
Vietnam Journal of Mathematics
https://doi.org/10.1007/s10013-024-00697-9

ORIG INAL ART ICLE

Strong Quasi-nonexpansiveness
of Solution Mappings of Equilibrium Problems

Pham Ngoc Anh1

Received: 11 September 2023 / Accepted: 6 April 2024
© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2024

Abstract
In this work we introduce a new approach for solving equilibrium problems in a real Hilbert
space. First, we propose a solution mapping and show its strong quasi-nonexpansiveness.
Next, we apply themapping to present an algorithm for solving equilibrium problems. Strong
convergence of the algorithm is showed under quasimonotone and Lipschitz-type continuous
assumptions of the cost bifunctions. Finally, we give some numerical results for the proposed
algorithm and comparison with some other known methods using the solution mapping.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and its deduced norm ‖ · ‖. Denote
xk⇀x to indicate that the sequence {xk} converges weakly to x , and xk → x to indicate that
the sequence {xk} converges strongly to x . Let C be a nonempty convex closed subset of H
and a bifunction f : H × H → R such that the equilibrium condition f (x, x) = 0 holds
for all x ∈ H and f (x, ·) is lower semicontinuous, convex for each x ∈ H. In this paper, we
consider an equilibrium problem, shortly EPs(C, f ), first suggested by Nikaido and Isoda
in [29] for non-cooperative convex games and the term “equilibrium problem” first used by
Blum and Oettli in [9] as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C .

The solution set is denoted by Sol(C, f ). In recently years, the problem EPs(C, f ) is an
attractive field that has been investigated in many research papers due to its applications
in a large variety of fields arising in structural analysis, economics, optimization, opera-
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tions research and engineering sciences (see some interesting books [12, 13, 21] and many
references therein).

It is worth to mention that during the recent years several solution algorithms came in
the existence to solve the problem EPs(C, f ) and its generalizations. The solution mapping
E : C → C was first introduced by Moreau in [28] as the form:

Ex = argmin

{
λ f (x, y) + 1

2
‖y − x‖2 : y ∈ C

}
, ∀x ∈ C, (1.1)

where λ > 0. Note that Ex is the unique solution of a strongly convex problem under
proper lower semicontinuous and convex assumptions of f . It is originated by the fact that
a point x∗ ∈ C is a solution of the problem EPs(C, f ) if and only if it is a fixed point of the
solution mapping E [25, Proposition 2.1]. The solution mapping has become a useful tool
in solving the problem EPs(C, f ). Under some conditions onto λ, the mapping E has some
the following properties:

– If the cost bifunction f is strongly monotone and Lipschitz-type continuous, then E is
contractive [14], [25, Proposition 2.1].

Then, by usingBanach’s contractionmapping principle, the unique solution of the problem
EPs(C, f ) is evaluated by the fixed point iteration sequence:

x0 ∈ C, xk+1 = Exk, ∀k ≥ 0.

The authors showed that the sequence {xk} converges strongly to a unique solution of the prob-
lem EPs(C, f ). To avoid strongly monotone assumption of f , as an extension of Kraikaew
and Saejung in [22], Hieu used a solution mapping [15] as follows:

Fx = argmin

{
λ f (Ex, y) + 1

2
‖y − x‖2 : y ∈ C

}
, ∀x ∈ Hx ,

where Hx = {w ∈ H : 〈x − λwx − Ex, w − Ex〉 ≤ 0}, wx ∈ ∂ f (x, ·)(x) and Ex is defined
in (1.1). Then, for each x∗ ∈ Sol(C, f ), we have

‖Fx − x∗‖2 ≤ ‖x − x∗‖2 − (1 − 2λc1)‖Ex − x‖2 − (1 − 2λc2)‖Fx − Ex‖2, ∀x ∈ H,

where f is pseudomonotone and Lipschitz-type continuous. However, F can not be quasi-
nonexpansive on H such as Sol(C, f ) �= Fix(T ).

For solving the monotone problem EPs(C, f ), there are various instances of the computa-
tional algorithms with combining the solution mapping E with other iteration techniques. It
is worth mentioning to very interesting results such as the extragradient algorithms proposed
byQuoc et al. [31, 32], inexact proximal point methods of Iusem et al. [17, 18], extragradient-
viscosity methods of Maingé and Moudafi [24], auxiliary principles of Mastroeni and Noor
[25, 26, 30], extragradient methods of Anh et al. [2, 5, 6] and many other computational
methods in [4, 7, 8, 10, 11, 16, 19, 20, 27, 33, 34] and the references cited therein.

Inspired and motivated by the ongoing research, we are aiming to suggest a new approach
to the equilibrium problem EPs(C, f ). First, we introduce a new solution mapping and prove
its strongly quasi-nonexpansiveness. Second, we use the solution mapping for solving the
problem EPs(C, f ) via a Lipschitz continuous and strongly monotone mapping, and another
Lipschitz continuous mapping. By the way, we can prove that the strong cluster point of
the sequence constructed by our algorithm is the unique solution of a variational inequality
problem where the constraint is the solution set of the problem EPs(C, f ) under quasimono-
tone and Lipschitz continuous assumptions of the cost bifunction f . This constitutes a new
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approach which is called solution mapping approach and the fundamental difference of our
algorithm with respect to current computational methods.

Our paper is organized as follows. In Section 2, we present some useful definitions,
technique lemmas and a new solution mapping. A new algorithm and its convergent analysis
for solving the problem EPs(C, f ) are presented in Section 3. In Section 4, several numerical
experiments are provided to illustrate the efficiency and accuracy of our proposed algorithm.

2 SolutionMappings

For each x ∈ H, the metric projection of x onto C is denoted by ΠC (x) which is the unique
solution to the strongly convex problem:

min{‖x − y‖2 : y ∈ C}.
Given a bifunction f : H × H → R and ∅ �= K ⊂ H. The bifunction f is called to be:

– β-strongly monotone if

f (x, y) + f (y, x) ≤ −β‖x − y‖2, ∀x, y ∈ H.

– monotone if
f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ H.

– pseudomonotone if

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀x, y ∈ H.

– η-strongly quasimonotone on K where η > 0 if

f (x, y) + f (y, x) ≤ −β‖x − y‖2, ∀x ∈ K , y ∈ H.

– quasimonotone on K if

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀x ∈ K , y ∈ H.

– Lipschitz-type continuous on H with constants c1 > 0 and c2 > 0 if

f (x, y) + f (y, z) ≥ f (x, z) − c1‖x − y‖2 − c2‖y − z‖2, ∀x, y, z ∈ H.

Let a mapping S : H → H and the fixed point set of S be Fix(S) := {x ∈ H : Sx = x}.
The operator S is called to be:

– η-strongly quasi-nonexpansive, where η > 0, if

‖Sx − z‖2 ≤ ‖x − z‖2 − η‖Sx − x‖2, ∀x ∈ H, z ∈ Fix(S).

– quasi-nonexpansive if

‖Sx − z‖ ≤ ‖x − z‖, ∀x ∈ H, z ∈ Fix(S).

