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Abstract
We give a characterization of completely regular topological spaces. Applying some recent
results for supinf problems in completely regular topological spaceswe establish a variational
principle for saddle points. Well-posedness of saddle point problems is studied as well.
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1 Introduction

Variational principles concern sufficient conditions under which after a perturbation of the
optimized function, the perturbed minimization problem has a solution. In 1972, Ekeland [3]
proved a variational principle in complete metric spaces. This principle is equivalent to the
completeness of the metric space, see [10], as well as to Caristi’s fixed point theorem and
Takahashi’s minimization principle, see [9].McLinden [8] used Ekeland variational principle
to derive some results of minimax type in Banach spaces.

In 2010, Kenderov and Revalski [6] proved a variational principle in completely regular
topological spaces. Later, in [7], they gave a sufficient condition for existence of a perturbation
such that the perturbed problem is (Tykhonov) well-posed. Let us recall that the problem to
minimize f : X → R∪ {+∞}, where X is a topological space, is called well-posed if it has
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unique solution x0 ∈ X and for every minimizing sequence {xn}n ⊂ X , f (xn) → inf X f
it holds that xn → x0, i.e., x0 is the strong minimum of f on X . In the same paper they
obtained a variational principle for supinf problems.

We prove in Theorem 2 that if the variational principle of Kenderov and Revalski holds in
a topological space then the space is completely regular. Furthermore, in Theorem 4, we show
that if the strong variational principle of Kenderov and Revalski holds in a topological space,
then the space is completely regular and satisfies the first axiom of countability. We establish
a minimax variational principle in completely regular topological spaces in Theorem 7. In
the final section we give a sufficient condition for existence of a perturbation such that the
perturbed saddle point problem is well-posed. At the end, we give a characterization of
well-posed perturbed saddle point problems.

2 Characterization of Completely Regular Topological Spaces

A topological space X is said to be completely regular if it is Hausdorff and for every set
A ⊂ X and a point x ∈ X \A (i.e., not belonging to the closure of A) there exists a continuous
function f : X → R such that f (x) /∈ f (A), see [2]. The following assertion is often used
as a definition for completely regular topological spaces: a Hausdorff topological space X
is completely regular if for every point x and a closed set A, such that x /∈ A there exists
a continuous function f : X → [0, 1] such that f (x) = 0 and f (A) = 1. Let X be a
completely regular topological space and f : X → [−∞,+∞] be an extended real-valued
function. The domain of f is denoted by dom f and consists of all points in X at which f
has a finite value. The function f is proper if its domain is not empty. Denote by C(X) the
space of all continuous and bounded real-valued functions defined on X . The space C(X)

equipped with the supremum norm ‖ f ‖∞ := sup{| f (x)| : x ∈ X} is a real Banach space.
We denote by R+ the set of all nonnegative real numbers.

Let us recall the variational principle of Kenderov and Revalski.

Theorem 1 [6] Let X be a completely regular topological space and f : X → R∪{+∞} be
a proper lower semicontinuous function bounded from below. Let x0 ∈ dom f and ε > 0 be
such that f (x0) < infX f +ε. Then, there exists a continuous bounded function h : X → R+,
h(x0) = 0, ‖h‖∞ < ε and the function f + h attains its minimum in X at x0. Moreover, h
can be chosen such that ‖h‖∞ = f (x0) − infX f .

Assuming that the variational principle of Kenderov and Revalski holds in a Hausdorff
topological space X , we prove that X is completely regular.

Theorem 2 Let X be aHausdorff topological space. If for every function f : X → R∪{+∞}
which is proper lower semicontinuous and bounded from below and for every x0 ∈ dom f ,
there exists a continuous bounded function h : X → R+, h(x0) = 0, ‖h‖∞ = f (x0)−inf X f
such that the function f + h attains its minimum on X at x0, then X is a completely regular
topological space.

Proof Let x0 ∈ X , A be a closed subset of X , x0 /∈ A and let us consider the function

f (x) :=
{
0 if x ∈ A,

1 otherwise.

