 and the polynomials

g(1)(x) = −2 − x, g(2)(x) = −x − x2.

Therefore, the minimizers are the distinct roots −2, −1, 0 and the global minimum value
fmin = 0.

The performance of the moment relaxations (4.5) and (4.7) can be summarized as follows.

Theorem 4.6 Suppose f is a univariate polynomial of degree d = 2d0+1 or d = 2d0. Then,
all the optimal values fmin, fsos , fmom are achieved for each corresponding optimization
problemand theyare all equal to eachother. Suppose y∗ := (y(∗,1), . . . , y(∗,m)) is aminimizer
of (4.5) when d = 2d0 + 1 or of (4.7) when d = 2d0. Then, the tms

z∗ := y(∗,1) + · · · + y(∗,m)

must admit a representing measureμ∗ supported in K , and each point in the support ofμ∗ is
a minimizer of (4.1). If f is not a constant polynomial, then f has at most 2m+
(d −1)/2�
minimizers and the representing measure μ∗ for z∗ must be r-atomic with

r ≤ 2m + 
(d − 1)/2�.
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Proof Since each interval [al , bl ] is compact, K is also compact. So the minimum value fmin

is achievable, and it equals the largest γ ∈ R such that f − γ is nonnegative on [al , bl ] for
every l = 1, . . . ,m, so fmin = fsos (see Theorem 4.1). Each of the moment relaxations (4.5)
and (4.7) has a strictly feasible point, e.g., the tms ŷ(l) = ∫ bl

al
[x]2d0+1 dx is strictly feasible

and
blMd0 [ŷ(l)] � Nd0 [ŷ(l)] � alMd0 [ŷ(l)].

The tms ỹ(l) = ∫ bl
al

[x]2d0 dx is strictly feasible and

(al + bl)Nd0−1[ỹ(l)] � albl Md0−1[ỹ(l)] + Gd0 [ỹ(l)], Md0 [ỹ(l)] � 0.

By the strong duality, fsos = fmom , and both (4.4) and (4.6) achieve their optimal values.
By [28, Theorem 3.3.4], y(∗,l) must admit a representing measure μ(l) supported in [al , bl ].
Hence, z∗ must admit a representing measure μ∗ = μ(1) + · · · + μ(m) supported in K . The
optimization problem (4.1) is then equivalent to the linear convex conic optimization

{
min

∫
f dμ

s.t. μ(K ) = 1, μ ∈ B(K ),
(4.8)

where B(K ) denotes the convex cone of all Borel measures whose supports are contained
in K . We claim that if a Borel measure μ∗ is a minimizer of (4.8), then each point in the
support of μ∗ is a minimizer of (4.1). Suppose E ⊆ K is the set of minimizers of (4.1). For
any x∗ ∈ E , let δx∗ denote the unit Dirac measure supported at x∗. Then, we have

fmin =
∫

K
fmindμ∗ ≤

∫

K
f (x) dμ∗ ≤

∫

K
f (x) dδx∗ = f (x∗) = fmin .

Hence,

0 =
∫

K
[ f (x) − fmin] dμ∗ =

∫

supp(μ∗)
[ f (x) − fmin] dμ∗.

Thus, f = fmin on supp(μ∗). This implies that supp(μ∗) ⊆ E . So, every point in supp(μ∗)
is a minimizer of (4.1).

Note that f has degree d . If f is not a constant polynomial, it can have at most d−1 critical
points.Moreover, the localmaximizers andminimizers alternate. Thus, atmost 
(d−1)/2� of
these critical points are local minimizers. On each interval [al , bl ], two endpoints are possibly
local minimizers. Since there are m intervals in total, f has at most 2m + 
(d − 1)/2� local
minimizers on K . In the above, we have proved that each point in supp(μ∗) is a minimizer
of (4.1). So the representing measure μ∗ for z∗ must be r -atomic with r ≤ 2m + 
(d − 1)
/2�. ��

We refer to Algorithm 4.2 (when d = 2d0 + 1) and Algorithm 4.4 (when d = 2d0) for
how to determine the support of the representing measure μ(l) for y(∗,l). The points in the
support are all minimizers of (4.1). The upper bound for the number of minimizers is already
sharp when m = 1. For instance, consider the optimization

{
min x(1 − x)(x + 1)
s.t. x ∈ [−1, 1].

There are 3 global minimizers −1, 0, 1 and 2m + 
(d − 1)/2� = 2 + 1 = 3.
We would like to remark that the representations for nonnegative univariate polynomials

have broad applications. In particular, it can be applied to the shape design of transfer func-
tions for linear time invariant (LTI) single-input-single-output (SISO) systems [29]. Since

123



Polynomial Optimization Over Unions of Sets

the transfer function is rational, the optimization problem can be formulated in terms of
coefficients of polynomials. We can then solve it by using representations of nonnegative
univariate polynomials. For instance, we look for a transfer function such that it is close to a
piecewise constant shape. That is, we want the transfer function to be close to given constant
values ξ1, . . . , ξm in a union of m disjoint intervals [al , bl ] with

a1 < b1 < a2 < b2 < · · · < am < bm .