– quasicontractive with constant η ∈ [0, 1) if
‖Sx − z‖ ≤ η‖x − z‖, ∀x ∈ H, z ∈ Fix(S).

When Fix(S) = H, the mapping S is called contractive with constant η.
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For each x ∈ H and ξ > 0, we consider the solution mapping S : H → C of the problem
EPs(C, f ) defined in the form:

Sx = argmin

{
ξ f (x, y) + 1

2
‖x − y‖2 : x ∈ C

}
. (2.1)

It is well-known that x ∈ C is a solution of the problem EPs(C, f ) if and only if it is a fixed
point of the mapping S [25, Proposition 2.1]. Let γ > 0. We introduce a new half space as
follows:

Hx = {
w ∈ H : 〈x − ξwx − Sx, w − Sx〉 ≤ γ ‖x − Sx‖2} , (2.2)

where wx ∈ ∂ f (x, ·)(Sx). Using the well-known necessary and sufficient condition for
optimality of the convex programing (2.1), we see that Sx solves the strongly convex program

min

{
ξ f (x, y) + 1

2
‖x − y‖2 : x ∈ C

}

if and only if
0 ∈ ξ∂ f (x, ·)(Sx) + Sx − x + NC (Sx),

where NC (Sx) is the (outward) normal cone ofC at Sx ∈ C . Since f (x, ·) is subdifferentiable
for each x ∈ H, so there exists wx ∈ ∂ f (x, ·)(Sx) such that

x − Sx − ξwx ∈ NC (Sx), ∀x ∈ H.

Consequently
〈x − Sx − ξwx , y − Sx〉 ≤ 0, ∀y ∈ C .

From γ > 0, it follows that

〈x − ξwx − Sx, y − Sx〉 ≤ γ ‖x − Sx‖2, ∀y ∈ C .

By (2.2), it yields C ⊂ Hx for all x ∈ H.
Now we propose a new solution mapping T : H → H for the problem EPs(C, f ) as

follows:

T x = argmin

{
νξ f (Sx, y) + 1

2
‖y − x‖2 : y ∈ Hx

}
, (2.3)

where regular parameter ν > 0 is very important for strongly quasi-nonexpansiveness of T .
In the case f (x, y) = 〈F(x), y − x〉, set z = x − νξF(x). It is easy to evaluate that T x is
the projection of z onto Hx and presented in an explicit formula:

T x = ΠHx (z) =
{
z − 〈dx ,z−Sx〉−γ ‖x−Sx‖2

‖dx‖2 dx if z /∈ Hx ,

z otherwise,

where dx = x−ξwx−Sx . Note that, if dx = 0 then obviously z ∈ Hx and T x = x−νξF(x).
The following result will present some important properties of the operators T and S that

will be needed in the sequel.

Lemma 2.1 Suppose that f is Lipschitz-type continuous with constants c1 > 0 and c2 > 0.
Under conditions ξ > 0, ν > 0 and γ > 0, the following inequality holds

‖T x − t‖2 ≤ ‖t − x‖2 − (1 − ν)‖x − T x‖2 − ν(1 − 2γ − 2ξc1)‖x − Sx‖2
−ν(1 − 2ξc2)‖T x − Sx‖2 + 2νξ f (Sx, t), ∀t ∈ C, x ∈ H.
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Proof By using the definition of wx ∈ ∂ f (x, ·)(Sx), we get
f (x, z) − f (x, Sx) ≥ 〈wx , z − Sx〉, ∀z ∈ H. (2.4)

Combining (2.4) and T x ∈ Hx , it implies

〈x − Sx, T x − Sx〉 − γ ‖x − Sx‖2 ≤ ξ 〈wx , T x − Sx〉
≤ ξ [ f (x, T x) − f (x, Sx)].

From the necessary and sufficient condition for the strongly convex problem (2.3), there
exists vx ∈ ∂ f (Sx, ·)(T x) such that

0 ∈ νξvx + T x − x + NHx (T x).

Thus,
〈νξvx + T x − x, t − T x〉 ≥ 0, ∀t ∈ Hx ,

and hence
νξ 〈vx , t − T x〉 ≥ 〈x − T x, t − T x〉, ∀t ∈ Hx . (2.5)

By the definition of vx ∈ ∂ f (Sx, ·)(T x) and νξ > 0, it implies

f (Sx, y) − f (Sx, T x) ≥ 〈vx , y − T x〉, ∀y ∈ H.

This together with (2.5) implies

〈x − T x, t − T x〉 ≤ νξ 〈vx , t − T x〉
≤ νξ [ f (Sx, t) − f (Sx, T x)], ∀t ∈ Hx . (2.6)

Since f is Lipschitz-type continuous with c1 and c2, we deduce

f (x, Sx) + f (Sx, T x) ≥ f (x, T x) − c1‖x − Sx‖2 − c2‖T x − Sx‖2.
Combining this and (2.6), we get that, for each t ∈ Hx ,

〈x − T x, t − T x〉 − νξ f (Sx, t)

≤ −νξ f (Sx, T x)

≤ νξ
[
f (x, Sx) − f (x, T x) + c1‖x − Sx‖2 + c2‖T x − Sx‖2], ∀t ∈ Hx

≤ ν〈Sx − x, T x − Sx〉 + νγ ‖x − Sx‖2 + νξc1‖x − Sx‖2 + νξc2‖T x − Sx‖2.(2.7)
By using the relation

2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a − b‖2, ∀a, b ∈ H,

we obtain

2〈x − T x, t − T x〉 = ‖x − T x‖2 + ‖t − T x‖2 − ‖t − x‖2,
2〈Sx − x, T x − Sx〉 = ‖x − T x‖2 − ‖Sx − x‖2 − ‖T x − Sx‖2.

This together with (2.7) implies that

‖T x − t‖2 ≤ ‖t − x‖2 − (1 − ν)‖x − T x‖2 − ν(1 − 2γ − 2ξc1)‖x − Sx‖2
−ν(1 − 2ξc2)‖T x − Sx‖2 + 2νξ f (Sx, t), ∀t ∈ C .

The proof is complete. ��
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Lemma 2.2 Assume that f is Lipschitz-type continuous with constants c1 > 0 and c2 > 0.
Let parameters ν, ξ and γ satisfy the following conditions:

ξ ∈
(
0,

1

c1 + c2

)
, γ ∈ (0, 1 − ξ(c1 + c2)) , ν ∈

(
0,

1

ξc2

)
. (2.8)

Then, x∗ ∈ C is a solution of the problem EPs(C, f ) if and only if it is a fixed point of the
solution mapping T .

Proof Assume that x̄ ∈ C is a fixed point of T , i.e., T x̄ = x̄ . Substituting x = x̄ into
Lemma 2.1, we obtain

‖x̄ − t‖2 ≤ ‖t − x̄‖2 − (1 − ν)‖x̄ − T x̄‖2 − ν(1 − 2γ − 2ξc1)‖x̄ − Sx̄‖2
−ν(1 − 2ξc2)‖T x̄ − Sx̄‖2 + 2νξ f (Sx̄, t), ∀t ∈ C .