Since f is a proper lower semicontinuous function bounded from below then, by assumption
there exists h : X → R+, h(x0) = 0, ‖h‖∞ = 1 such that the function f + h attains its
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minimum in X at x0. Let x ∈ A be arbitrary. Then

f (x) + h(x) = h(x) ≥ f (x0) + h(x0) = f (x0) = 1,

so h(x) ≥ 1. As ‖h‖∞ ≤ 1, therefore h(A) ≡ 1 and X is a completely regular topological
space. ��

Let us note that the conclusion of Theorem 2 still holds if we make the assumptions only
for the characteristic functions of closed sets instead of for all lower semicontinuous bounded
below functions.

Now we recall the strong variational principle of Kenderov and Revalski.

Theorem 3 [7] Let X be a completely regular space and f : X → R ∪ {+∞} be a proper
lower semicontinuous function bounded from below. Let x0 ∈ dom f has a countable local
base in X. Let ε > 0 be arbitrary. Then, there exists a continuous bounded function

h : X → R+, h(x0) = 0, ‖h‖∞ < f (x0) − inf
X

f + ε,

such that the function f + h attains its strong minimum on X at x0.

Assuming that the strong variational principle of Kenderov and Revalski holds in a Haus-
dorff topological space X , we will prove that X is a completely regular topological space
that satisfies the first axiom of countability.

Theorem 4 Let X be aHausdorff topological space. If for every function f : X → R∪{+∞}
which is proper lower semicontinuous and bounded from below, for every x0 ∈ dom f and
for every ε > 0, there exists a continuous bounded function

h : X → R+, h(x0) = 0, ‖h‖∞ < f (x0) − inf
X

f + ε,

such that the function f + h attains its strong minimum on X at x0, then X is a completely
regular topological space that satisfies the first axiom of countability.

Proof Let x0 ∈ X , A be a subset of X , x0 /∈ A and let

f (x) :=
{
0 if x ∈ A,

1 otherwise.

Since f is a proper lower semicontinuous function bounded from below then, by assumption,
there exists h : X → R+, h(x0) = 0, such that the function f +h attains its strong minimum
on X at x0. Let x ∈ A be arbitrary. Then

h(x) = f (x) + h(x) > f (x0) + h(x0) = f (x0) = 1,

so h(x) > 1 for all x ∈ A. Therefore, h(A) ≥ 1. Since h(x0) = 0, h(x0) /∈ h(A) ⊃ h(A)

and X is a completely regular topological space.
Now we will consider the constant function f (x) = 0 for all x ∈ X and arbitrary fixed

x0 ∈ X . By the assumption there exists a continuous bounded function h which attains its
strong minimum at x0 and minX h = h(x0) = 0. Consider the sets

Ln := {x ∈ X : h(x) < 1/n}, n ≥ 1.

We will prove that the sets {Ln, n ≥ 1} form a countable local base at x0. First, observe that
{x0} = ∩∞

n=1Ln . This follows from the assumption that x0 is the strong minimum of h and
every minimizing sequence converges to x0. Then, take an arbitrary neighbourhoodU of x0.
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To the contrary, suppose that for each n there exists a point xn ∈ Ln , xn /∈ U . But {xn}n is
a minimizing sequence and its limit point is x0, so there exists n0 such that xn ∈ U for all
n ≥ n0, which yields a contradiction. Therefore, X is a completely regular topological space
with a countable local base at each point. ��

3 Variational Principle for Saddle Points

Let X and Y be topological spaces and f : X ×Y → [−∞,+∞] be an extended real-valued
function. A solution to the supinf problem

sup
x∈X

inf
y∈Y f (x, y)

is called any point (x0, y0) such that

f (x0, y0) = inf
y∈Y f (x0, y) = sup

x∈X
inf
y∈Y f (x, y),

see, e.g., [7]. Analogously, a solution to the infsup problem

inf
y∈Y sup

x∈X
f (x, y),

is called any point (x0, y0) such that

f (x0, y0) = sup
x∈X

f (x, y0) = inf
y∈Y sup

x∈X
f (x, y).

For a given function f : X × Y → [−∞,+∞], denote
v f (x) := inf

y∈Y f (x, y),

and by V f denote the optimal value of the supinf problem, i.e., V f := supx∈X v f (x). Also,
denote

w f (y) := sup
x∈X

f (x, y), (1)

and by W f denote the optimal value of the infsup problem, i.e., W f := inf y∈Y w f (x).
Let

Δ f := W f − V f = inf
y∈Y sup

x∈X
f (x, y) − sup

x∈X
inf
y∈Y f (x, y).

