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Abstract
Consider the limit ε → 0 of the steady Boltzmann problem

v · ∇xF = ε−1Q[F,F], F
∣
∣
v·n<0 = Mw

∫

v′·n>0
F(v′)|v′ · n|dv′, (0.1)

where Mw(x0, v) := 1
2π(Tw(x0))2

exp
( − |v|2

2Tw(x0)

)

for x0 ∈ ∂� is the wall Maxwellian in the
diffuse-reflection boundary condition. We normalize

Tw = 1 + O (|∇Tw|L∞) .

In the case of |∇Tw| = O(ε), the Hilbert expansion confirms F ≈ (2π)− 3
2 e− |v|2

2 +
ε(2π)− 3

4 e− |v|2
4
(

ρ1 + T1
|v|2−3

2

)

where (2π)− 3
2 e− |v|2

2 is a global Maxwellian and (ρ1, T1)
satisfies the celebrated Fourier law

�x T1 = 0.

In the natural case of |∇Tw| = O(1), for any constant P > 0, the Hilbert expansion leads to

F ≈ μ + ε

{

μ

(

ρ1 + u1 · v + T1
|v|2 − 3T

2

)

− μ
1
2

(

A · ∇x T

2T 2

)}

,

whereμ(x, v) := ρ(x)

(2πT (x))
3
2
exp

(− |v|2
2T (x)

)

, and (ρ, u1, T ) is determined by aNavier–Stokes–

Fourier system with “ghost” effect
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

P = ρT ,

ρ(u1 · ∇xu1) + ∇xp = ∇x · (τ (1) − τ (2)
)

,

∇x · (ρu1) = 0,

∇x ·
(

κ ∇x T
2T 2

)

= 5P(∇x · u1),
(0.2)

with the boundary condition

T
∣
∣
∣
∂�

= Tw, u1
∣
∣
∣
∂�

:= (u1,ι1 , u1,ι2 , u1,n)
∣
∣
∣
∂�

= (β0∂ι1Tw, β0∂ι2Tw, 0). (0.3)
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Here κ[T ] > 0 is the heat conductivity, (ι1, ι2) are two tangential variables and n is the normal
variable, β0 = β0[Tw] is a function of Tw , τ (1) := λ

(∇xu1 + (∇xu1)t − 2
3 (∇x · u1)1

)

and τ (2) := λ2

P

(

K1
(∇2

x T − 1
3�x T 1

) + K2
T

(∇x T ⊗ ∇x T − 1
3 |∇x T |21)

)

for some smooth

function λ[T ] > 0, the viscosity coefficient, and positive constants K1 and K2. Tangential
temperature variation creates non-zero first-order velocity u1 at the boundary (0.3), which
plays a surprising “ghost” effect [26, 27] in determining zeroth-order density and temperature
field (ρ, T ) in (0.2). Such a ghost effect cannot be predicted by the classical fluid theory,
while it has been an intriguing outstanding mathematical problem to justify (0.2) from (0.1)
due to fundamental analytical challenges. The goal of this paper is to construct F in the form
of

F(x, v) = μ + μ
1
2
(

ε f1 + ε2 f2
) + μ

1
2
w

(

ε f B1

)

+ εαμ
1
2 R (0.4)

for interior solutions f1, f2 and boundary layer f B1 , where μw is μ computed for T = Tw,
and derive equation for the remainder R with some constant α ≥ 1. To prove the validity of
the expansion suitable bounds on R are needed, which are provided in the companion paper
(Esposito 2023).

Keywords Boltzmann theory · Hydrodynamic limit · Ghost effect
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35Q35, 35Q70

1 Introduction

The diffusive hydrodynamic limit of the Boltzmann equation in the lowMach number regime
is described by the incompressible Navier–Stokes–Fourier equations under the extra assump-
tion that the initial density and temperature profiles differ from constants at most for terms
of the order of the Knudsen number. Such behavior has been proved in several papers and an
overview is provided in [23] and [13], to which we refer for a partial list of references on the
subject. We also stress that a similar result can be obtained starting from the compressible
Navier–Stokes equations, which converge, in the low Mach number limit, to the solutions of
the incompressible Navier–Stokes equations [18].

When the density and temperature do not satisfy the above mentioned assumptions, the
limiting behavior of the Boltzmann equation deviates from the Navier–Stokes–Fourier equa-
tions. Such a discrepancy, called “ghost effect” [27], shows up in the macroscopic equations
with the presence of some extra terms reminiscent of the limiting procedure such as some heat
flow induced by the vanishingly small velocity field. Thus they are genuine kinetic effects
which would be never detected in the standard hydrodynamic equations. Y. Sone has given
the suggestive name of “ghost effects” to such phenomena. The meaning of the name is that
the velocity field u1 acts like a ghost since it appears at order ε in the expansion and still
affects ρ and T at order 1. In [22] the local well-posedness of the time dependent equations
is proven.

In this paperwe confine our analysis to the stationaryBoltzmann equation for a rarefied gas
in a bounded domain with diffuse-reflection boundary data describing a non-homogeneous
wall temperature with a gradient of order 1. In this situation the gradient of temperature along
the boundary wall produces a flow called in literature thermal creep. For relevant physical
background and discussion, we refer to [24].
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Ghost Effect from Boltzmann Theory 885

We give a formal derivation of such new equations when the Mach number, proportional
to the Knudsen number ε, goes to 0, and prove their well-posedness. In the companion paper
[12] we study the much more involved problem of the rigorous proof of such a derivation.
Here we construct the formal solution by a truncated expansion in ε plus a remainder, both
in the interior and in a boundary layer of size ε. In view of the control of the remainder,
we carefully prepare the expansion by truncating at the second order in ε in the bulk and
at the first order in the boundary layer. Then a matching procedure allows to determine the
boundary conditions for the limiting equations.

The explicit form of the equations for (ρ, u1, T , p) is given in (0.2). The main difference
between these equations and the incompressible ones is that∇x ·u1 is not anymore zero but is
related to the gradient of the temperature. This is the analog of the constraint∇x ·u1 = 0 in the
incompressible Navier–Stokes equations and is compensated by the Lagrangian multiplier
p in the equation for u1. Moreover, in the equation for u1 there are the usual Navier–Stokes
terms involving u1 and also a term τ (2) depending on the first and second gradient of the
temperature. In particular, the “thermal stress” τ (2) is a new contribution different from the
standard fluid theories. It is exactly this term that cannot be obtained from the compressible
Navier–Stokes equation. The relevance of these equations, as also noted by Bobylev [5], is
that they cannot be derived from the compressible Navier–Stokes equations. Let us notice
that the particular solution corresponding to homogeneous initial condition for density and
temperature is also solution of the incompressible Navier–Stokes equations.

Wegive also the proof of the existence of the solution to (0.2) under the assumption of small
temperature gradient. The main difficulty in getting a rigorous proof of the hydrodynamic
limit is the control of the remainder. This is achieved in [12].

Before stating the main results, we briefly introduce the history of the study of the ghost
effect. Sone [25] and [19, 20] pointedout thenew thermal effects in stationary situations. In [11],
the equations from theBoltzmann equations in the timedependent casewere formally derived,
but without computing the transport coefficients. These equations were then discussed by
Bobylev [5], who analyzed the behavior of the solutions in particular situations. He also
showed that the thermodynamic entropy decreases in time. Finally, Sone and the Kyoto group
exploited many other kinds of ghost effects in many papers [28, 29], both analytically and
numerically and gave computations of the transport coefficients for the hard sphere case and
for Maxwellian molecules. A detailed analysis can be found in [26] and [27] and references
therein. Rigorous results in deriving the equations where obtained only in one-dimensional
stationary cases [7, 8] and [1]. There are no rigorous results in the time dependent case, not
even on the torus, but for [16] where theKorteweg theory is derived from the one-dimensional
Boltzmann equation on the infinite line. We also refer to [15, 17] and the references therein.

1.1 Formulation of the Problem

We consider the stationary Boltzmann equation in a bounded three-dimensional C3 domain
� 
 x = (x1, x2, x3) with velocity v = (v1, v2, v3) ∈ R

3. The density function F(x, v)

satisfies {

v · ∇xF = ε−1Q[F,F] in � × R
3,

F(x0, v) = Pγ [F] for x0 ∈ ∂� and v · n(x0) < 0.
(1.1)

Here Q is the hard-sphere collision operator

Q[F,G] := 1

2

∫

R3

∫

S2
q(ω, |u − v|) (F(u∗)G(v∗) − F(u)G(v)) dωdu,
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886 R. Esposito et al.

with u∗ := u+ω((v −u) ·ω), v∗ := v −ω((v −u) ·ω), and the hard-sphere collision kernel
q(ω, |u − v|) := q0|ω · (v − u)| for a positive constant q0.