As in [29], the transfer function can be written as p1(x)/p2(x). Specifically, we want to
get p1, p2 such that

p1(x), p2(x) ≥ 0, ∀x ≥ 0,

(1 − α)ξl ≤ p1(x)

p2(x)
≤ (1 + β)ξl , ∀x ∈ [al , bl ], l = 1, . . . ,m.

The above is equivalent to the linear conic constraints

p1(x), p2(x) ∈ Pd([0,∞)),

p1 − (1 − α)ξl p2 ∈ Pd([al , bl ]), l = 1, . . . ,m,

(1 + β)ξl p2 − p1 ∈ Pd([al , bl ]), l = 1, . . . ,m.

We refer to [29] for more details.

5 Numerical Experiments

In this section, we present numerical experiments for how to solve polynomial optimization
over the union of several basic closed semialgebraic sets. Algorithm 3.2 is applied to solve
it. All computations are implemented using MATLAB R2022a on a MacBook Pro equipped
with Apple M1 Max processor and 16GB RAM. The unified moment relaxation (3.2) is
solved by the software Gloptipoly [7], which calls the SDP package SeDuMi [41]. For
neatness, all computational results are displayed in four decimal digits.

Example 5.1 Consider the constrained optimization problem
{
minx∈R4 (x21 + x22 + x23 + x24 + 1)2 − 4(x21 x

2
2 + x22 x

2
3 + x23 x

2
4 + x24 + x21 )

s.t. x ∈ K1 ∪ K2 ∪ K3 ∪ K4,

where

K1 = {x ∈ R
4 : x21 + x22 + x23 ≤ 0},

K2 = {x ∈ R
4 : x21 + x22 + x24 ≤ 0},

K3 = {x ∈ R
4 : x21 + x23 + x24 ≤ 0},

K4 = {x ∈ R
4 : x22 + x23 + x24 ≤ 0}.

The objective function is a dehomogenization of the Horn’s form [40]. For k = 2, we get
fmom,2 = 0, and the flat truncation (3.4) is met for all l ∈ A = {1, 4}. So, fmom,2 = fmin .
The obtained four minimizers are

(0, 0, 0,±1) ∈ K1, (±1, 0, 0, 0) ∈ K4.

For k = 2, the unified moment relaxation (3.2) took around 0.6 second, while solving the
individual moment relaxations (1.2) for all K1, K2, K3, K4 took around 0.9 second.
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Example 5.2 Consider the constrained optimization problem
{
minx∈R3 x31 + x32 + x33 − x21 x2 − x1x22 − x21 x3 − x1x23 − x22 x3 − x2x23 + 3x1x2x3

s.t. x ∈ K1 ∪ K2 ∪ K3,

where

K1 = {x ∈ R
3 : x1 ≥ 0, x21 + x22 + x23 = 1},

K2 = {x ∈ R
3 : x2 ≥ 0, x21 + x22 + x23 = 1},

K3 = {x ∈ R
3 : x3 ≥ 0, x21 + x22 + x23 = 1}.

The objective function is obtained from Robinson’s form [40] by changing x2i to xi for
each i . For k = 2, we get fmom,2 = −1.3185, and the flat truncation (3.4) is met for all
l ∈ A = {1, 2, 3}. So, fmom,2 = fmin . The obtained three minimizers are

(0.2783, 0.2783,−0.9193) ∈ K1 ∩ K2, (0.2783,−0.9193, 0.2783) ∈ K1 ∩ K3,

(−0.9193, 0.2783, 0.2783) ∈ K2 ∩ K3.

For k = 2, the unified moment relaxation (3.2) took around 0.6 second, while solving the
individual moment relaxations (1.2) for all K1, K2, K3 took around 1.1 seconds.

Example 5.3 Consider the constrained optimization problem
{
min
x∈R3

x1x2x3 + x21 x
2
2 (x

2
1 + x22 ) + x63 − 3x21 x

2
2 x

2
3

s.t. x ∈ K1 ∪ K2 ∪ K3,

where

K1 = {x ∈ R
3 : x21 + x22 − x23 = 0, x2x3 ≥ 0},

K2 = {x ∈ R
3 : x21 + x23 − x22 = 0, x1x3 ≥ 0},

K3 = {x ∈ R
3 : x22 + x23 − x21 = 0, x1x2 ≥ 0}.