Consequently

ξ f (Sx̄, t) ≥ (1 − γ − ξc1 − ξc2)‖x̄ − Sx̄‖2, ∀t ∈ C .

From (2.8), it follows
f (Sx̄, t) ≥ 0, ∀t ∈ C .

Thus, Sx̄ ∈ C is a solution of the problem EPs(C, f ). Since x ∈ C is a solution of the
problem EPs(C, f ) if and only it is a fixed point of S, so x̄ = Sx̄ ∈ Sol(C, f ).

Now we assume x̂ ∈ Sol(C, f ). Then, Sx̂ = x̂ . Substituting t = x̂ and x = x̂ into
Lemma 2.1 and using f (x, x) = 0 for all x ∈ C , we get

(1 − νξc2)‖T x̂ − x̂‖2 ≤ 0.

By (2.8), it yields T x̂ = x̂ . Thus, the solution x̂ ∈ Sol(C, f ) is a fixed point of T . This
implies the proof. ��
Lemma 2.3 Suppose that f is quasimonotone on Sol(C, f ) and Lipschitz-type continuous
with constants c1 > 0, c2 > 0. The parameters satisfy the following restrictions:⎧⎪⎪⎨

⎪⎪⎩
ξ ∈

(
0,min

{
1
2c1

, 1
2c2

})
,

γ ∈ (0, 1 − ξ(c1 + c2)) ,

ν ∈
(
0,min

{
1, 1

ξc2

})
.

(2.9)

Then, the solution mapping T is strongly quasi-nonexpansive with constant (1 − ν).

Proof Let x∗ ∈ Sol(C, f ), i.e., f (x∗, x) ≥ 0 for all x ∈ C . By replacing t = x∗ into
Lemma 2.1, we get

‖T x − x∗‖2 ≤ ‖x − x∗‖2 − (1 − ν)‖x − T x‖2 − ν(1 − 2γ − 2ξc1)‖x − Sx‖2
−ν(1 − 2ξc2)‖T x − Sx‖2 + 2νξ f (Sx, x∗). (2.10)

Since Sx ∈ C , f is quasimonotone and (2.10), we deduce f (Sx, x∗) ≤ 0 and

‖T x − x∗‖2 ≤ ‖x − x∗‖2 − (1 − ν)‖x − T x‖2 − ν(1 − 2γ − 2ξc1)‖x − Sx‖2
−ν(1 − 2ξc2)‖T x − Sx‖2 + 2νξ f (Sx, x∗)

≤ ‖x − x∗‖2 − (1 − ν)‖x − T x‖2 − ν(1 − 2γ − 2ξc1)‖x − Sx‖2
−ν(1 − 2ξc2)‖T x − Sx‖2. (2.11)
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Combining this and conditions (2.9), we have

‖T x − x∗‖2 ≤ ‖x − x∗‖2 − (1 − ν)‖x − T x‖2, ∀x∗ ∈ Sol(C, f ), x ∈ H.

By the definition and Lemma 2.2, we get that Fix(T ) = Sol(C, f ) and the solution mapping
T is (1 − ν)-strongly quasi-nonexpansive. ��

Remark 2.4 In [14, Theorem 3.7], the author showed that if f : C × C → R is ζ -strongly
monotone and there exist functions αi : C ×C → H, βi : C → H (i = 1, . . . , p) such that

f (x, y) + f (y, z) ≥ f (x, z) +
p∑

i=1

〈αi (x, y), βi (y − z)〉, ∀x, y, z ∈ C,

where βi is Ki -Lipschitz continuous, αi (x, y) + αi (y, x) = 0 and |αi (x, y)| ≤ Li‖x − y‖
for all x, y ∈ C , i = 1, . . . , p. Under condition ξ ∈ (0, 2ζ

M2 ) where M = ∑p
i=1 Ki Li , the

mapping S defined by (2.1) is contractive with constant δ = √
1 − ξ(2ζ − ξM2) ∈ (0, 1).

Lemma 2.5 [23, Remark 2.1] Let T : H → H is quasi-nonexpansive and Tω = (1−ω)Id+
ωT with ω ∈ (0, 1] such that Fix(T ) �= ∅, where Id is an identify operator. Then, the
following statements hold:

(i) Fix(T ) = Fix(Tω).
(ii) Tω is quasi-nonexpansive.
(iii) ‖Tωx − v‖2 ≤ ‖x − v‖2 − ω(1 − ω)‖T x − x‖2 for all x ∈ H and v ∈ Fix(T ).
(iv) 〈x − Tωx, x − u〉 ≥ ω

2 ‖x − T x‖2 for all x ∈ H and u ∈ Fix(T ).

3 Subgradient Auxiliary Principle Algorithm

Let G : H → H be LG -Lipschitz continuous and βG -strongly monotone, and g : H → H
is Lg-Lipschitz continuous. In this section, we propose a new algorithm which is called Sub-
gradient Auxiliary Principle Algorithm for solving the problem EPs(C, f ) via the mappings
G and g. Under certain conditions we obtain the desired convergence for the algorithm. First,
we give the restrictions governing the cost bifunction f : H × H → R and the sequence of
parameters below.

(R1) The solution set Sol(C, f ) of the problem EPs(C, f ) is nonempty.
(R2) The cost bifunction f is quasimonotone and Lipschitz-type continuous with constants

c1 > 0 and c2 > 0. f is jointly weakly continuous onH×C in the sense that, if {xk},
{yk} converge weakly to x̂ , ŷ, respectively, then f (xk, yk) → f (x̂, ŷ) as k → ∞.

(R3) For every integer k ≥ 0, all the positive parameters satisfy the following restrictions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξk ∈
(
0,min

{
1
2c1

, 1
2c2

})
, limk→∞ ξk = ξ > 0,

γk ∈ (0, 1 − ξk(c1 + c2)) ,

ν ∈
(
0,min

{
1, 1

ξkc2

})
,

ω ∈ (0, 1
2

)
, μ ∈

(
0, 2βG

L2
G

)
, γ ∈

(
0, μ

Lg

(
βG − μL2

G
2

))
, τ ∈ (γ Lg, μβG

)
,

αk ∈
(
0,min

{
1, 2(μβG−τ)

μ2L2
G−τ 2

, 1
τ−γ Lg

})
,
∑∞

k=0 αk = ∞, limk→∞ αk = 0.
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Let the mappings S and T be defined by (2.1)–(2.3). Now we present the Subgradient
Auxiliary Principle Algorithm for solving the problem EPs(C, f ).

Algorithm 1 Subgradient Auxiliary Principle Algorithm (SAPA).

Choose starting points x0 ∈ H, k = 0, ν > 0, ω > 0, γ > 0, μ > 0, three positive sequences {ξk }, {αk } and
{γk }.
Step 1. Solve the strongly convex auxiliary problem:

yk = argmin

{
ξk f (x

k , y) + 1

2
‖y − xk‖2 : x ∈ C

}
.