In the diffuse-reflection boundary condition

Pγ [F] := Mw(x0, v)

∫

v′·n(x0)>0
F(x0, v

′)|v′ · n(x0)|dv′,

n(x0) is the unit outward normal vector at x0, and the Knudsen number ε satisfies 0 < ε � 1.
The wall Maxwellian

Mw(x0, v) := 1

2π(Tw(x0))2
exp

(

− |v|2
2Tw(x0)

)

for any Tw(x0) > 0 satisfies
∫

v·n(x0)>0
Mw(x0, v)|v · n(x0)|dv = 1.

The boundary condition in (1.1) implies that the total max flux across the boundary is zero.

1.2 Notation and Convention

Based on the flow direction, we can divide the boundary γ := {(x0, v) : x0 ∈ ∂�, v ∈ R
3}

into the incoming boundary γ−, the outgoing boundary γ+, and the grazing set γ0 based on
the sign of v · n(x0). In particular, the boundary condition of (1.1) is only given on γ−.

Denote the bulk and boundary norms

‖ f ‖Lr :=
(∫∫

�×R3
| f (x, v)|rdvdx

) 1
r

, | f |Lrγ± :=
(∫

γ±
| f (x, v)|r |v · n|dvdx

) 1
r

.

Define the weighted L∞ norms for TM > 0, 0 ≤ � < 1
2 and ϑ ≥ 0 (see (4.7))

‖ f ‖L∞
�,ϑ

:= ess sup
(x,v)∈�×R3

(

〈v〉ϑe�
|v|2
2TM | f (x, v)|

)

,

| f |L∞
γ±,�,ϑ

:= ess sup
(x,v)∈γ±

(

〈v〉ϑe�
|v|2
2TM | f (x, v)|

)

.

Denote the ν-norm

‖ f ‖L2
ν

:=
(∫∫

�×R3
ν(x, v)| f (x, v)|2dvdx

) 1
2

.

Let ‖ · ‖Wk,p denote the usual Sobolev norm for x ∈ � and | · |Wk,p for x ∈ ∂�. Let
‖ · ‖Wk,p Lq denote Wk,p norm for x ∈ � and Lq norm for v ∈ R

3. The similar notation also
applies when we replace Lq by L∞

�,ϑ or Lq
γ .

Define the quantities (where L is defined in (2.2))

A := v · (|v|2 − 5T
)

μ
1
2 ∈ R

3, A := L−1 [A
] ∈ R

3,

B =
(

v ⊗ v − |v|2
3

1
)

μ
1
2 ∈ R

3×3, B = L−1 [B
] ∈ R

3×3,

κ1 :=
∫

R3

(

A ⊗ A
)

dv, λ := 1

T

∫

R3
Bi jBi j for i �= j . (1.2)

123



Ghost Effect from Boltzmann Theory 887

Throughout this paper, C > 0 denotes a constant that only depends on the domain �,
but does not depend on the data or ε. It is referred as universal and can change from one
inequality to another. When we write C(z), it means a certain positive constant depending
on the quantity z. We write a � b to denote a ≤ Cb and a � b to denote a ≥ Cb.

In this paper, we will use o(1) to denote a sufficiently small constant independent of the
data. Also, let oT be a small constant depending on Tw satisfying

oT = o(1) → 0 as |∇Tw|W 3,∞ → 0. (1.3)

In principle, while oT is determined by ∇Tw a priori, we are free to choose o(1) depending
on the estimate.

1.3 Main Theorem

Throughout this paper, we assume that

|∇Tw|W 3,∞ = o(1). (1.4)

Theorem 1.1 Under the assumption (1.4), for any given P > 0, there exists a unique solution
(ρ, u1, T ; p) (where p has zero average) to the ghost-effect (0.2) and (0.3) satisfying for any
s ∈ [2,∞)

‖u1‖W 3,s + ‖p‖W 2,s + ‖T − 1‖W 4,s � oT .

Also, we can construct f1, f2 and f B1 as in (2.31), (2.32), (2.48) such that

‖ f1‖W 3,s L∞
�,ϑ

+ | f1|
W 3− 1

s ,s L∞
�,ϑ

� oT ,

‖ f2‖W 2,s L∞
�,ϑ

+ | f2|
W 2− 1

s ,s L∞
�,ϑ

� oT ,

and for some K0 > 0 and any 0 < r ≤ 3

∥
∥
∥eK0η f B1

∥
∥
∥
L∞

�,ϑ

+
∥
∥
∥
∥
∥
eK0η

∂r f B1
∂ιr1

∥
∥
∥
∥
∥
L∞

�,ϑ

+
∥
∥
∥
∥
∥
eK0η

∂r f B1
∂ιr2

∥
∥
∥
∥
∥
L∞

�,ϑ

� oT .

2 Asymptotic Analysis

In this section we construct a solution to (1.1) by a truncated expansion in ε and determine
the ghost effect equation in terms of the first terms of the expansion.

We seek a solution in the form

F(x, v) = f + f B + εαμ
1
2 R

= μ + μ
1
2
(

ε f1 + ε2 f2
) + μ

1
2
w

(

ε f B1

)

+ εαμ
1
2 R,

where f is the interior solution

f (x, v) := μ(x, v) + μ
1
2 (x, v)

(

ε f1(x, v) + ε2 f2(x, v)
)

, (2.1)

and f B is the boundary layer term

f B(x, v) := μ
1
2
w(x0, v)

(

ε f B1 (x, v)
)

.

123



888 R. Esposito et al.

Here R(x, v) is the remainder, μ(x, v) denotes a local Maxwellian which will be specified
below and μw(x0, v) = μ(x0, v) the boundary Maxwellian. The parameter α ≥ 1, will be
equal to 1 in the companion paper [12].

We start to determine the first terms of the expansion. Inserting (2.1) into (1.1), at the
lowest order of ε, we have

Order 0: − Q[μ,μ] = 0.

This equation guarantees that μ is a local Maxwellian. Denote

μ(x, v) := ρ(x)

(2πT (x)
) 3
2

exp

(

− |v|2
2T (x)

)

,

where ρ(x) > 0 and T (x) > 0 will be determined later in terms of the solutions of the ghost
equations. Notice that this local Maxwellian does not contain the velocity field since we are
assuming the Mach number of order ε.

Linearized Boltzmann Operator Define the symmetrized version of Q

Q∗[F,G] := 1

2

∫∫

R3×S2
q(ω, |u − v|)
× (F(u∗)G(v∗) + F(v∗)G(u∗) − F(u)G(v) − F(v)G(u)) dωdu.

Clearly, Q[F, F] = Q∗[F, F]. Denote the linearized Boltzmann operator L

L[ f ] := −2μ− 1
2 Q∗ [μ,μ

1
2 f

]

:= ν(v) f − K [ f ], (2.2)

where for some kernels k(u, v) (see [10, 14]),

ν(v) =
∫

R3

∫

S2
q(ω, |u − v|)μ(u)dωdu,

K [ f ](v) =
∫

R3

∫

S2
q(ω, |u − v|)μ 1

2 (u)
(

μ
1
2 (v∗) f (u∗) + μ

1
2 (u∗) f (v∗)

)

dωdu

−μ
1
2 (v)

∫

R3

∫

S2
q(ω, |u − v|)μ 1

2 (u) f (u)dωdu.

Note that L is self-adjoint in L2
ν(R

3). Also, the null space N of L is a five-dimensional
space spanned by the orthogonal basis

μ
1
2
{

1, v,
(|v|2 − 3T

)}

.

Denote N⊥ the orthogonal complement of N in L2(R3), and L−1 : N⊥ → N⊥ the
quasi-inverse of L. Define the kernel operator P as the orthogonal projection onto the null
space N of L, and the non-kernel operator I − P. Also, denote the nonlinear Boltzmann
operator � as

�[ f , g] := μ− 1
2 Q∗ [μ

1
2 f , μ

1
2 g

]

∈ N⊥.
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Ghost Effect from Boltzmann Theory 889

2.1 Derivation of Interior Solution

Further inserting (2.1) into (1.1), we have

Order 1: v · ∇xμ − 2Q∗ [μ,μ
1
2 f1

]

= 0, (2.3)

Order ε: v · ∇x

(

μ
1
2 f1

)

− 2Q∗ [μ,μ
1
2 f2

]

− Q∗ [μ
1
2 f1, μ

1
2 f1

]

= 0. (2.4)

Inspired by the continuation of the expansion, we also require an additional condition that

Order ε2: μ− 1
2

(

v · ∇x

(

μ
1
2 f2

))

⊥ vμ
1
2 . (2.5)

Note that we stop the bulk expansion at order ε2, so we do not need the orthogonality with

μ
1
2 and |v|2μ 1

2 .