It is clear that Δ f ≥ 0.
A point (x0, y0) is said to be a saddle point of f on X × Y if

f (x, y0) ≤ f (x0, y0) ≤ f (x0, y), ∀x ∈ X ,∀y ∈ Y ,

which is equivalent to

V f = v f (x0) = f (x0, y0) = w f (y0) = W f .

The saddle point problem for a given function f : X × Y → [−∞,+∞] is to find a
saddle point of f on X × Y .

Obviously, if (x0, y0) is a saddle point of f on X × Y , then (x0, y0) is a solution to both
infsup and supinf problems for f , they have the same optimal values equal to f (x0, y0), and
Δ f = 0.

Note that it is possible that Δ f = 0 but the function f has no saddle point on X × Y .
For example, consider the function f (x, y) := x − y defined on X × Y , where X := (0, 1),
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Y := (0, 1]. It is easy to check that Δ f = 0 but f has no saddle point on X × Y since
(1, 1) /∈ X × Y .

We will make the following assumptions for the function f : X × Y → [−∞,+∞]:
(A1) for any y ∈ Y the function f (·, y) is upper semicontinuous;
(A2) the function v f (x) is bounded above in X and proper as a function with values in

R ∪ {−∞};
(A3) for any x ∈ X the function f (x, ·) is lower semicontinuous;
(A4) the function w f (y) is bounded below in Y and proper as a function with values in

R ∪ {+∞}.
It is easy to see that if the function f satisfies the assumptions (A1)–(A4), then Δ f is

finite.
Let us recall the supinf variational principle of Kenderov and Revalski.

Theorem 5 [7] Let X and Y be completely regular topological spaces and f : X × Y →
[−∞,+∞] be an extended real-valued function which satisfies the assumptions (A1)–(A2).
Let ε > 0 and x0 ∈ X be such that v f (x0) > supx∈X v f (x)− ε, and let δ > 0 and y0 ∈ Y be
such that f (x0, y0) < inf y∈Y f (x0, y) + δ. Then, there exist continuous bounded functions
q : X → R+ and p : Y → R+, such that q(x0) = p(y0) = 0, ‖q‖∞ < ε, ‖p‖∞ < δ and
the supinf problem

sup
x∈X

inf
y∈Y{ f (x, y) − q(x) + p(y)} (2)

has a solution at (x0, y0).

Note that assuming (A3) the function w f (y) defined by (1) is lower semicontinuous, so
one can follow the lines of the proof of the above result in [7] to obtain the following

Theorem 6 Let X and Y be completely regular topological spaces and f : X × Y →
[−∞,+∞] be an extended real-valued function which satisfies the assumptions (A3)–(A4).
Let ε > 0 and y0 ∈ Y be such thatw f (y0) < inf y∈Y w f (y)+ε, and let δ > 0 and x0 ∈ X be
such that f (x0, y0) > supx∈X f (x, y0) − δ. Then, there exist continuous bounded functions
h : X → R+ and g : Y → R+, such that h(x0) = g(y0) = 0, ‖h‖∞ < δ, ‖g‖∞ < ε and
the infsup problem

inf
y∈Y sup

x∈X
{ f (x, y) − h(x) + g(y)} (3)

has a solution at (x0, y0).

We will prove the following minimax variational principle in completely regular topolog-
ical spaces.

Theorem 7 Let X and Y be completely regular topological spaces and f : X × Y →
[−∞,+∞] be an extended real-valued function which satisfies the assumptions (A1)–(A4).
Let ε′ > 0, ε′′ > 0, x0 ∈ X and y0 ∈ Y be such that

v f (x0) > sup
x∈X

v f (x) − ε′,

w f (y0) < inf
y∈Y w f (y) + ε′′.