If yk = xk then Stop. Otherwise, go to Step 2.
Step 2. Calculate wk ∈ ∂ f (xk , ·)(yk ) and the next iterate

zk = argmin

{
νξk f (y

k , y) + 1

2
‖y − xk‖2 : y ∈ Hk

}
,

where Hk = {w ∈ H : 〈xk − ξkw
k − yk , w − yk 〉 ≤ γk‖xk − yk‖2}. If zk = xk then Stop. Otherwise,

go to Step 3.
Step 3. Calculate

xk+1 = αkγ g(x
k ) + (Id − αkμG)(hk ),

where hk = (1 − ω)xk + ωzk . Let k := k + 1 and go to Step 1.

For each k ≥ 0 and x ∈ H, set

Skx = argmin

{
ξk f (x, y) + 1

2
‖y − x‖2 : x ∈ C

}
, (3.1)

Tkx = argmin

{
νξk f (Skx, y) + 1

2
‖y − x‖2 : x ∈ Hk

}
, (3.2)

where Hk = {w ∈ H : 〈x−ξkwx−Skx, w−Skx〉 ≤ γk‖x−Skx‖2} andwx ∈ ∂ f (x, ·)(Skx).
Remark 3.1 (i) Since x∗ is a solution of the problem EPs(C, f ) if and only if it is a fixed

point of the mapping Sk defined by (3.1). Therefore, if yk = xk in Algorithm 1, i.e.,
xk = Skxk under the assumption ξk > 0, then xk is a solution of the problemEPs(C, f ).
The stopping criterion in Step 1 is valid.

(ii) By Lemma 2.2, xk is a solution of the problem EPs(C, f ) if and only if it is a fixed
point of the solution mapping Tk defined by (3.2) under the assumptions (R1)–(R3).
Thus, if zk = xk in Algorithm 1, i.e., xk = Tkxk , then xk is a solution of the problem
EPs(C, f ). The stopping criterion in Step 2 is valid.

(iii) As usual, for each ε > 0, an iteration point xk defined in Algorithm 1 is ε-solution of
the problem EPs(C, f ), if ‖yk − xk‖ ≤ ε or ‖zk − xk‖ ≤ ε. Equivalently, max{‖yk −
xk‖, ‖zk − xk‖} ≤ ε.

The next lemma is crucial for the proof of our convergent theorem.

Lemma 3.2 Let {xk} and {yk} be the two sequences generated by Algorithm 1 and let x∗ ∈
Sol(C, f ). Under assumptions (R2) and (R3), the following claim holds

‖zk − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − ν)‖xk − zk‖2 − ν(1 − 2γk − 2ξkc1)‖xk − yk‖2
−ν(1 − 2ξkc2)‖zk − yk‖2.
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Proof From (2.1) and Step 1, it follows yk = Skxk , where the mapping Sk is defined in
(3.1). Combining (3.2) and Step 2, it yields that xk+1 = Tkxk . By using the (1− ν)-strongly
quasi-nonexpansive property of the mapping Tk in Lemma 2.3, (2.11), assumptions (R2) and
(R3), we obtain

‖zk − x∗‖2 = ‖Tkxk − x∗‖2
≤ ‖xk − x∗‖2 − (1 − ν)‖xk − Tkx

k‖2 − ν(1 − 2γk − 2ξkc1)‖xk − Skx
k‖2

−ν(1 − 2ξkc2)‖Tkxk − Skx
k‖2.

which completes the proof. ��
Theorem 3.3 Let the cost bifunction f and the parameters satisfy assumptions (R1)–(R3).
Then, two iteration sequences {xk} and {yk} generated by Algorithm 1 converge strongly to
the unique solution x∗ ∈ Sol(C, f ) of the following variational inequality:

〈(μG − γ g)(x∗), x − x∗〉 ≥ 0, ∀x ∈ Sol(C, f ). (3.3)

Proof Let x∗ satisfy the inequality (3.3). Then, x∗ ∈ Sol(C, f ). From Lemma 2.2, it follows
that x∗ is a fixed point of Tk defined by (3.2). By Lemma 2.3, the mapping Tk is strongly
quasi-nonexpansive on H. Since (3.2) and Step 2, we have zk = Tkxk . For every x ∈ H,
since G is βG -strongly monotone and LG -Lipschitz continuous, we have

‖(Id − αkμG)(x) − (Id − αkμG)(y)‖2
= ‖x − y‖2 − 2αkμ〈x − y,G(x) − G(y)〉 + α2

kμ
2‖G(x) − G(y)‖2

≤ (1 − 2αkμβG + α2
kμ

2L2
G)‖x − y‖2

≤ (1 − αkτ)2‖x − y‖2, ∀x, y ∈ H, (3.4)

where the last inequality is deduced from the condition αk ∈
(
0,min

{
1, 2(μβG−τ)

μ2L2
G−τ 2

})
and

τ ∈ (0, μβG) of (R3). Since g is Lg-Lipschitz continuous, (3.4) and Lemma 2.5(iii), we
obtain

‖xk+1 − x∗‖ = ‖αkγ g(x
k) + (Id − αkμG)(hk) − x∗‖

= ‖αkγ [g(xk) − g(x∗)] + αk[γ g(x∗) − μG(x∗)]
+(Id − αkμG)(hk) − (Id − αkμG)(x∗)‖

≤ αkγ ‖g(xk) − g(x∗)‖ + αk‖γ g(x∗) − μG(x∗)‖
+‖(Id − αkμG)(hk) − (Id − αkμG)(x∗)‖

≤ αkγ Lg‖xk − x∗‖ + αk‖γ g(x∗) − μG(x∗)‖ + (1 − αkτ)‖hk − x∗‖
= αkγ Lg‖xk − x∗‖ + αk‖γ g(x∗) − μG(x∗)‖

+(1 − αkτ)‖(1 − ω)xk + ωTkx
k − x∗‖ (3.5)

≤ αkγ Lg‖xk − x∗‖ + αk‖γ g(x∗) − μG(x∗)‖ + (1 − αkτ)‖xk − x∗‖
= [1 − αk(τ − γ Lg)]‖xk − x∗‖ + αk(τ − γ Lg)

‖γ g(x∗) − μG(x∗)‖
τ − γ Lg

≤ max

{
‖xk − x∗‖, ‖γ g(x∗) − μG(x∗)‖

τ − γ Lg

}

≤ · · ·
≤ max

{
‖x0 − x∗‖, ‖γ g(x∗) − μG(x∗)‖

τ − γ Lg

}
,
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whereαk(τ −γ Lg) ∈ (0, 1) is deduced from the conditions (R3). Therefore, {xk} is bounded.
Applying Lemma 2.5(iv) for Tω := (1− ω)Id+ ωTk , using the Cauchy–Schwarz inequality
and (3.4), we have

〈xk+1 − xk + αk[μG(xk) − γ g(xk)], xk − x∗〉
= 〈(Id − αkμG)(hk) − (Id − αkμG)(xk), xk − x∗〉
= 〈(Id − αkμG)(Tωx

k) − (Id − αkμG)(xk), xk − x∗〉
= (1 − αk)〈Tωx

k − xk, xk − x∗〉 + αk〈(Id − μG)Tωx
k − (Id − μG)xk, xk − x∗〉

≤ (1 − αk)〈Tωx
k − xk, xk − x∗〉 + αk〈(Id − μG)Tωx

k − (Id − μG)xk, xk − x∗〉
≤ −(1 − αk)

ω

2
‖Tkxk − xk‖2 + αk(1 − αkτ)‖Tωx

k − xk‖‖xk − x∗‖

= − (1 − αk)ω

2
‖Tkxk − xk‖2 + ωαk(1 − αkτ)‖Tkxk − xk‖‖xk − x∗‖.