The objective function is obtained from Motzkin’s form [40] by adding the term x1x2x3.
For k = 3, we get fmom,3 = −1.0757, and the flat truncation (3.4) is met for all l ∈ A =
{2, 3}. So, fmom,3 = fmin . The obtained four minimizers are

(−1.0287,−1.6390,−1.2760) ∈ K2, (1.0287,−1.6390, 1.2760) ∈ K2,

(−1.6390,−1.0287,−1.2760) ∈ K3, (1.6390, 1.0287,−1.2760) ∈ K3.

For k = 3, the unified moment relaxation (3.2) took around 0.7 second, while solving the
individual moment relaxations (1.2) for all K1, K2, K3 took around 1.2 seconds.

Example 5.4 Consider the constrained optimization problem
{
min
x∈R3

x21 x
2
2 + x21 x

2
3 + x22 x

2
3 + 4x1x2x3

s.t. x ∈ K1 ∪ K2 ∪ K3,

where

K1 = {x ∈ R
3 : x1 = x22 , x3 = x22 },

K2 = {x ∈ R
3 : x21 + x22 + x23 ≤ 4, x1x2 = −x3, x1x3 ≤ 0},

K3 = {x ∈ R
3 : −1 ≤ x1 ≤ 0,−1 ≤ x2 ≤ 0,−1 ≤ x3 ≤ 0}.

123



Polynomial Optimization Over Unions of Sets

The objective function is a dehomogenization of the Choi–Lam form [40]. For k = 2,
we get fmom,2 = −1, and the flat truncation (3.4) is met for all l ∈ A = {1, 2, 3}. So,
fmom,2 = fmin . The obtained four minimizers are

(1,−1, 1) ∈ K1, (−1, 1, 1) ∈ K2, (1, 1,−1) ∈ K2, (−1,−1,−1) ∈ K3.

For k = 2, the unified moment relaxation (3.2) took around 0.6 second, while solving the
individual moment relaxations (1.2) for all K1, K2, K3 took around 1.1 seconds.

A class of problems like (1.1) has absolute values in the constraints. For example, we
consider that

K =
{

x : h(x) +
�∑

i=1

|gi (x)| ≥ 0

}

.

We can equivalently express K as

K =
⋃

s1,...,sl=±1

{

x : h(x) +
�∑

i=1

si · gi (x) ≥ 0, si · gi (x) ≥ 0

}

. (5.1)

Example 5.5 Consider the constrained optimization problem
{
min
x∈R2

x41 + x42 − x21 x
2
2 − 2x21 − 3x22

s.t. |x1|3 + |x2|3 ≥ 4.

The constraining set can be equivalently expressed as
⋃4

l=1 Kl with

K1 = {x ∈ R
2 : x1 ≥ 0, x2 ≥ 0, x31 + x32 ≥ 4},

K2 = {x ∈ R
2 : x1 ≥ 0,−x2 ≥ 0, x31 − x32 ≥ 4},

K3 = {x ∈ R
2 : −x1 ≥ 0, x2 ≥ 0,−x31 + x32 ≥ 4},

K4 = {x ∈ R
2 : −x1 ≥ 0,−x2 ≥ 0,−x31 − x32 ≥ 4}.

A contour of the objective over the feasible set is in Fig. 1. For k = 2, we get fmom,2 =
−6.3333, and the flat truncation (3.4) is met for all l ∈ A = {1, 2, 3, 4}. So, fmom,2 = fmin .
The obtained four minimizers are

(1.5275, 1.6330) ∈ K1, (1.5275,−1.6330) ∈ K2,

(−1.5275, 1.6330) ∈ K3, (−1.5275,−1.6330) ∈ K4.

For k = 2, the unified moment relaxation (3.2) took around 0.6 second, while solving the
individual moment relaxations (1.2) for all K1, K2, K3, K4 took around 0.8 second.

Nowwe show how to compute the (p, q)-norm of amatrix A ∈ R
m×n for positive integers

p, q . Recall that

‖A‖p,q := max
x 	=0

‖Ax‖p

‖x‖q = max‖x‖q=1
‖Ax‖p.

When p and q are both even integers, this is a standard polynomial optimization problem. If
one of them is odd, then we need to get rid of the absolute value constraints. When p is even
and q is odd, we can equivalently express that

{
(‖A‖p,q)

p = max (aT1 x)
p + · · · + (aTmx)

p

s.t. |x1|q + · · · + |xn |q = 1.
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Fig. 1 The contour is for the objective function in Example 5.5. The region outside the oval is the feasible set.
The four diamonds are the minimizers

Here, the aTi is the i th row of A. When p is odd and q is even, we have
⎧
⎨

⎩

‖A‖p,q = max xn+1

s.t. (x1)q + · · · + (xn)q = 1,
|aT1 x |p + · · · + |aTmx |p = (xn+1)

p.

Similarly, when p and q are both odd, we have
⎧
⎨

⎩

‖A‖p,q = max xn+1

s.t. |x1|q + · · · + |xn |q = 1,
|aT1 x |p + · · · + |aTmx |p = (xn+1)

p.