2.1.1 Equation (2.3)

Lemma 2.1 Equation (2.3) is equivalent to

∇x P = ∇x (ρT ) = 0 (2.6)

and for some ρ1(x), u1(x), T1(x),

f1 = −A · ∇x T

2T 2 + μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

. (2.7)

Proof Equation (2.3) can be rewritten as

μ− 1
2 (v · ∇xμ) = −L[ f1]. (2.8)

Then, by the orthogonality of L to N , to satisfy (2.8) we must have
∫

R3
(v · ∇xμ) dv = 0,

∫

R3
v (v · ∇xμ) dv = 0,

∫

R3
|v|2 (v · ∇xμ) dv = 0. (2.9)

Note that

v · ∇xμ = μ

(

v · ∇xρ

ρ
+ v · ∇x T (|v|2 − 3T )

2T 2

)

. (2.10)

Then the first and third conditions in (2.9) are satisfied by oddness. The second condition
in (2.9) can be rewritten in the component form for i ∈ {1, 2, 3} and summation over j ∈
{1, 2, 3}
∫

R3
viv jμ

(
∂ jρ

ρ
+ ∂ j T (|v|2−3T )

2T 2

)

dv =
∫

R3
δi j

|v|2
3

μ

(
∂ jρ

ρ
+ ∂ j T (|v|2−3T )

2T 2

)

dv (2.11)

= δi j

(

ρT · ∂ jρ

ρ
+ 5ρT 2 · ∂ j T

2T 2 − ρT · 3∂ j T

2T

)

= δi j
(

T ∂ jρ + ρ∂ j T
) = δi j∂ j (ρT ) = 0.

Hence, (2.11) is actually (2.6).
Since T∇xρ + ρ∇x T = 0, we deduce ∇xρ

ρ
= −∇x T

T . Thus, inserting this into (2.10), we
have

v · ∇xμ = μ (v · ∇x T )
|v|2 − 5T

2T 2 . (2.12)
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890 R. Esposito et al.

Considering (2.8) and (2.12), we know

L[ f1] = −A · ∇x T

2T 2 ,

and (2.7) holds. ��

2.1.2 Equation (2.4)

Lemma 2.2 Equation (2.4) is equivalent to

∇x · (ρu1) = 0, (2.13)

∇x P1 = ∇x (Tρ1 + ρT1) = 0, (2.14)

5P(∇x · u1) = ∇x ·
(

κ
∇x T

2T 2

)

, (2.15)

and for some ρ2(x), u2(x), T2(x),

f2=−L−1
[

μ− 1
2 v · ∇x

(

μ
1
2 f1

)]

+ L−1 [�[ f1, f1]] + μ
1
2

(
ρ2

ρ
+ u2 · v

T
+ T2(|v|2−3T )

2T 2

)

.

(2.16)

Proof Since the Q∗ terms in (2.4) are orthogonal to N , we must have
∫

R3

(

v · ∇x

(

μ
1
2 f1

))

dv = 0,
∫

R3
v
(

v · ∇x

(

μ
1
2 f1

))

dv = 0,
∫

R3
|v|2

(

v · ∇x

(

μ
1
2 f1

))

dv = 0.

(2.17)

Using (2.7), the first condition in (2.17) can be rewritten as

∇x ·
(

−
∫

R3
vμ

1
2A · ∇x T

2T 2 dv +
∫

R3
vμ

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

dv

)

= 0.

(2.18)
Since A is orthogonal to N , the first term in (2.18) vanishes. Due to oddness, the ρ1 and T1
terms in (2.18) vanish. Hence, we are left with (2.13).

Similarly, the second condition in (2.17) can be rewritten as

∇x ·
(

−
∫

R3
v ⊗ vμ

1
2A · ∇x T

2T 2 dv +
∫

R3
v ⊗ vμ

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

dv

)

=0.

(2.19)
Due to the oddness of A , the first term in (2.19) vanishes. For the same reason, the u1 term
in (2.19) also vanishes. Thus we are left with (2.14).

Finally, the third condition in (2.17) can be rewritten as

∇x ·
(

−
∫

R3
v|v|2μ 1

2A · ∇x T

2T 2 dv +
∫

R3
v|v|2μ

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

dv

)

= 0.

(2.20)
Using the orthogonality of A to N , we know

∫

R3
v|v|2μ 1

2A · ∇x T

2T 2 dv =
∫

R3
AA · ∇x T

2T 2 dv = κ
∇x T

2T 2 ,

where κ is defined in (1.2).
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Due to oddness, the ρ1 and T1 terms in (2.20) vanish, so the u1 term in (2.20) can be
computed

∫

R3
v|v|2μu1 · v

T
dv = 5ρTu1 = 5Pu1.

Hence, (2.20) becomes

∇x ·
(

−κ
∇x T

2T 2 + 5Pu1

)

= 0,

which is equivalent to (2.15).
Equation (2.4) can be rewritten as

μ− 1
2 v · ∇x

(

μ
1
2 f1

)

− �[ f1, f1] = −L[ f2],
and thus (2.16) holds. ��

2.1.3 Equation (2.5)

Lemma 2.3 We have the identity
∫

R3
B�

[

(u1 · v)μ
1
2 ,A

]

= −
∫

R3
B

(u1 · v

2

)

A + T
∫

R3
B(u1 · B). (2.21)

Proof We follow the idea in [4]. Denote the translated quantities

μs(x, v) := ρ(x)

(2πT (x))
3
2

exp

(

−|v − su1|2
2T (x)

)

, Ls[ f ] := −2μ
− 1

2
s Q∗

[

μs, μ
1
2
s f

]

,

and

A s = A (v − su1), As = L−1
s [A s], Bs = B(v − su1), Bs = L−1

s [Bs].
Note that translation will not change the orthogonality, i.e. for any s ∈ R

∫

R3
BsA s =

∫

R3
BsAs = 0.

Taking s derivative, we know
d

ds

∫

R3
BsAs = 0,

which is equivalent to

∫

R3

dBs

ds
L−1
s

[

A s
] +

∫

R3
Bs

dL−1
s

ds

[

A s
] +

∫

R3
BsL−1

s

[

dA s

ds

]

= 0. (2.22)

For the first term in (2.22), due to oddness and orthogonality, we can directly verify that

lim
s→0

∫

R3

dBs

ds
L−1
s

[

A s
] =

∫

R3
B

(u1 · v

2T

)

A . (2.23)

For the second term in (2.22), we have
∫

R3
Bs

dL−1
s

ds

[

A s
] = −

∫

R3
BsL−1

s
dLs

ds
L−1
s

[

A s
] = −

∫

R3
Bs

dLs

ds
[As].
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Notice that for any g(v)

lim
s→0

dLs

ds
[g] = −2 lim

s→0

d

ds

(

μ
− 1

2
s Q∗

[

μs, μ
1
2
s g

])

= −2
{

−u1 · v

2T
μ− 1

2 Q∗ [μ,μ
1
2 g

]

+ μ− 1
2 Q∗ [u1 · v

T
μ,μ

1
2 g

]

+μ− 1
2 Q∗ [μ,

u1 · v

2T
μ

1
2 g

]}

= −u1 · v

2T
L[g] − 2μ− 1

2 Q∗ [u1 · v

T
μ,μ

1
2 g

]

+ L
[u1 · v

2T
g
]

.

Hence, we have

lim
s→0

∫

R3
Bs

dL−1
s

ds

[

A s
] = − lim

s→0

∫

R3
Bs

dLs

ds
[As] (2.24)

= −
∫

R3
B

(

−u1 · v

2T

)

A + 2
∫

R3
Bμ− 1

2 Q∗ [u1 · v

T
μ,μ

1
2A

]

−
∫

R3
BL

[u1 · v

2T
A

]

=
∫

R3
B

(u1 · v

2T

)

A + 2
∫

R3
B�

[u1 · v

T
μ

1
2 ,A

]

−
∫

R3
B

(u1 · v

2T

)

A .

For the third term in (2.22), we have

lim
s→0

∫

R3
BsL−1

s

[

dA s

ds

]

= lim
s→0

∫

R3
Bs

dA s

ds
=

∫

R3
B

(u1 · v

2T

)

A − 2
∫

R3
B(u1 · B).

(2.25)
Inserting (2.23), (2.24) and (2.25) into (2.22), we have
∫

R3
B

(u1 · v

2T

)

A +
∫

R3
B

(u1 · v

2T

)

A + 2
∫

R3
B�

[u1 · v

T
μ

1
2 ,A

]

−
∫

R3
B

(u1 · v

2T

)

A +
∫

R3
B

(u1 · v

2T

)

A − 2
∫

R3
B(u1 · B) = 0.

Hence, we know that
∫

R3
B�

[u1 · v

T
μ

1
2 ,A

]

= −
∫

R3
B

(u1 · v

2T

)

A +
∫

R3
B(u1 · B).