Then, using the relation

2〈x, y〉 = ‖x + y‖2 − ‖x‖2 − ‖y‖2, ∀x, y ∈ H,

we get

2〈xk+1 − xk, xk − x∗〉 = ‖xk+1 − x∗‖2 − ‖xk+1 − xk‖2 − ‖xk − x∗‖2
≤ 2αk〈μG(xk) − γ g(xk), x∗ − xk〉 − (1 − αk)ω‖Tkxk − xk‖2

+2ωαk(1 − αkτ)‖Tkxk − xk‖‖xk − x∗‖. (3.6)

From Step 3, it follows that

‖xk+1 − xk‖2 = ‖αkγ g(x
k) + (Id − αkμG)(hk) − xk‖2

= ‖αkγ g(x
k) + (Id − αkμG)(Tωx

k) − xk‖2
= ‖αk[γ g(xk) − μG(xk)] + (Id − αkμF)Tωx

k − (Id − αkμG)(xk)‖2
≤ 2α2

k‖γ g(xk) − μG(xk)‖2 + 2‖(Id − αkμF)Tωx
k − (Id − αkμG)(xk)‖2

≤ 2α2
k‖γ g(xk) − μG(xk)‖2 + 2(1 − αkτ)2‖Tωx

k − xk‖2
= 2α2

k‖γ g(xk) − μG(xk)‖2 + 2(1 − αkτ)2ω2‖Tkxk − xk‖2. (3.7)

Set ak := ‖xk − x∗‖. Combining (3.6) and (3.7), it yields

ak+1 ≤ ak + ‖xk+1 − xk‖2 + 2αk[μG(xk) − γ g(xk)], x∗ − xk〉
−(1 − αk)ω‖Tkxk − xk‖2 + 2ωαk(1 − αkτ)‖Tkxk − xk‖‖xk − x∗‖

≤ ak + 2αk〈μG(xk) − γ g(xk), x∗ − xk〉 − (1 − αk)ω‖Tkxk − xk‖2
+2α2

k‖γ g(xk) − μG(xk)‖2 + 2(1 − αkτ)2ω2‖Tkxk − xk‖2
+2ωαk(1 − αkτ)‖Tkxk − xk‖‖xk − x∗‖

= ak + 2αk〈μG(xk) − γ g(xk), x∗ − xk〉 − ω[1 − αk − 2ω(1 − αkτ)2]‖Tkxk − xk‖2
+2α2

k‖γ g(xk) − μG(xk)‖2 + 2ωαk(1 − αkτ)‖Tkxk − xk‖‖xk − x∗‖. (3.8)

Let us consider two following cases:
Case 1. There exists a positive integer k0 such that ak+1 ≤ ak for all k ≥ k0. Then, the

limit limk→∞ ak = A < ∞ exists. Passing to the limit into (3.8) as k → ∞, using the
boundedness of {xk} and limk→∞ αk = 0, we obtain limk→∞ ‖Tkxk − xk‖ = 0. From (3.8),
it follows

αkΓk ≤ ak − ak+1, ∀k ≥ k0,
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where Γk := −2〈μG(xk) − γ g(xk), x∗ − xk〉 − 2αk‖γ g(xk) − μG(xk)‖2 − 2ωαk(1 −
αkτ)‖Tkxk − xk‖‖xk − x∗‖. By the condition

∑∞
k=0 αk = ∞ in (R3), we deduce

lim infk→∞ Γk ≤ 0 and hence

lim inf
k→∞ 〈μG(xk) − γ g(xk), xk − x∗〉 ≤ 0.

Combining this with the relation

〈(μG − γ g)(x) − (μG − γ g)(y), x − y〉 ≥ (μβG − γ Lg)‖x − y‖2, ∀x, y ∈ H,

yields

0 ≥ lim inf
k→∞ 〈μG(xk) − γ g(xk), xk − x∗〉

≥ lim inf
k→∞

[
〈μG(x∗) − γ g(x∗), xk − x∗〉 + (μβG − γ Lg)‖xk − x∗‖2

]
. (3.9)

From (3.5), it follows

‖xk+1 − x∗‖ ≤ αkγ Lg‖xk − x∗‖ + αk‖γ g(x∗) − μG(x∗)‖
+(1 − αkτ)‖(1 − ω)xk + ωTkx

k − x∗‖
≤ αkγ Lg‖xk − x∗‖ + αk‖γ g(x∗) − μG(x∗)‖

+(1 − αkτ)(1 − ω)‖xk − x∗‖ + (1 − αkτ)ω‖zk − x∗‖.

Passing to the limit as k → ∞, we have

A ≤ lim
k→∞ ‖zk − x∗‖.

By Lemma 3.2, we also have
lim
k→∞ ‖zk − x∗‖ ≤ A.

Thus,
lim
k→∞ ‖zk − x∗‖ = A.

Using Lemma 3.2 yields
lim
k→∞ ‖yk − xk‖ = 0.

Since {xk} is bounded, there exists a subsequence {xk j } such that xk j ⇀x̄ as j → ∞ and

lim inf
k→∞ 〈μG(x∗) − γ g(x∗), xk − x∗〉 = lim

j→∞〈μG(x∗) − γ g(x∗), xk j − x∗〉.

Then, yk j ⇀x̄ . Since C is closed and convex, C is weakly closed. Thus, from {yk} ⊂ C , we
obtain x̄ ∈ C . By the proof of [1, Lemma 3.1],

ξk[ f (xk, y) − f (xk, yk)] ≥ 〈xk − yk, y − yk〉, ∀y ∈ C .

Passing to the limit in the last inequality as k → ∞ and using the assumption (R2) and
limk→∞ ξk = ξ > 0, we get f (x̄, y) ≥ 0 for all y ∈ C . Thus, x̄ ∈ Sol(C, f ) = Fix(Tk).
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Since x∗ is the solution of (3.3) and (3.9), we have

(μβG − γ Lg) lim
k→∞ ak = (μβG − γ Lg) lim

k→∞ ‖xk − x∗‖2

≤ − lim inf
k→∞ 〈μG(x∗) − γ g(x∗), xk − x∗〉

= − lim
j→∞〈μG(x∗) − γ g(x∗), xk j − x∗〉

= −〈μG(x∗) − γ g(x∗), x̄ − x∗〉
≤ 0.