Then, there exist continuous bounded functions k : X → R+ and r : Y → R+, such that
k(x0) = r(y0) = 0, ‖k‖∞ < 2ε′ + ε′′ + Δ f , ‖r‖∞ < ε′ + 2ε′′ + Δ f , and the function
f (x, y) − k(x) + r(y) has a saddle point at (x0, y0).
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Proof We begin with two chains of inequalities:

f (x0, y0) − ε′′ ≤ sup
x∈X

f (x, y0) − ε′′ = w f (y0) − ε′′ < inf
Y

w f = inf
y∈Y sup

x∈X
f (x, y) (4)

and

f (x0, y0) + ε′ ≥ inf
y∈Y f (x0, y) + ε′ = v f (x0) + ε′ > sup

X
v f = sup

x∈X
inf
y∈Y f (x, y). (5)

Combining the equality

inf
y∈Y sup

x∈X
f (x, y) − Δ f = sup

x∈X
inf
y∈Y f (x, y),

with (4) and (5), we get

f (x0, y0) − ε′′ − Δ f < inf
y∈Y sup

x∈X
f (x, y) − Δ f = sup

x∈X
inf
y∈Y f (x, y) < inf

y∈Y f (x0, y) + ε′,

hence
f (x0, y0) < inf

y∈Y f (x0, y) + ε′ + ε′′ + Δ f .

Analogously, we get

f (x0, y0) > sup
x∈X

f (x, y0) − ε′ − ε′′ − Δ f .

Nowwe applyTheorem5 to the point x0 for ε = ε′, and to the point y0 for δ = ε′+ε′′+Δ f .
Therefore, there exist continuous bounded functions q : X → R+, and p : Y → R+ such
that q(x0) = p(y0) = 0, ‖q‖∞ < ε′, ‖p‖∞ < ε′ + ε′′ + Δ f and the supinf problem (2) has
a solution at (x0, y0), i.e.,

sup
x∈X

inf
y∈Y{ f (x, y) − q(x) + p(y)} = inf

y∈Y{ f (x0, y) − q(x0) + p(y)} = f (x0, y0). (6)

Furthermore, we apply Theorem 6 to the point y0 for ε = ε′′, and to the point x0 for δ =
ε′ + ε′′ + Δ f . Hence, there exist continuous bounded functions h : X → R+, g : Y → R+
such that h(x0) = g(y0) = 0, ‖h‖∞ < ε′ + ε′′ + Δ f , ‖g‖∞ < ε′ and the infsup problem
(3) has a solution at (x0, y0), i.e.,

inf
y∈Y sup

x∈X
{ f (x, y) − h(x) + g(y)} = sup

x∈X
{ f (x, y0) − h(x) + g(y0)} = f (x0, y0). (7)

Let x ∈ X , y ∈ Y be arbitrary. As q(x) ≥ 0, g(y) ≥ 0, from (7) and (6) it follows that

f (x, y0) − h(x) − q(x) + p(y0) + g(y0) ≤ f (x, y0) − h(x) + g(y0)

≤ f (x0, y0) ≤ f (x0, y) + p(y) − q(x0)

≤ f (x0, y) + p(y) + g(y) − q(x0) − h(x0).

Setting k(x) :=h(x) + q(x) and r(y) := p(y) + g(y) we get the conclusion of the theorem. ��
Note that whenever a function f satisfies the assumptions (A1)–(A4), for any ε′ > 0 and

ε′′ > 0 one can always find x0 and y0 satisfying the assumptions of Theorem 7.

Definition 1 For a function f : X × Y → [−∞,+∞], such that Δ f = 0 and ε > 0, we say
that (x0, y0) ∈ X × Y is an ε-saddle point for f if

v f (x0) > sup
x∈X

v f (x) − ε/3,

w f (y0) < inf
y∈Y w f (y) + ε/3.
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If f satisfies (A1)–(A4) and Δ f = 0, from Theorem 7 easily follows a variational princi-
ple, which states that we can perturb the function f by functions with arbitrary small norms
in a way that the perturbed function has a saddle point.

Theorem 8 Let X and Y be completely regular topological spaces, f : X×Y → [−∞,+∞]
satisfy (A1)–(A4) and Δ f = 0. Let ε > 0, and (x0, y0) ∈ X × Y be an ε-saddle point for f .
Then, there exist continuous bounded functions k : X → R+, and r : Y → R+, such that
k(x0) = r(y0) = 0, ‖k‖∞ < ε, ‖r‖∞ < ε, and the function f (x, y) − k(x) + r(y) has a
saddle point at (x0, y0).