This verifies (2.21). ��
Lemma 2.4 We have the identity

�

[

μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

, μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)]

= −L
[

μ

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)2
]

. (2.26)

Proof The proof can be found in [3, (60)]. A different derivation can be achieved by consid-
ering the expansion with respect to ε in Q[μF , μF ] = 0 where

μF = ρF

(2πTF )
3
2

exp

(

−|v − uF |2
2TF

)

= (ρ + ερ1 + ε2ρ2)
(

2π(T0 + εT1 + ε2T2)
) 3
2

exp

(

−|v − (εu1 + ε2u2)|2
2(T0 + εT1 + ε2T2)

)

.

��
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Lemma 2.5 Equation (2.5) is equivalent to

− P

T
∇x ·

(

−2

3
|u1|21 + 2(u1 ⊗ u1)

)

+ ∇xp + ∇x ·
(

τ (1) − τ (2)
)

= 0,

where

τ (1) :=
∫

R3
B

{

μ
1
2

(

v · ∇xu1
T

· v

)}

,

τ (2) :=
∫

R3
B

{

v · ∇2
x T · A

2T 2

}

+
∫

R3
B

{

μ− 1
2 v · ∇x

(

μ
1
2

A

2T 2

)

· ∇x T

}

+
∫

R3
B�

[

A · ∇x T

2T 2 ,A · ∇x T

2T 2

]

.

Proof Equation (2.5) is equivalent to
∫

R3
v
(

v · ∇x

(

μ
1
2 f2

))

dv = 0. (2.27)

Using (2.16), (2.27) can be rewritten as

∇x ·
(

−
∫

R3
v ⊗ vμ

1
2L−1

[

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

))]

+
∫

R3
v ⊗ vμ

1
2L−1[�[ f1, f1]]

+
∫

R3
v ⊗ vμ

(
ρ2

ρ
+ u2 · v

T
+ T2(|v|2 − 3T )

2T 2

))

= 0. (2.28)

First Term in (2.28) For the first term in (2.28), by orthogonality, since L−1 is self-adjoint,
using (2.7), we have

−
∫

R3
v ⊗ vμ

1
2L−1

[

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

))]

(2.29)

= −
∫

R3

(

v ⊗ v − |v|2
3

1
)

μ
1
2L−1

[

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

))]

= −
∫

R3
L−1 [B

] (

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

)))

= −
∫

R3
B

(

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

)))

,

= −
∫

R3
B

{

μ− 1
2 v · ∇x

(

−μ
1
2A · ∇x T

2T 2 + μ

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

))}

.

Due to oddness, the ρ1 and T1 terms in (2.29) vanish. Hence, the first term in (2.28) is
actually

−
∫

R3
B

{

μ− 1
2 v · ∇x

(

−μ
1
2A · ∇x T

2T 2 + μ
u1 · v

T

)}

= −τ (1) + τ̃ (2) + ς̃ ,

where

τ (1) :=
∫

R3
B

{

μ
1
2

(

v · ∇xu1
T

· v

)}

,

τ̃ (2) :=
∫

R3
B

{

v · ∇2
x T · A

2T 2

}

+
∫

R3
B

{

μ− 1
2 v · ∇x

(

μ
1
2

A

2T 2

)

· ∇x T

}

,
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and

ς̃ :=
∫

R3
B

{

μ
1
2

(

v · ∇x T

T 2

)

(u1 · v)

}

−
∫

R3
B

{

μ− 1
2 (v · ∇xμ)

(u1 · v

T

)}

=
∫

R3
B

{

μ
1
2

(

v · ∇x T

T 2

)

(u1 · v)

}

−
∫

R3
B

{

μ
1
2

(

v · ∇x T

2T 3

)
(|v|2 − 5T

)

(u1 · v)

}

= ∇x T

T 2 ·
∫

R3
B ·

{

(u1 · v)vμ
1
2

}

− ∇x T

2T 3 ·
∫

R3
B · {A (u1 · v)

}

.

Second Term of (2.28) For the second term of (2.28), we have
∫

R3
v ⊗ vμ

1
2L−1 [�[ f1, f1]] =

∫

R3
B̄L−1 [�[ f1, f1]] =

∫

R3
B�[ f1, f1] (2.30)

=
∫

R3
B�

[

−A · ∇x T

2T 2 ,−A · ∇x T

2T 2

]

+2
∫

R3
B�

[

−A · ∇x T

2T 2 , μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1|v|2 − 3T )

2T 2

)]

+
∫

R3
B�

[

μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

, μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)]

.

For the first term in (2.30), denote

τ (2) :=
∫

R3
B�

[

−A · ∇x T

2T 2 ,−A · ∇x T

2T 2

]

.

Then denote
τ (2) := τ̃ (2) + τ (2).

For the second term in (2.30), using identity (2.21), we obtain

ς := 2
∫

R3
B�

[

−A · ∇x T

2T 2 , μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)]

= −
∫

R3
B�

[

A · ∇x T

T 2 , μ
1
2

(u1 · v

T

)]

= −∇x T

T 3 ·
∫

R3
B�

[

A , μ
1
2 (u1 · v)

]

= ∇x T

2T 3 ·
∫

R3
B · A (u1 · v) − ∇x T

T 2 ·
∫

R3
B · (u1 · B).

Then we have
ς̃ + ς = 0.

For the third term in (2.30), direct computation using (2.26) and oddness reveals that

−
∫

R3
B�

[

μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

, μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)]

=
∫

R3
BL−1

[

L
[

μ
1
2
(u1 · v)2

T 2

]]

= −2P

3T
|u1|21 + 2P

T
(u1 ⊗ u1).

Third Term of (2.28) For the third term of (2.28), due to oddness, u2 terms vanish, and thus
we have

∫

R3
v ⊗ vμ

(
ρ2

ρ
+ u2 · v

T
+ T2(|v|2 − 3T )

2T 2

)

= (Tρ2 + ρT2)1.

��
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2.1.4 Ghost-Effect Equations

Collecting all above and rearranging the terms, we have

μ(x, v) = ρ(x)
(

2πT (x)
) 3
2

exp

(

− |v|2
2T (x)

)

and

f1 = −A · ∇x T

2T 2 + μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

, (2.31)

f2 = −L−1
[

μ− 1
2

(

v · ∇x

(

μ
1
2 f1

))]

+ L−1 [�[ f1, f1]]

+μ
1
2

(

ρ2

ρ
+ u2 · v

T
+ T2

(|v|2 − 3T
)

2T 2

)

, (2.32)

where (ρ, 0, T ), (ρ1, u1, T1) and (ρ2, u2, T2) satisfy

– Order 1 equation:
∇x P = ∇x (ρT ) = 0. (2.33)

– Order ε system:

∇x · (ρu1) = 0, (2.34)

∇x P1 = ∇x (Tρ1 + ρT1) = 0,

∇x ·
(

κ
∇x T

2T 2

)

= 5P(∇x · u1). (2.35)

– Order ε2 system:

ρ(u1 · ∇xu1) + ∇xp = ∇x ·
(

τ (1) − τ (2)
)

. (2.36)

Here uk = (uk,1, uk,2, uk,3),

P := ρT , P1 := Tρ1 + ρT1, p := Tρ2 + ρT2, (2.37)

A := v · (|v|2 − 5T
)

μ
1
2 , A := L−1[A ] = L−1

[

v · (|v|2 − 5T
)

μ
1
2

]

,

κ1 :=
∫

R3
A ⊗ A dv,

and

τ (1) := λ

(

∇xu1 + (∇xu1)
t − 2

3
(∇x · u1)1

)

,

τ (2) := λ2

P

(

K1

(

∇2
x T − 1

3
�x T 1

)

+ K2

T

(

∇x T ⊗ ∇x T − 1

3
|∇x T |21

))

for smooth functions λ[T ] > 0, and positive constants K1 and K2 [5, 20, 26].
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We observe that (2.33), (2.34), (2.35) and (2.36) are a set of equations sufficient to deter-
mine (ρ, u1, T ,∇xp) uniquely once suitable boundary conditions are specified:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇x P = ∇x (ρT ) = 0,
ρ(u1 · ∇xu1) + ∇xp = ∇x · (τ (1) − τ (2)

)

,

∇x · (ρu1) = 0,

∇x ·
(

κ
∇x T

2T 2

)

= 5P(∇x · u1).

Notice that p enters in the equations only through its gradient so we are free to choose a
definite value by imposing

∫

�
p = 0.

Also, we are left with an additional requirement:

∇x P1 = ∇x (Tρ1 + ρT1) = 0. (2.38)

The higher-order terms of the expansion will be discussed in Section 3.

2.2 Normal Chart Near Boundary

In order to define the boundary layer correction, we need to design a coordinate system
based on the normal and tangential directions on the boundary surface. Our main goal is to
rewrite the three-dimensional transport operator v · ∇x in this new coordinate system. This
is basically textbook-level differential geometry, so we omit the details.