Using γ ∈
(
0, μ

Lg

(
βG − μL2

G
2

))
, it implies limk→∞ ak = 0. Thus, both {xk} and {yk}

converge strongly to x∗.
Case 2. There does not exist any integer k0 such that ak+1 ≤ ak for all k ≥ k0. Then,

consider the sequence of integers as follows:

φ(k) = max{ j ≤ k : a j < a j+1}, ∀k ≥ k0.

By [23], {φ(k)} is a nondecreasing sequence verifying
lim
k→∞ φ(k) = ∞, aφ(k) ≤ aφ(k)+1, ak ≤ aφ(k)+1, ∀k ≥ k0. (3.10)

Replacing k by φ(k) into (3.8), it follows that

ω[1 − αφ(k) − 2ω(1 − αφ(k)τ )2]‖Tφ(k)x
φ(k) − xφ(k)‖2

≤ aφ(k) − aφ(k)+1 + 2αφ(k)〈μG(xφ(k)) − γ g(xφ(k)), x∗ − xφ(k)〉
+2α2

φ(k)‖γ g(xφ(k)) − μG(xφ(k))‖2
+2ωαφ(k)(1 − αφ(k)τ )‖Tφ(k)x

φ(k) − xφ(k)‖‖xφ(k) − x∗‖
≤ 2αφ(k)〈μG(xφ(k)) − γ g(xφ(k)), x∗ − xφ(k)〉 + 2α2

φ(k)‖γ g(xφ(k)) − μG(xφ(k))‖2
+2ωαφ(k)(1 − αφ(k)τ )‖Tφ(k)x

φ(k) − xφ(k)‖‖xφ(k) − x∗‖. (3.11)

Taking the limit as k → ∞ in (3.11) and using the boundedness of {xk}, we obtain
‖Tφ(k)x

φ(k) − xφ(k)‖ → 0 as k → ∞. (3.12)

From (3.11), it implies

〈μG(xφ(k)) − γ g(xφ(k)), xφ(k) − x∗〉 (3.13)

≤ αφ(k)‖γ g(xφ(k)) − μG(xφ(k))‖2 + 2ω(1 − αφ(k)τ )‖Tφ(k)x
φ(k) − xφ(k)‖‖xφ(k) − x∗‖.

Consider (3.9) again, we have

〈μG(xφ(k))−γ g(xφ(k)), xφ(k)−x∗〉 ≥ 〈μG(x∗)−γ g(x∗), xφ(k)−x∗〉+(μβG−γ Lg)aφ(k).

Combining this and (3.13), it leads

〈μG(x∗) − γ g(x∗), xφ(k) − x∗〉 + (μβG − γ Lg)aφ(k)

≤ αφ(k)‖γ g(xφ(k)) − μG(xφ(k))‖2 + 2ω(1 − αφ(k)τ )‖Tφ(k)x
φ(k) − xφ(k)‖‖xφ(k) − x∗‖.

Then, by using limk→∞ αk = 0 and (3.12), we have

(μβG − γ Lg) lim sup
k→∞

aφ(k) ≤ − lim inf
k→∞ 〈μG(x∗) − γ g(x∗), xφ(k) − x∗〉. (3.14)
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We recall the fact that {xφ(k)} is bounded, we can choose a subsequence {xφ(k j )} such that
xφ(k j )⇀x̂ as j → ∞

and
lim inf
k→∞ 〈μG(x∗) − γ g(x∗), xφ(k) − x∗〉 = 〈μG(x∗) − γ g(x∗), x̂ − x∗〉.

By a similar way as in Case 1, we also have x̂ ∈ Sol(C, f ). It means 〈μG(x∗)−γ g(x∗), x̂ −
x∗〉 ≥ 0. Then, using (3.14) and μβG − γ Lg > 0 in (R3), we deduce

(μβG − γ Lg) lim sup
k→∞

aφ(k) ≤ −〈μG(x∗) − γ g(x∗), x̂ − x∗〉 ≤ 0,

and hence lim supk→∞ aφ(k) = 0. However, from (3.8) and (3.12), it follows

lim sup
k→∞

aφ(k)+1 ≤ lim sup
k→∞

aφ(k).

Consequently
lim sup
k→∞

aφ(k)+1 = 0.

Recalling ak ≤ aφ(k) for all k ≥ k0 in (3.10), we immediately obtain limk→∞ ak = 0.
Thus, both {xk} and {yk} converge strongly to a unique solution x∗ of the variational inequality
problem (3.3). Which completes the proof. ��
Remark 3.4 Theorem 3.3 showed that the strongly cluster point of the sequences {xk} and
{yk} constructed by the algorithm (SAP A) is a unique solution of the variational inequality
problem (3.3). This result is a fundamental difference of our algorithmwith respect to existing
algorithms. However, the set Sol(C, f ) is not given explicit. So, the problem (3.3) is not easy
to solve.

4 Numerical Experiments

An important application of the problem EPs(C, f ) is the noncooperative n-person games.
The problem is to find x∗ ∈ C such that

fi (x
∗[yi ]) → max, ∀yi ∈ Ci ,

where

– The i th player’s strategy set is a closed convex set Ci of the Euclidean space Rsi for all
i ∈ I := {1, 2, . . . , n}.

– The fi : C := C1 × C2 × · · · × Cn → R is the loss function of player i .
– The x[yi ] stands for the vector obtained from x = (x1, . . . , xn) ∈ C by replacing xi

with yi .

By [21], a point x∗ ∈ C is said to be a Nash equilibrium point on C if and only if

fi (x
∗) ≤ fi (x

∗[yi ]), ∀yi ∈ Ci , i ∈ I .

Then, we set

f (x, y) =
n∑

i=1

[ fi (x[yi ]) − fi (x)].
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We can see that the problem of finding a Nash equilibrium point of f on C can be
formulated equivalently to the problem EPs(C, f ).

Now we provide some computational results for solving the problem EPs(C, f ) to illus-
trate the effectiveness of Subgradient Auxiliary Principle Algorithm (SAPA), and also to
compare this algorithmwith twowell-known algorithms using the solutionmapping S defined
in the form (2.1): Extragradient Algorithm (EA) introduced by Quoc et al. [32, Algorithm 1]
with the auxiliary bifunction L(x, y) = 1

2‖y− x‖2 for all x, y ∈ H and Halpern Subgradient
Extragradient Algorithm (HSEA) proposed by Hieu [15, Algorithm 3.2]. As we know, the
iteration point xk defined by S is a solution of the problem EPs(C, f ) if and only if yk = xk .
Therefore, we have used the sequence {Sk = ‖xk − yk‖ : k = 0, 1, . . .} to consider the con-
vergent rate of all above algorithms. And, we can say that xk is an ε-solution to the problem
EPs(C, f ) where ε > 0, if Sk ≤ ε.