If f is an additively separable function, i.e., f (x, y) = f1(x) + f2(y), then Δ f +k+r = 0
for every k ∈ C(X) and r ∈ C(Y ). The following result constitutes a dense variational
principle for the saddle point problem.

Theorem 9 Let X and Y be completely regular topological spaces, let f : X × Y →
[−∞,+∞] satisfy the assumptions (A1)–(A4), and f (x, y) = f1(x) + f2(y). Then,
the set {(k, r) ∈ C(X) × C(Y ) : the function f (x, y) + k(x) + r(y), (x, y) ∈ X ×
Y has a saddle point} is a dense subset of C(X) × C(Y ).

4 Well-posedness of Saddle Point Problems

Let f : X ×Y → [−∞,+∞], where X and Y are completely regular topological spaces. In
[5] (in the constrained case) a sequence of points {(xn, yn)}n ∈ X × Y is called optimizing
for the supinf problem for f if v f (xn) → V f and f (xn, yn) → V f . Analogously, {(xn, yn)}n
is optimizing for the infsup problem for f if w f (yn) → W f and f (xn, yn) → W f .

Here we consider the following

Definition 2 A sequence {(xn, yn)}n ∈ X × Y is called optimizing for the saddle point
problem for f : X × Y → [−∞,+∞] if
1. v f (xn) → V f ;
2. w f (yn) → W f ;
3. Δ f = 0.

Let us note that in [1] maximinimizing sequences are considered. A sequence {(xn, yn)}n
∈ X×Y is calledmaximinimizing for the saddle point problem for f ifw f (yn)−v f (xn) → 0,
as n → ∞. Since v f (xn) = inf y∈Y f (xn, y) ≤ f (xn, yn) ≤ supx∈X f (x, yn) = w f (yn),
it is clear that every optimizing sequence for the saddle point problem is maximinimizing.
Moreover, any optimizing sequence for the saddle point problem for f is optimizing for the
supinf and infsup problems for f .

The supinf (resp. infsup) problem for the function f is called well-posed if any optimizing
for it sequence converges to its unique solution.

Moreover, the supinf problem for the function f is sup-well-posed if the problem
supx∈X v f (x) is well-posed, see [7]. In such a case, the unique point realizing the maxi-
mum is called a sup-solution.

Analogously, the infsup problem for the function f is inf-well-posed if the problem
inf y∈Y w f (y) is well-posed and the unique point realizing theminimum is called inf-solution.

Definition 3 The saddle point problem for f : X × Y → [−∞,+∞] is well-posed if every
optimizing for it sequence converges to the unique solution of the problem.
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The saddle point problem for a function f is well-posed if and only if the supinf and
infsup problems for f are sup-well-posed and inf-well-posed, respectively, and Δ f = 0.
Well-posedness of the saddle point problem for f does not entail well-posedness of the
corresponding supinf and infsup problems, see Remark 3-1 in [1].

If f is such that Δ f = 0, then for f :

{(xn, yn)}n is an optimizing sequence for the saddle point problem

�
{(xn, yn)}n is an optimizing sequence for both supinf and infsup problems,

and, moreover,

the supinf and infsup problems for f are well-posed

⇓
the saddle point problem for f is well-posed

�
the supinf problem is sup-well-posed and the infsup problem is inf-well-posed.

The next result is about perturbations for which the perturbed saddle point problem is
well-posed in the sense of Definition 3.

Theorem 10 Let for X , Y and f : X × Y → [−∞,+∞] the assumptions in Theorem 7
hold and let k and r be the functions from its conclusion. Suppose that x0 has a countable
local base in X and y0 has a countable local base in Y . Then, for arbitrary δ > 0 there exist
continuous bounded functions k′ : X → R+ and r ′ : Y → R+, such that k(x0) = r(y0) = 0,
‖k′‖∞ < δ, ‖r ′‖∞ < δ, and for the function g(x, y) := f (x, y)−k(x)+r(y)−k′(x)+r ′(y),

(a) the supinf problem is sup-well-posed with unique sup-solution at x0;
(b) the infsup problem is inf-well-posed with unique inf-solution at y0;
(c) the saddle point problem is well-posed with unique solution at (x0, y0).