Substitution 1: Spatial Substitution: For a smooth manifold ∂�, there exists an orthogo-
nal curvilinear coordinates system (ι1, ι2) such that the coordinate lines coincide with the
principal directions at any x0 ∈ ∂� (at least locally).

Assume ∂� is parameterized by r = r(ι1, ι2). Let | · | denote the length. Hence, ∂ι1r
and ∂ι2r represent two orthogonal tangential vectors. Denote Li = |∂ιi r| for i = 1, 2. Then
define the two orthogonal unit tangential vectors

ς1 := ∂ι1r
L1

, ς2 := ∂ι2r
L2

.

Also, the outward unit normal vector is

n := ∂ι1r × ∂ι2r
|∂ι1r × ∂ι2r|

= ς1 × ς2.

Obviously, (ς1, ς2, n) forms a new orthogonal frame. Hence, consider the corresponding
new coordinate system (ι1, ι2, n), where n denotes the normal distance to boundary surface
∂�, i.e.

x = r − nn.

Note that n = 0 means x ∈ ∂� and n > 0 means x ∈ � (before reaching the other side of
∂�). Using this new coordinate system and denoting κi the principal curvatures, the transport
operator becomes

v · ∇x = −(v · n)
∂

∂n
− v · ς1

L1(κ1n − 1)

∂

∂ι1
− v · ς2

L2(κ2n − 1)

∂

∂ι2
.
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Substitution 2: Velocity Substitution: Define the orthogonal velocity substitution for v :=
(vη, vφ, vψ) as

⎧

⎨

⎩

−v · n := vη,

−v · ς1 := vφ,

−v · ς2 := vψ .

Then the transport operator becomes

v · ∇x = vη

∂

∂n
− 1

R1 − n

(

v2φ
∂

∂vη

− vηvφ

∂

∂vφ

)

− 1

R2 − n

(

v2ψ
∂

∂vη

− vηvψ

∂

∂vψ

)

+ 1

L1L2

(
R1∂ι1ι1r · ∂ι2r
L1(R1 − n)

vφvψ + R2∂ι1ι2r · ∂ι2r
L2(R2 − n)

v2ψ

)
∂

∂vφ

+ 1

L1L2

(

R2
∂ι2ι2r · ∂ι1r
L2(R2 − n)

vφvψ + R1∂ι1ι2r · ∂ι1r
L1(R1 − n)

v2φ

)
∂

∂vψ

+
(

R1vφ

L1(R1 − n)

∂

∂ι1
+ R2vψ

L2(R2 − n)

∂

∂ι2

)

,

where Ri = κ−1
i represent the radii of principal curvature.

Substitution 3: Scaling Substitution: Finally, we define the scaled variable η = n
ε
, which

implies ∂
∂n = 1

ε
∂
∂η
. Then the transport operator becomes

v · ∇x = 1

ε
vη

∂

∂η
− 1

R1 − εη

(

v2φ
∂

∂vη

− vηvφ

∂

∂vφ

)

− 1

R2 − εη

(

v2ψ
∂

∂vη

− vηvψ

∂

∂vψ

)

+ 1

L1L2

(
R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vφvψ + R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2ψ

)
∂

∂vφ

+ 1

L1L2

(

R2
∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vφvψ + R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2φ

)
∂

∂vψ

+
(

R1vφ

L1(R1 − εη)

∂

∂ι1
+ R2vψ

L2(R2 − εη)

∂

∂ι2

)

.

2.3 Milne Problemwith Tangential Dependence

To construct the Hilbert expansion in a general domain, it is important to study the Milne
problem depending on the tangential variable (ι1, ι2). Notice that, in the new variables,
μw = μw(ι1, ι2, v). Set

Lw[ f ] := −2μ
− 1

2
w Q∗

[

μw,μ
1
2
w f

]

= νw f − Kw[ f ].

Let �(η, ι1, ι2, v) be solution to the Milne problem

vη

∂�

∂η
+ νw� − Kw[�] = 0, (2.39)

with in-flow boundary condition at η = 0

�(0, ι1, ι2, v) = A · ∇x T

2T 2 for vη > 0, (2.40)
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and the zero mass-flux condition
∫

R3
vημ

1
2
w(ι1, ι2, v)�(0, ι1, ι2, v)dv = 0. (2.41)

Theorem 2.6 Assume that ∇x T ∈ Wk,∞(∂�) for some k ∈ N and |T |L∞
∂�

� 1. Then there
exists

�∞(ι1, ι2, v) := �∞(ι1, ι2, v) := μ
1
2
w

(
ρB

ρw

+ uB · v

Tw

+ T B(|v|2 − 3Tw)

2T 2
w

)

∈ N , (2.42)

for ρw := PT−1
w and some (ρB(ι1, ι2), uB(ι1, ι2), T B(ι1, ι2)) such that

∫

R3
vημ

1
2
w(v)�∞(v)dv = 0,

and a unique solution �(η, ι1, ι2, v) to (2.39) such that �̃ := � − �∞ satisfies
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

vη

∂�̃

∂η
+ νw�̃ − Kw

[

�̃
] = 0,

�̃(0, ι1, ι2, v) = �(0, ι1, ι2, v) − �∞(ι1, ι2, v) for vη > 0,
∫

R3 vημ
1
2
w(ι1, ι2, v)�̃(0, ι1, ι2, v)dv = 0

(2.43)

and for some K0 > 0 and any 0 < r ≤ k

|�∞| +
∥
∥
∥eK0η�̃

∥
∥
∥
L∞

�,ϑ

� |∇x T |L∞
∂�

, (2.44)

∥
∥
∥eK0ηvη∂η�̃

∥
∥
∥
L∞

�,ϑ

+
∥
∥
∥eK0ηvη∂vη �̃

∥
∥
∥
L∞

�,ϑ

� |∇x T |L∞
∂�

, (2.45)

∥
∥
∥eK0η∂vφ �̃

∥
∥
∥
L∞

�,ϑ

+
∥
∥
∥eK0η∂vψ �̃

∥
∥
∥
L∞

�,ϑ

� |∇x T |L∞
∂�

, (2.46)

∥
∥
∥eK0η∂rι1�̃

∥
∥
∥
L∞

�,ϑ

+
∥
∥
∥eK0η∂rι2�̃

∥
∥
∥ � |∇x T |L∞

∂�
+

r
∑

j=1

∣
∣
∣∂

j
ι1
∇x T

∣
∣
∣
L∞

∂�

+
r

∑

j=1

∣
∣
∣∂

j
ι2
∇x T

∣
∣
∣
L∞

∂�

. (2.47)

Proof Based on [2] and [30], we have the well-posedness of (2.39). Also, estimates (2.44),
(2.45) and (2.46) follow. Hence, we will focus on (2.47). Let W := ∂�̃

∂ιi
for i = 1, 2. Then

W satisfies
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vη

∂W

∂η
+ νwW − Kw[W ] = −∂νw

∂ιi
�̃ + ∂Kw

∂ιi
[�̃],

W (0, ι1, ι2, v) = − ∂

∂ιi

(

A · ∇x T

2T 2

)

− ∂�̃∞
∂ιi

(ι1, ι2, v) for vη > 0,

∫

R3
vημ

1
2
w(v)W (0, ι1, ι2, v)dv = −

∫

R3
vη

∂μ
1
2
w

∂ιi
(ι1, ι2, v)�̃(0, ι1, ι2, v)dv.

Multiplying |v|2μ
1
2
w on both sides of (2.43) and integrating over R3 yield

∫

R3
vη|v|2μ

1
2
w(ι1, ι2, v)�̃(0, ι1, ι2, v)dv =

∫

R3
vη|v|2μ

1
2
w(ι1, ι2, v)�̃(∞, ι1, ι2, v)dv = 0,

123



Ghost Effect from Boltzmann Theory 899

which, combined with the zero mass-flux of �̃, further implies

∫

R3
vη

∂μ
1
2
w

∂ιi
(ι1, ι2, v)�̃(0, ι1, ι2, v)dv = 0.

Hence, W still satisfies the zero mass-flux condition. Also, notice that
∥
∥
∥
∥
eK0η

(

−∂νw

∂ιi
�̃ + ∂Kw

∂ιi
[�̃]

)∥
∥
∥
∥
L∞

�,ϑ

� |∇x T |L∞
∂�

.

Therefore, based on [2], there exists a unique W∞ ∈ N such that

|W∞| +
∥
∥
∥eK0η(W − W∞)

∥
∥
∥
L∞

�,ϑ

� |∇x T |L∞
∂�

+ |∂ιi ∇x T |L∞
∂�

.