The constraining sets in the above optimization problems can be decomposed in the same
way as in (5.1).

Example 5.6 Consider the following matrix

A =

⎡

⎢
⎢
⎣

−8 −8 −3 1
4 −7 7 6
6 −7 −7 −4
8 0 −9 −6

⎤

⎥
⎥
⎦ .

Some typical values of the norm ‖A‖p,q and the vector x∗ for achieving it are listed in
Table 1.

The norms ‖A‖p,q are all computed successfully by the unified moment relaxation (3.2)
for the relaxation order k = 2 or 3.

6 Conclusions and FutureWork

This paper proposes a unified Moment-SOS hierarchy for solving the polynomial optimiza-
tion problem (1.1) whose feasible set K is a union of several basic closed semialgebraic
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Table 1 The (p, q)-norms for the
matrix A in Example 5.6

(p, q) ‖A‖p,q x∗ for ‖A‖p,q = ‖Ax∗‖p , ‖x∗‖q = 1

(2, 3) 21.6132 (0.6568,−0.3937,−0.7542,−0.6097)

(3, 2) 15.5469 (0.5606,−0.2097,−0.6742,−0.4327)

(3, 3) 19.0928 (0.6782, −0.4598,−0.7329,−0.5820)

(3, 4) 21.2617 (0.7446,−0.5841,−0.7824,−0.6700)

(4, 3) 18.0128 (0.6825,−0.4605,−0.7305,−0.5794)

(4, 4) 20.0605 (0.7465,−0.5863,−0.7809,−0.6682)

(4, 5) 21.4196 (0.7895,−0.6633,−0.8166,−0.7261)

(5, 4) 19.3770 (0.7471,−0.5848,−0.7810,−0.6683)

(5, 5) 20.6894 (0.7896,−0.6635,−0.8165,−0.7260)

sets Kl . Instead of minimizing the objective f separately over each individual set Kl , we
give a unified hierarchy of Moment-SOS relaxations to solve (1.1). This hierarchy produces
a sequence of lower bounds for the optimal value fmin of (1.1). When the archimedean-
ness is met for each constraining subset Kl , we show the asymptotic convergence of this
unified hierarchy. Furthermore, if the linear independence constraint qualification, the strict
complementarity and the second order sufficient conditions hold at every global minimizer
for each Kl , we prove the finite convergence of the hierarchy. For the univariate case, spe-
cial properties of the correspondingMoment-SOS relaxation are discussed. To the best of the
authors’ knowledge, this is the first unified hierarchy ofMoment-SOS relaxations for solving
polynomial optimization over unions of sets. Moreover, numerical experiments are provided
to demonstrate the efficiency of this method. In particular, as applications, we show how to
compute the (p, q)-norm of a matrix for positive integers p, q .

There exists relevantwork on approximation and optimization aboutmeasureswith unions
of several individual sets. For instance, Korda et al. [11] consider the generalized moment
problem (GMP) that exploits the ideal sparsity, where the feasible set is a basic closed
semialgebraic set containing conditions like xi x j = 0. Because of this, themoment relaxation
for solving the GMP involves several measures, each supported in an individual set. Lasserre
et al. [15] propose the multi-measure approach to approximate the moments of Lebesgue
measures supported in unions of basic semialgebraic sets.Magron et al. [20] discuss the union
problem in the context of piecewise polynomial systems. We would also like to compare the
sizes of relaxations (1.2) and (1.3). To apply the individual relaxation (1.2), we need to solve
it for m times. For the unified relaxation (1.3), we only need to solve it for one time. For
a fixed relaxation order k in (1.2), the length of the vector y(l) is

(n+2k
2k

)
. For the same k

in (1.3), there are m vectors of y(l), and each of them has length
(n+2k

2k

)
. The comparison

of the numbers of constraints is similar. Observe that (1.2) has |E(l)| equality constraints,
|I(l)| + 1 linear matrix inequality constraints, and one scalar equality constraint. Similarly,
(1.3) has |E(1)| + · · · + |E(m)| equality constraints, |I(1)| + · · · + |I(m)| + m linear matrix
inequality constraints, and one scalar equality constraint. It is not clear which approach
is more computationally efficient. However, in our numerical examples, solving (1.3) is
relatively faster.

There is much interesting future work to do. For instance, when the number of individual
sets is large, the unified Moment-SOS relaxations have a large number of variables. How
to solve the moment relaxation (3.2) efficiently is important in applications. For large scale
problems, some sparsity patterns can be exploited. We refer to [10, 21, 42, 43] for related
work. It is interesting futurework to explore the sparsity for unifiedMoment-SOS relaxations.
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Moreover, how to solve polynomial optimization over a union of infinitely many sets is
another interesting future work.
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