Proof We follow the idea of the proof of Proposition 2.10 in [7]. Consider countable local
bases of open nested neighbourhoods {Un, n ≥ 1} of x0 and {Vn, n ≥ 1} of y0, respectively.
For each fixed n ≥ 1, let hn : X → [0, 1] and gn : Y → [0, 1] be continuous functions such
that

hn(x0) = 0 and hn(X \Un) ≡ 1,

gn(y0) = 0 and gn(Y \ Vn) ≡ 1.

Define the functions

k′(x) := δ

∞∑
n=1

1

2n
hn(x), x ∈ X ,

r ′(y) := δ

∞∑
n=1

1

2n
gn(y), y ∈ Y .

The functions k′ and r ′ are continuous bounded functions with values in [0, δ]. For all
x ∈ X and y ∈ Y , x �= x0 and y �= y0, k′(x) > 0 and r ′(y) > 0. Furthermore, from
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k(x0) = k′(x0) = 0, r(y0) = r ′(y0) = 0 and the fact that (x0, y0) is a saddle point for
f (x, y) − k(x) + r(y), it holds that for all x ∈ X and y ∈ Y , x �= x0 and y �= y0,

f (x, y0) − k(x) − k′(x) + r(y0) + r ′(y0) < f (x0, y0) − k(x0) − k′(x0) + r(y0) + r ′(y0)
< f (x0, y) − k(x0) − k(x0) + r(y) + r ′(y),

and, therefore, (x0, y0) is a solution for the saddle point problem, supinf problem and infsup
problem for the function g(x, y) in X × Y . Observe that (x0, y0) is also a solution for the
saddle point problem, supinf problem and infsup problem for the functions f (x, y)− k(x)+
r(y) + r ′(y) and f (x, y) − k(x) − k′(x) + r(y) in X × Y .

To prove (a) let us consider the functions

v f −k+r+r ′(x) := inf
Y

{ f (x, y) − k(x) + r(y) + r ′(y)},
vg(x) := inf

Y
{ f (x, y) − k(x) − k′(x) + r(y) + r ′(y)}.

Having in mind that k(x0) = k′(x0) = 0 and r(y0) = r ′(y0) = 0 and that (x0, y0) is a
solution for the supinf problems for the functions f (x, y)− k(x)+ r(y)+ r ′(y) and g(x, y)
in X × Y , we have that

v f −k+r+r ′(x0) = vg(x0) = f (x0, y0).

Suppose that {xn}n is an optimizing sequence for vg and {xn}n does not converge to x0. Then,
there would be some integer n0 ≥ 1 and a subsequence of {xn}n (without renumbering),
such that xn /∈ Un0 for every n. Furthermore, supX vg = supX v f −k+r+r ′ and vg(x) ≤
v f −k+r+r ′(x), and since k′ has nonnegative values, k′(xn) converges to 0. But this contradicts
xn /∈ Un0 for any n since the latter would imply that k′(xn) ≥ δ

∑∞
m=n0(1/2

m) > 0 for all n.
The proof of (b) is similar to the proof of (a).
To establish (c) let us observe that from the proofs of (a) and (b) it follows that the supinf

and infsup problems for the function g are sup-well-posed and inf-well-posed with unique
solutions at x0 and y0, respectively. Moreover Δg = 0 and, therefore, the saddle point
problem for g is well-posed with unique solution at (x0, y0). ��

For a given function f : X × Y → [−∞,+∞] denote by S f : C(X) × C(Y ) ⇒ X × Y
the correspondence which assigns to every couple of functions s ∈ C(X) and u ∈ C(Y )

the (possibly empty) set of solutions (x0, y0) to the saddle point problem for the function
f (x, y) + s(x) + u(y). We follow the proof of Theorem 3 in [4] to get the following result.

Theorem 11 Let X and Y be completely regular topological spaces and f : X×Y → [−∞,

+∞] be an extended real-valued function which satisfies (A1)–(A4). The mapping S f is
single-valued and upper semicontinuous at (s, u) ∈ C(X) × C(Y ) if and only if the saddle-
point problem for the function f (x, y) + s(x) + u(y) is well-posed.