In particular, since �̃ → 0 as η → ∞, we must have W∞ = 0. Hence, (2.47) is verified
for r = 1. The r > 1 cases follow inductively. ��

Let χ(y) ∈ C∞(R) and χ(y) = 1 − χ(y) be smooth cut-off functions satisfying

χ(y) =
{

1 if |y| ≤ 1,
0 if |y| ≥ 2,

In view of the later regularity estimates (see the companion paper [12]), we define a cutoff
boundary layer f B1 :

f B1 (η, ι1, ι2, v) := χ(ε−1vη)χ(εη)�̃(η, ι1, ι2, v). (2.48)

We can verify that f B1 satisfies

vη

∂ f B1
∂η

+ νw f B1 − Kw

[

f B1

]

= vηχ(ε−1vη)
∂χ(εη)

∂η
�̃ + χ(εη)

(

χ
(

ε−1vη

)

Kw[�̃] − Kw[χ(ε−1vη)�̃]) ,

with

f B1 (0, ι1, ι2, v) = χ(ε−1vη)

(

−A · ∇x T

2T 2 − �∞(ι1, ι2, v)

)

for vη > 0.

Due to the cutoff χ , f B1 cannot preserve the zero mass-flux condition, i.e.

∫

R3
vημ

1
2
w(ι1, ι2, v) f

B
1 (0, ι1, ι2, v)dv

=
∫

R3
vημ

1
2
w(ι1, ι2, v)χ(ε−1vη)�̃(0, ι1, ι2, v)dv

=
∫

R3
vημ

1
2
w(ι1, ι2, v)χ(ε−1vη)�̃(0, ι1, ι2, v)dv � oT ε. (2.49)

The zero mass-flux condition will be restored with the help of f2 in (3.11).
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2.4 Analysis of Boundary Matching

Considering the boundary condition in (1.1) and the expansion (0.4), we require thematching
condition for x0 ∈ ∂� and v · n < 0:

μw

∣
∣
v·n<0 = Mw

∫

v′·n>0
μw|v′ · n|dv′, (2.50)

μ
1
2
w

(

f1 + f B1

) ∣
∣
v·n<0 = Mw

∫

v′·n>0
μ

1
2
w

(

f1 + f B1

)

|v′ · n|dv′ + O(ε). (2.51)

In order to guarantee (2.50), we deduce that

T (x0) = Tw(x0). (2.52)

This determines the boundary conditions for T .
In order to guarantee (2.51), due to (2.49), it suffices to require that at η = 0

μ
1
2
w( f1 + � − �∞)

∣
∣
v·n<0 = Mw

∫

v′·n>0
μ

1
2
w( f1 + � − �∞)|v′ · n|dv′. (2.53)

Lemma 2.7 With the boundary condition (2.40) for (2.39), and for x0 ∈ ∂�

u1(x0) = uB , T1(x0) = T B , (2.54)

(2.53) is valid.

Proof Using (2.31) and (2.42), we have for x0 ∈ ∂�

f1 + � − �∞ = A · ∇x T

2T 2 + μ
1
2

(
ρ1

ρ
+ u1 · v

T
+ T1(|v|2 − 3T )

2T 2

)

+� − μ
1
2

(
ρB

ρ
+ uB · v

T
+ T B(|v|2 − 3Tw)

2T 2

)

.

With (2.54), we have

f1 + � − �∞ =
(

� + A · ∇x T

2T 2

)

+ μ
1
2

(
ρ1

ρ
− ρB

ρ

)

.

Since direct computation reveals that

μ
1
2

(
ρ1

ρ
− ρB

ρ

)∣
∣
∣
∣
v·n<0

= Mw

∫

v′·n>0
μ

1
2

(
ρ1

ρ
− ρB

ρ

)

|v′ · n|dv′,

in order to verify (2.53), it suffices to require
(

� + A · ∇x T

2T 2

)∣
∣
∣
∣
v·n<0

= Mw

∫

v′·n>0

(

� + A · ∇x T

2T 2

)

|v′ · n|dv′. (2.55)

When (2.40) is valid, we know that
(

� + A · ∇x T

2T 2

)∣
∣
∣
∣
v·n<0

= 0. (2.56)

Also, due to (2.41) and orthogonality of A , we have

Mw

∫

R3
μ

1
2 �(v′ · n)dv′ = Mw

∫

R3
μ

1
2

(

A · ∇x T

2T 2

)

(v′ · n)dv′ = 0,
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which, combined with (2.56), yields

Mw

∫

v′·n>0
μ

1
2

(

� + A · ∇x T

2T 2

)

|v′ · n|dv′ = 0.

Then clearly (2.55) is true. ��

3 Construction of Expansion

In this section, we will present the detailed construction of ghost-effect solution, f1, f2 and
f B1 based on the analysis in Section 2.4. Since the boundary conditions are tangled together,
we divide the construction into several stages.

3.1 Construction of Boundary Layer fB1-Stage I

Since (2.40) involves ∇nT , which is not fully provided by Tw , we will have to split the
tangential and normal parts of the boundary layer

f B1 = f B1,ι1 + f B1,ι2 + f B1,n, � = �ι1 + �ι2 + �n .

Define
�ιi := (

∂ιi Tw

)H(i),

where H(i) for i = 1, 2 solves the Milne problem
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vη

∂H(i)

∂η
+ Lw

[H(i)
] = 0,

H(i)(0, v) = −A · ςi

2T 2 for vη > 0,

limη→∞ H(i)(η, v) = H(i)∞ ∈ N ,

(3.1)

with the zero mass-flux condition
∫

R3
vημ

1
2
w(v)H(i) = 0.

Denote
�ιi ,∞ := (∂ιi Tw)H(i)∞ .

Sincewe lack the information of�n at this stage,we are not able to determine the boundary
condition T1 = T B yet. However, we can fully determine the boundary condition u1 = uB .
Denote u1 = (u1,ι1 , u1,ι2 , u1,n) for the two tangential components (u1,ι1 , u1,ι2) and one
normal component u1,n . Due to (2.41), we have

u1,n(x0) = 0. (3.2)

Due to oddness, the projection ofH(i) andH(i)∞ on vμ
1
2
w only has contribution on (v ·ςi )μ 1

2 .
Hence, from (2.54), we deduce

u1,ι1(x0) = β1[Tw]∂ι1Tw, u1,ι2(x0) = β2[Tw]∂ι2Tw,

where βi are functions depending on Tw . Due to isotropy, we know that β1 = β2, and we
denote it β0. Hence, we arrive at

u1,ι1(x0) = β0[Tw]∂ι1Tw, u1,ι2(x0) = β0[Tw]∂ι2Tw. (3.3)
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Lemma 3.1 Under the assumption (1.4), for any s ≥ 1, the boundary data of u1 satisfies

|u1|W 3,∞ � oT .

Proof Taking ιi derivatives for i = 1, 2 on both sides of (3.1), using (1.4) and (2.44), we
conclude that

|u1,ι1 |W 3,∞ + |u1,ι2 |W 3,∞ � oT .

Then using (3.2), we obtain the desired estimates. ��
Remark 3.2 Note that the boundary condition of u1 only depends on Tw and ∇Tw directly
without referring to T in the bulk.

3.2 Well-Posedness of Ghost-Effect Equation

Based on our analysis above, the ghost-effect equation (0.2) will be accompanied with the
boundary conditions (2.52), (3.2) and (3.3).

T (x0) = Tw, u1,ι1(x0) = β0[Tw]∂ι1Tw, u1,ι2(x0) = β0[Tw]∂ι2Tw, u1,n(x0) = 0.
(3.4)

Theorem 3.3 Under the assumption (1.4), for any given P > 0, there exists a unique solution
(ρ, u1, T ; p) (p has zero average) to the ghost-effect (0.2) with the boundary condition (3.4)
satisfying for any s ∈ [2,∞)

‖u1‖W 3,s + ‖p‖W 2,s + ‖T − 1‖W 4,s � oT .

Proof
Simplified Equations Denote u := ρu1. From the first and third equations in (0.2)

∇x · u = ∇x · (ρu1) = P∇x ·
(u1
T

)

= 0,

we have

∇x · u1 = u1 · ∇x T

T
. (3.5)

From the second equation in (0.2) and (3.5), we have

−5

3
λ[1]�xu1 + ∇xp = −5

3
(λ[1] − λ[T ])�xu1 (3.6)

−∇x ·
(

λ2[T ]
P

(

K1[T ]
(

∇2
x T − 1

3
�x T 1

)

+ K2[T ]
T

(

∇x T ⊗ ∇x T − 1

3
|∇x T |21

)))

+∇xλ[T ] ·
(

∇xu1 + (∇xu1)
t − 2

3
(∇x · u1)1

)

+ λ[T ]∇x

(

u1 · ∇x T

T

)

− P

T
u1 · ∇xu1.