To test all above algorithms, the parameters are chosen as follows.

– Subgradient Auxiliary Principle Algorithm (SAPA):

ξk = 1

4c1
+ 1

5k + 400
, γk = 1

2
(1 − ξk(c1 + c2)), ν = 1

2
min

{
1,

1

ξkc2

}
,

ω = 1

4
, μ = βG

LG
, γ = μ

2Lg

(
βG − μL2

G

2

)
, τ = 1

2
min(γ Lg, μβG),

αk = a

k + 1
where a = min

{
1,

2(μβG − τ)

μ2L2
G − τ 2

,
1

τ − γ Lg

}
.

– Extragradient Algorithm (EA):

β := 1

2
, ρ := 1

2‖z‖(h|e1| + g|p1|) ∈
(
0,min

{
β

2c1
,

β

2c2

})
.

– Halpern Subgradient Extragradient Algorithm (HSEA):

λ := 1

4c1
∈
(
0,min

{
1

2c1
,

1

2c2

})
, αn := 1

5n + 10
, ∀n ≥ 0.

Auxiliary convex problems in the algorithms are computed effectively by the function
fmincon in Matlab 2018a Optimization Toolbox. All the programs are performed on a PC
Desktop Intel(R) Core(TM) i7-12700F CPU @ 2.10 GHz 2.50 GHz, RAM 32.00 GB.

Let H be a real Hilbert space. We introduce a new cost bifunction f : H × H → R and
the constraint C are given in the forms

C = {x ∈ H : ‖x‖2 ≤ R2, 〈r , x〉 ≤ l}, (4.1)

f (x, y) = 〈[g sin(p1‖x‖ + p2) + h cos(e1‖y‖ + e2) + m]z, y − x〉, (4.2)

where x, y ∈ H, R, p1, p2, e1, e2 ∈ R, l > 0, g > 0, h > 0,m ∈ (g+h,∞), (z, r) ∈ H×H.
Then, the C is nonempty closed convex, and the f has the following properties.

Proposition 4.1 Let the bifunction f : H × H → R be defined by (4.2). Then,

(i) f is pseudomonotone;
(ii) f is Lipschitz-type continuous with constants c1 = c2 = ‖z‖(h|e1|+g|p1|)

2 .

Proof Assume that f (x, y) ≥ 0 for each x, y ∈ H. Then, we have

0 ≤ f (x, y) = 〈[g sin(p1‖x‖ + p2) + h cos(e1‖y‖ + e2) + m]z, y − x〉
= [g(sin(p1‖x‖ + p2) + 1) + h(cos(e1‖y‖ + e2) + 1) + (m − g − h)]〈z, y − x〉.
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From m ∈ (g + h,+∞), it yields that 〈z, y − x〉 ≥ 0 and

f (y, x) = 〈[g sin(p1‖y‖ + p2) + h cos(e1‖x‖ + e2) + m]z, x − y〉
= [g(1 + sin(p1‖y‖ + p2)) + h(1 + cos(e1‖x‖ + e2)) + (m − g − h)]〈z, x − y〉
≤ 0.

By definition, the bifunction f is pseudomonotone on H × H.
Since (4.2), it follows that, for every x, y, t ∈ H,

f (x, y) + f (y, t) − f (x, t)

= 〈[g sin(p1‖x‖ + p2) + h cos(e1‖y‖ + e2) + m]z, y − x〉
+〈[g sin(p1‖y‖ + p2) + h cos(e1‖t‖ + e2) + m]z, t − y〉
−〈[g sin(p1‖x‖ + p2) + h cos(e1‖t‖ + e2) + m]z, t − x〉

= 〈[g sin(p1‖x‖ + p2) + h cos(e1‖y‖ + e2) + m]z, y − x〉
+〈[g sin(p1‖y‖ + p2) + h cos(e1‖t‖ + e2) + m]z, t − y〉
−〈[g sin(p1‖x‖ + p2) + h cos(e1‖t‖ + e2) + m]z, t − y〉
−〈[g sin(p1‖x‖ + p2) + h cos(e1‖t‖ + e2) + m]z, y − x〉

= h[cos(e1‖y‖ + e2) − cos(e1‖t‖ + e2)]〈z, y − x〉
+g[sin(p1‖y‖ + p2) − sin(p1‖x‖ + p2)]〈z, t − y〉

= −2h sin

(
e1

‖y‖ + ‖t‖
2

+ e2

)
sin

(
e1

‖y‖ − ‖t‖
2

)
〈z, y − x〉

+2g cos

(
p1

‖y‖ + ‖x‖
2

+ p2

)
sin

(
p1

‖y‖ − ‖x‖
2

)
〈z, t − y〉

≥ −2h

∣∣∣∣sin
(
e1

‖y‖ + ‖t‖
2

+ e2

)∣∣∣∣
∣∣∣∣sin

(
e1

‖y‖ − ‖t‖
2

)∣∣∣∣ ‖z‖‖y − x‖

−2g

∣∣∣∣cos
(
p1

‖y‖ + ‖x‖
2

+ p2

)∣∣∣∣
∣∣∣∣sin

(
p1

‖y‖ − ‖x‖
2

)∣∣∣∣ ‖z‖‖t − y‖

≥ −2h

∣∣∣∣sin
(
e1

‖y‖ − ‖t‖
2

)∣∣∣∣ ‖z‖‖y − x‖ − 2g

∣∣∣∣sin
(
p1

‖y‖ − ‖x‖
2

)∣∣∣∣ ‖z‖‖t − y‖
≥ −h|e1| |‖y‖ − ‖t‖| ‖z‖‖y − x‖ − g|p1| |‖y‖ − ‖x‖| ‖z‖‖t − y‖.

where the last inequality is deduced from the relation

| sin θ | ≤ |θ |, ∀θ ∈ R.

By using the relation

|‖a1‖ − ‖a2‖| ≤ ‖a1 − a2‖, ∀a1, a2 ∈ H,

we obtain

f (x, y) + f (y, t) − f (x, t)

≥ −h|e1|
∣∣‖y‖ − ‖t‖∣∣‖z‖‖y − x‖ − g|p1|

∣∣‖y‖ − ‖x‖∣∣‖z‖‖t − y‖
≥ −h|e1|‖y − t‖‖z‖‖y − x‖ − g|p1|‖y − x‖‖z‖‖t − y‖
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≥ −h|e1|‖z‖
2

‖y − t‖2 − h|e1|‖z‖
2

‖y − x‖2 − g|p1|‖z‖
2

‖y − x‖2 − g|p1|‖z‖
2

‖t − y‖2

= −‖z‖(h|e1| + g|p1|)
2

‖y − x‖2 − ‖z‖(h|e1| + g|p1|)
2

‖y − t‖2.