Proof ⇒) Let {(xn, yn)}n ∈ X × Y be an optimizing sequence for the saddle point problem
for f (x, y) + s(x) + u(y). According to the definition of such a sequence, it holds that:

1. v f +s+u(xn) → V f +s+u ;
2. w f +s+u(yn) → W f +s+u ;
3. Δ f +s+u = 0.

If S f (s, u) = {(x0, y0)}, so Δ f +s+u = 0. Suppose that {(xn, yn)}n does not converge to
(x0, y0). Then, there exist open sets U and V , such that x0 ∈ U , y0 ∈ V and a subsequence
(without renumbering) {(xn, yn)}n such that (xn, yn) /∈ U × V for all n.
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From the upper semicontinuity of S f (s, u) there exists ε > 0, such that S f (s′, u′) ⊂ U×V
for all s′ ∈ C(X) such that ‖s′ − s‖∞ < ε, and all u′ ∈ C(Y ) such that ‖u′ − u‖∞ < ε.

Let n be so large that V f +s+u − v f +s+u(xn) < ε/3 and w f +s+u(yn) − W f +s+u < ε/3.
Applying Theorem 8 for the ε-saddle point (xn, yn) of the function f (x, y)+s(x)+u(y) one
obtains functions sn ∈ C(X) and un ∈ C(Y ), such that ‖sn‖∞ < ε, ‖un‖∞ < ε and (xn, yn)
is a solution to the supinf problem for the function f (x, y) + s(x) − sn(x) + u(y) + un(y).
But ‖s + sn − s‖∞ < ε, ‖u − un − u‖∞ < ε and (xn, yn) ∈ S f (s − sn, u + un) which
contradicts (xn, yn) /∈ U × V .

⇐) Suppose that the saddle point problem for the function f (x, y) + s(x) + u(y) is
well-posed with unique solution (x0, y0). Hence,Δ f +s+u = 0 and S f (s, u) is single-valued.
Suppose that S f is not upper semicontinuous at (s, u). Then there would exist open neigh-
bourhoods U of x0 and V of y0, respectively, such that for every n ≥ 1 there would be
sn ∈ C(X) and un ∈ C(Y ) with ‖sn − s‖∞ < 1/n and ‖un − u‖∞ < 1/n, such that
S f (sn, un) /∈ U × V , i.e., (xn, yn) ∈ S f (sn, un) \U × V for all n ∈ N.

Observe that Δ f +sn+un = 0, and

v f +sn+un (xn) := inf
y∈Y{ f (xn, y) + sn(xn) + un(y)}

= sup
x∈X

{ f (x, yn) + sn(x) + un(yn)} =: w f +sn+un (yn).

As {sn}n and {un}n converge uniformly on X and Y to s and u, respectively, then for every
ε > 0 we can find n0, such that, for every n ≥ n0:

|v f +sn+un (xn) − v f +s+u(xn)| < ε,

|w f +sn+un (yn) − w f +s+u(yn)| < ε.

Therefore v f +s+u(xn) andw f +s+u(yn) are close eventually and {(xn, yn)}n is an optimizing
sequence for f (x, y)+s(x)+u(y). Since the saddle point problem for f (x, y)+s(x)+u(y)
is well-posed with unique solution (x0, y0), the sequence {(xn, yn)}n converges to (x0, y0).
The latter contradicts the assumption (xn, yn) ∈ S f (sn, un) \U × V . ��

If we consider the correspondence S̃ f : C(X × Y ) ⇒ X × Y which assigns to each
function z ∈ C(X × Y ) the (possibly empty) set of solutions (x0, y0) to the saddle point
problem for the function f (x, y) + z(x, y), and follow the lines of the proof of Theorem 11
we will obtain

Theorem 12 Let X and Y be completely regular topological spaces and f : X×Y → [−∞,

+∞] be an extended real-valued function which satisfies the assumptions (A1)–(A4). The
mapping S̃ f is single-valued and upper semicontinuous at z ∈ C(X × Y ) if and only if the
saddle-point problem for the function f (x, y) + z(x, y) is well-posed.
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