Hence, we know

− 5

3P
λ[1]�xu + ∇xp = − 5

3P

(

λ[1] − λ[T ])�xu + 5

3P
λ[T ]�x

(

(T − 1)u
)

−∇x ·
(

λ2[T ]
P

(

K1[T ]
(

∇2
x T − 1

3
�x T 1

)

+ K2[T ]
T

(

∇x T ⊗ ∇x T − 1

3
|∇x T |21

)))

+∇xλ[T ] ·
(

∇x
(

P−1Tu
) + (∇x (P

−1Tu)
)t − 2

3

(∇x · (P−1Tu)
)

1
)

+λ[T ]∇x
(

P−1u · ∇x T
) − u · ∇x

(

P−1Tu
)

.
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Furthermore, from the fourth equations in (0.2)

∇x · u1 = 1

5P
∇x ·

(

κ
∇x T

2T 2

)

= 1

5P

κ

2T 2 �x T + 1

5P
∇x

( κ

2T 2

)

· ∇x T ,

we have
1

5P

κ

2T 2 �x T = P−1u · ∇x T − 1

5P
∇x

( κ

2T 2

)

· ∇x T .

Then we know

�x T = 10T 2

κ[T ] (u · ∇x T ) − 2T 2

κ[T ]∇x

(
κ[T ]
2T 2

)

· ∇x T . (3.7)

Setup of Contraction Mapping Collecting (3.5), (3.6) and (3.7), this is a system for the pair

(u, T ). Then we can design a mapping W 3,s × W 4,s → W 3,s × W 4,s : (̃u, T̃ ) → (u, T )
⎧

⎨

⎩

− 5
3P λ[1]�xu + ∇xp = Z1,

∇x · u = 0,
�x T = Z3,

where

Z1 := − 5

3P

(

λ[1] − λ[T̃ ])�x ũ + 5

3P
λ[T̃ ]�x

(

(T̃ − 1)̃u
)

−∇x ·
(

λ2[T̃ ]
P

(

K1[T̃ ]
(

∇2
x T̃ − 1

3
�x T̃ 1

)

+ K2

T̃
[T̃ ]

(

∇x T̃ ⊗ ∇x T̃− 1

3
|∇x T̃ |21

)))

+∇xλ[T̃ ] ·
(

∇x
(

P−1T̃ ũ
) + (∇x

(

P−1T̃ ũ
))t − 2

3

(∇x · (P−1T̃ ũ
))

1
)

+λ[T̃ ]∇x
(

P−1ũ · ∇x T̃
) − ũ · ∇x

(

P−1T̃ ũ
)

,

Z3 := 10T̃ 2

κ[T̃ ]
(

ũ · ∇x T̃
) − 2T̃ 2

κ[T̃ ]∇x

(
κ[T̃ ]
2T̃ 2

)

· ∇x T̃ .

Boundedness and Contraction Based on [9] and [6, Theorem IV.5.8], noticing the compati-
bility condition

∫

∂�

u · n =
∫

�

(∇x · u) = 0,

we know that
‖u‖W 3,s + ‖p‖W 2,s � ‖Z1‖W 1,s + |u|

W 3− 1
s ,s .

Based on standard elliptic estimates [21], we have

‖T − 1‖W 4,s � ‖Z3‖W 2,s + |T |
W 4− 1

s ,s .

Under the assumption
‖ũ1‖W 3,s + ‖T̃ − 1‖W 4,s � 2oT ,

we directly obtain

‖Z1‖W 1,s � oT
(‖ũ‖W 3,s + ‖∇x T̃ ‖W 3,s

)

,

‖Z3‖W 2,s � oT
(‖ũ‖W 3,s + ‖∇x T̃ ‖W 3,s

)

.

Hence, we know that

‖u‖W 3,s + ‖p‖W 2,s + ‖T − 1‖W 4,s � oT
(‖ũ‖W 3,s + ‖∇x T̃ ‖W 3,s

) + |∇Tw|W 3,∞ ≤ 2oT .
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Hence, this mapping is bounded.
By a similar argument, for (̃u[k], T̃ [k]) → (u[k], T [k]) with k = 1, 2, we can show that

∥
∥
∥u[1] − u[2]

∥
∥
∥
W 3,s

+
∥
∥
∥p[1] − p[2]

∥
∥
∥
W 2,s

+
∥
∥
∥T [1] − T [2]

∥
∥
∥
W 4,s

�
(‖ũ‖W 3,s + ‖∇x T̃ ‖W 3,s

) (
∥
∥
∥ũ[1] − ũ[2]

∥
∥
∥
W 3,s

+
∥
∥
∥∇x T̃

[1] − ∇x T̃
[2]

∥
∥
∥
W 3,s

)

,

which yields
∥
∥
∥u[1] − u[2]

∥
∥
∥
W 3,s

+
∥
∥
∥p[1] − p[2]

∥
∥
∥
W 2,s

+
∥
∥
∥T [1] − T [2]

∥
∥
∥
W 4,s

� oT
(∥
∥
∥ũ[1] − ũ[2]

∥
∥
∥
W 3,s

+
∥
∥
∥∇x T̃

[1] − ∇x T̃
[2]

∥
∥
∥
W 3,s

)

.

Hence, this is a contraction mapping.
In summary, we know that there exists a unique solution to (0.2) satisfying

‖u‖W 3,s + ‖p‖W 2,s + ‖T − 1‖W 4,s � oT ,

and further
‖u1‖W 3,s + ‖p‖W 2,s + ‖T − 1‖W 4,s � oT .

��
Remark 3.4 Based on the first equation in (2.37), we have

ρ = PT−1 ∈ W 4,s .

Then we have

P|�| =
∫

�

ρ(x)T (x)dx = 1

3

∫∫

�×R3
|v|2μ(x, v)dvdx . (3.8)

3.3 Construction of Boundary Layer fB1-Stage II

Now we can define the full boundary layer. Define

�n := (∂nT )H(n),

where H(n) solves the Milne problem
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vη

∂H(n)

∂η
+ Lw

[H(n)
] = 0,

H(n)(0, v) = −A · n
2T 2 for vη > 0,

limη→∞ H(n)(η, v) = H(n)∞ ∈ N ,

with the zero mass-flux condition
∫

R3
vημ

1
2
w(v)H(n) = 0.

Denote
�n,∞ := (∂nT )H(n)∞ .

Here ∂nT comes from the ghost-effect equation (0.2) and is well-defined due to Theorem 3.3.
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Finally, we have the full boundary layer from (2.48):

f B1 (η, v)=χ(ε−1vη)χ(εη)
(

�ι1(η, v) + �ι2(η, v) + �n(η, v) − �ι1,∞ − �ι2,∞ − �n,∞
)

=χ(ε−1vη)χ(εη)
(

�̃ι1(η, v) + �̃ι2(η, v) + �̃n(η, v)
)

.

Since the cutoff in f B1 is only defined in the normal direction, we can deduce tangential
regularity estimates from Theorem 2.6:

Theorem 3.5 Under the assumption (1.4), we can construct f B1 such that for i = 1, 2, some
K0 > 0 and any 0 < r ≤ 3

‖eK0η f B1 ‖ +
∥
∥
∥
∥
∥
eK0η

∂r f B1
∂ιri

∥
∥
∥
∥
∥

� oT . (3.9)

From (2.54) and (2.42), this fully determines the boundary condition of T1:

T1(x0) = T B .

3.4 Construction of (�1, T1)

Theorem 3.6 Under the assumption (1.4), we can construct (ρ1, T1) such that for any s ∈
[2,∞)

‖ f1‖W 3,s L∞
�,ϑ

+ | f1|
W 3− 1

s ,s L∞
�,ϑ

� oT .

Proof The boundary condition in (2.54) and Theorem 3.5 imply that

|T1|W 3,s � oT .

Then we can freely define a Sobolev extension for T1 such that

‖T1‖
W 3+ 1

s ,s � oT .

We choose the constant
P1 = 0.

Then we can deduce that
∫∫

�×R3
|v|2

(

μ
1
2 f1 + μ

1
2
w f B1 + εμ

1
2 f2(x, v)

)

dxdv (3.10)

=
∫

�

(

3ρ1(x)T (x) + 3T1(x)ρ(x) + 3ερ2(x)T (x) + 3ερ(x)T2(x)
)

dx

+
∫∫

�×R3
|v|2μ

1
2
w f B1 dxdv

=
∫

�

(3ρ1(x)T (x) + 3T1(x)ρ(x))dx +
∫∫

�×R3
|v|2μ

1
2
w f B1 dxdv

=
∫

�

3P1dx +
∫∫

�×R3
|v|2μ

1
2
w f B1 dxdv =

∫∫

�×R3
|v|2μ

1
2
w f B1 dxdv,

where we have used
∫

�
p = ∫

�
(Tρ2 + ρT2) = 0.

Then based on (2.38), we have

ρ1 = −T−1(ρT1),
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and thus
‖ρ1‖

W 3+ 1
s ,s � oT .

Note that ρ1 is not necessarily equal to ρB on ∂�. However, (2.53) can still hold due to
(2.50).