Thus, the f is Lipschitz-type continuous with c1 = c2 = ‖z‖(h|e1|+g|p1|)
2 . The proof is

complete. ��
Test 1 First, let us run the algorithm (SAPA) in Rs with s = 5. The starting point is
x0 = (1, 0, 1, 100, 25)�. The parameters R, g, p, q , h, e, f , m, l and the vectors r , z are
randomly chosen as follows:

R = 5, l = 2, g = 3, p1 = −5, p2 = 7, h = 3, e1 = 8, e2 = 2, m = g + h + 5,

r = (2,−3, 5, 8, 4)�, z = (10, 5, 3,−7, 12)�.

Consider the mappings G : Rs → Rs , g : Rs → Rs :

g(x) = 10x, G(x) = Qx + q, ∀x ∈ Rs,

where q ∈ Rs , Q = AA� + B+ D, A is a s× s matrix, B is a s× s skew-symmetric matrix,
and D is a s × s diagonal matrix with its nonnegative diagonal entries (so Q is positive
semidefinite). It is obviously that G is βG -strongly monotone and LG -Lipschitz continuous,
where βG = min{t : t ∈ eig(Q)} is the smallest eigenvalue of Q and LG = ‖Q‖. The
matrics A, B, D of the mapping G are chosen randomly as follows:

A =

⎡
⎢⎢⎢⎢⎣

1 −2 3 4 0
2 1 0 5 −3
4 0 7 9 1
2 5 0 −5 3

−1 9 4 2 3

⎤
⎥⎥⎥⎥⎦

(5×5)

, B =

⎡
⎢⎢⎢⎢⎣

0 2 3 4 5
−2 0 −5 7 9
−3 5 0 6 −8
−4 −7 −6 0 1
−5 −9 8 1 0

⎤
⎥⎥⎥⎥⎦

(5×5)

,

D =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 3 0 0 0
0 0 7 0 0
0 0 0 10 0
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦

(5×5)

, q = (1, 7,−3, 22, 6)�.

Then, the eigenvalue and the norm of Q are evaluated as follows:

eig(Q) = {221.2357, 144.1649, 3.3983, 24.9611, 22.2399}, ‖Q‖ = 222.3145.

This implies that the strongly monotone constant of G is βG = 3.3983 and the Lipschitz
continuous constant of G is given in LG = 222.3145.

It is easy to evaluate that

c1 = c2 = 1

2
(g|p1| + h|e1|)‖z‖ ≈ 352.6213,

and

∂ f (xk, ·)(yk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
[g sin(p1‖xk‖ + p2) + h cos(e1‖yk‖ + e2) + m]z

− he1 sin(e1‖yk‖+e2)
‖yk‖ 〈yk, z〉(yk − xk)

}
if yk �= 0,{

[g sin(p1‖xk‖ + p2) + h cos(e2) + m]z
+he1 sin(e2)〈uk, z〉xk : ‖uk‖ ≤ 1

}
, otherwise.
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Fig. 1 Performance of the sequence {xk } in the algorithm (SAPA) with the tolerance ε = 10−3. The approx-
imate solution is x196 = (−1.5086,−0.5649,−0.1058, 1.0853,−1.8301)�

With the tolerance max{‖yk − xk‖, ‖xk+1 − xk‖} ≤ ε = 10−3, the computational results
of the algorithm (SAPA) are showed in Fig. 1 and Table 1.

Test 2 Consider in an infinite-dimensional Hilbert space H = L2[0, 1] with inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H,

Table 1 Iterations (Iter.) and CPU times (Times) with randomly different parameters, where a =
min

{
1, 2(μβG−τ)

μ2L2G−τ2
, 1

τ−γ Lg

}
, γ̄k = 1 − ξk (c1 + c2), ν̄k = min

{
1, 1

ξk c2

}
and γ̄ = μ

Lg

(
βG − μL2G

2

)

Test ξk ν αk γ μ ω Iter. Times

T1
1
4c1

+ 1
5k+400

1
2 ν̄k

a
k+1

1
2 γ̄

βG
L2G

0.5 434 0.5313

T2 0.001 + 1
k+1000

1
2 ν̄k

a
k+1

1
2 γ̄

βG
L2G

0.5 1605 3.8594

T3
1
4c1

+ 1
5k+400 0.2ν̄k

a
k+1

1
2 γ̄

βG
L2G

0.5 333 0.6094

T4
1
4c1

+ 1
5k+400

1
2 ν̄k

a
10k+100

1
2 γ̄

βG
L2G

0.5 439 0.6250

T5
1
4c1

+ 1
5k+400

1
2 ν̄k

a
k+1 0.7γ̄ βG

L2G
0.5 196 4.7500

T6
1
4c1

+ 1
5k+400

1
2 ν̄k

a
k+1

1
2 γ̄

βG
L2G

0.5 297 2.8906

T7
1
4c1

+ 1
5k+400

1
2 ν̄k

a
k+1

1
2 γ̄

βG
4L2G

0.5 504 6.4921

T8
1
4c1

+ 1
5k+400

1
2 ν̄k

a
k+1

1
2 γ̄

βG
L2G

0.9 351 1.9557
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Fig. 2 Comparison results of the algorithm (SAPA) with two algorithms (EA) and (HSEA), where x0 =
(1, 0, 1, 100, 25)�

and its induced norm

‖x‖ =
√∫ 1

0
x2(t)dt, ∀x ∈ H.

The constraint C and the cost bifunction f are defined in the forms (4.1) and (4.2). We
compare the algorithm (SAPA) with three above algorithm with different starting points x0.
The numerical results are showed in Table 2.

From the comparative results in Fig. 2 and Table 2 of the Subgradient Auxiliary Principle
Algorithm (SAPA) with two other agorithms: the Extragradient Algorithm (EA) and the
Halpern Subgradient ExtragradientAlgorithm (HSEA), and the preliminary numerical results
reported in Table 1 and Fig. 1, we observe that

– The convergence speedof our algorithm (SAPA) is themost sensitive to all the parameters.
The CPU time and iteration number depend very much on the parameter sequence {ξk}.

– The CPU time (second) and the number of iterations of our algorithm are less than those
of the algorithms (EA) and (HSEA).

Conclusions In this paper, we introduce a new solution mapping to equilibrium problems
in a real Hilbert space. We show that this mapping is strongly quasi-nonexpansiveness under
quasimonotone and Lischitz continuous assumptions of the cost bifunction. Then, the Sub-

Table 2 Comparative results with different starting points in L2[0, 1]
x0 = cos t x0 = sin t x0 = 2t2 + 7t x0 = 2t + 5t

Algorithm Sk Times Sk Times Sk Times Sk Times

(SAPA) 3.7e-19 19.5 3.5e-17 19.4 2.7e-18 21.6 7.6e-15 23.1

(EA) 2.8e-15 23.6 4.5e-16 21.2 7.31e-18 37.1 9.5e-12 38.5

(HSEA) 6.6e-25 13.5 1.9e-25 13.7 5.0e-17 18.9 4.7e-14 20.8
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gradient Auxiliary Principle Algorithm is constructed by the solution mapping and classical
auxiliary principle. Finally, the stated theoretical results are verified by several preliminary
numerical experiments.
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