Hence, we have shown that

‖ f1‖W 3,s L∞
�,ϑ

+ | f1|
W 3− 1

s ,s L∞
�,ϑ

� ‖ρ1‖W 3,s + ‖u1‖W 3,s + ‖T1‖W 3,s + ‖T ‖W 3,s � oT .

��
Remark 3.7 We assume that the remainder R satisfies

∫∫

�×R3
|v|2μ 1

2 R(x, v)dxdv = 0.

Hence, combining (3.8), (3.10) and (0.4), we know
∫∫

�×R3
|v|2F(x, v)dvdx =

∫∫

�×R3
|v|2μ(x, v)dvdx

= 3P|�| + ε

∫∫

�×R3
|v|2μ

1
2
w f B1 dxdv.

3.5 Construction of (�2, u2, T2)

Theorem 3.8 Under the assumption (1.4), we can construct (ρ2, u2, T2) such that for any
s ∈ [2,∞)

‖ f2‖W 2,s L∞
�,ϑ

+ | f2|
W 2− 1

s ,s L∞
�,ϑ

� oT .

Proof Denote

Y (ι1, ι2) := −ε−1P−1
∫

R3
vημ

1
2
w(v) f B1 (0, v)dv.

Due to (2.49), we have |Y | � oT . Then we define u2 via u2 = ∇xψ where ψ solves
⎧

⎪⎨

⎪⎩

−�xψ = −|�|−1
∫

∂�

Y (ι1, ι2)ds in �,

∂ψ

∂n
= Y on ∂�.

Due to classical elliptic theory, we know that this equation is well-posed. In particular, due
to (3.9), we know Y ∈ W 3,∞(∂�). Then we have ψ ∈ W 4,s and thus u2 ∈ W 3,s satisfying

‖u2‖W 3,s � oT .

From Theorem 3.3 and the third equation in (2.37), we know that

Tρ2 + ρT2 ∈ W 2,s .

We are free to take ρ2 = 0 in �, and thus T2 is determined and satisfies

‖T2‖W 2,s � oT .

Hence, we have shown that

‖ f2‖W 2,s L∞
�,ϑ

+ | f2|
W 2− 1

s ,s L∞
�,ϑ

� ‖ f1‖W 2,s L∞
�,ϑ

+ ‖ρ2‖W 2,s + ‖u2‖W 2,s + ‖T2‖W 2,s � oT .

��
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Remark 3.9 Such choice of u2 implies that on the boundary ∂�

u2 · n = Y .

Hence, we know
∫

R3

(

ε2 f2 + ε f B1

)

μw(v · n) = ε2P(u2 · n) + ε

∫

R3
vημ

1
2
w(v) f B1 (0, v)dv = 0, (3.11)

and thus ∫

R3

(

μ
1
2 + ε f1 + ε2 f2 + ε f B1

)

μ
1
2
w(v · n) = 0.

We restore the zero mass-flux condition of μ
1
2 + ε f1 + ε2 f2 + ε f B1 .

4 Remainder Equation

For sake of completeness, in this section we will present the remainder equation for R and
report the main result in [12].

Nowwe begin to derive the remainder equation for R in (0.4), or equivalently the nonlinear
Boltzmann equation (1.1). Denote

Q[F, F] = Qgain[F, F] − Qloss[F, F]
:=

∫

R3

∫

S2
q(ω, |u − v|)F(u∗)F(v∗)dωdu

−F(v)

∫

R3

∫

S2
q(ω, |u − v|)F(u)dωdu = ν(F)F .

Denote F = Fa + εαμ
1
2 R, where

Fa := μ + μ
1
2 (ε f1 + ε2 f2) + μ

1
2
w(ε f B1 ).

We can split F = F+ − F− where F+ = max{F, 0} and F− = max{−F, 0} denote the
positive and negative parts, and the similar notation also applies to Fa and R.

In order to study (1.1), we first consider an auxiliary equation (which is equivalent to (1.1)
when F ≥ 0)

v ·∇xF+ε−1 (Qloss[F,F]−Qgain[F+,F+])=z

∫∫

�×R3
ε−1 (Qloss[F,F]−Qgain[F+,F+]) ,

(4.1)
with diffuse-reflection boundary condition

F(x0, v) = Mw(x0, v)

∫

v′·n(x0)>0
F(x0, v

′)|v′ · n(x0)|dv′ for x0 ∈ ∂� and v · n(x0) < 0.

Here z = z(v) > 0 is a smooth function with support contained in {|v| ≤ 1} such that
∫∫

�×R3 z = 1.
The auxiliary system (4.1) is equivalent to

v · ∇xF − ε−1Q[F,F] = −ε−1 (Qgain[F,F] − Qgain[F+,F+])

+z

∫∫

�×R3
ε−1 (Qloss[F,F] − Qgain[F+,F+]) ,
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and due to orthogonality of Q, is further equivalent to

v · ∇xF − ε−1Q[F,F] = −ε−1 (Qgain[F,F] − Qgain[F+,F+])

+z

∫∫

�×R3
ε−1 (Qgain[F,F] − Qgain[F+,F+]) . (4.2)

Remark 4.1 The extra terms

−ε−1 (Qgain[F,F] − Qgain[F+,F+]) + z

∫∫

�×R3
ε−1 (Qgain[F,F] − Qgain[F+,F+]) .

on the right hand side of (4.2) plays a significant role in justifying the positivity of F (see
[12]). Clearly, when F ≥ 0, i.e. F = F+, the above extra terms vanish and the auxiliary
equation (4.2) reduces to (1.1).

Inserting F = Fa + εαμ
1
2 R := μ + F̃a + εαμ

1
2 R into (4.2), we have

v · ∇x

(

μ
1
2 R

)

+ ε−1μ
1
2L[R] (4.3)

= S + ε−1
(

2Q∗ [F̃a, μ
1
2 R

]

+ εαQ∗ [μ
1
2 R, μ

1
2 R

])

−ε−α
(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]

−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

+ε−αz

∫∫

�×R3

(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]

−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

,

where
S := −ε−αv · ∇xFa + ε−α−1Q∗ [Fa,Fa] . (4.4)

Hence, we know that the equation for the remainder R is
{

v · ∇x

(

μ
1
2 R

)

+ ε−1μ
1
2L[R] = μ

1
2 S in � × R

3,

R(x0, v) = Pγ [R](x0, v) + h(x0, v) for x0 ∈ ∂� and v · n(x0) < 0.
(4.5)

where

Pγ [R](x0, v) := mw(x0, v)

∫

v′·n(x0)>0
μ

1
2 (x0, v

′)R(x0, v
′)|v′ · n(x0)|dv′,

with

mw(x0, v) := Mwμ
− 1

2
w ,

satisfying the normalization condition

μ
1
2
w(x0, v) = mw(x0, v)

∫

v′·n(x0)>0
μw(x0, v

′)|v′ · n(x0)|dv′ = P
(

2πTw(x0)
) 1
2

mw(x0, v).

The source term S includes the nonlinear terms and the terms of the expansion coming
from higher orders and h is a correction on the boundary condition.
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Lemma 4.2 We have

h := ε−α
(

Pγ

[

μ− 1
2 F̃a

]

− μ− 1
2 F̃a

)

= ε2−α

(

mw

∫

v′·n>0
μ

1
2
w(v′) f2(v′)|v′ · n|dv′ − f2

∣
∣
v·n<0

)

−ε1−α

(

mw

∫

v′·n>0
μ

1
2
wχ(ε−1vη)�̃|v′ · n|dv′ − μ

1
2
wχ(ε−1vη)�̃

∣
∣
v·n<0

)

.

Proof From (0.4), we know

h := ε−α
(

Pγ

[

μ− 1
2 F̃a

]

− μ− 1
2 F̃a

)

.

Then due to (2.53) and (2.54), we know

ε−α
(

Pγ

[

μ− 1
2 (ε f1 + ε f B1 )

]

− μ− 1
2 (ε f1 + ε f B1 )

)

= ε1−α
(

Pγ

[

μ− 1
2
(

f1 + �̃ − χ(ε−1vη)�̃
)] − μ− 1

2
(

f1 + �̃ − χ(ε−1vη)�̃
))

= −ε1−α

(

mw

∫

v′·n>0
μ

1
2
wχ(ε−1vη)�̃|v′ · n|dv′ − μ

1
2
wχ(ε−1vη)�̃

∣
∣
∣
v·n<0

)

.

Then the result follows by adding the f2 contribution. ��

Lemma 4.3 We have

S := μ− 1
2S + ε−1μ− 1

2

(

2Q∗ [F̃a, μ
1
2 R

]

+ εαQ∗ [μ
1
2 R, μ

1
2 R

])

−ε−αμ− 1
2

(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]

−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

+ε−αzμ− 1
2

∫∫

�×R3

(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]

−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

,

where S is defined in (4.4). The detailed expression is

S = −L1[R] + S,

where

L1[R] := −2ε−1μ− 1
2 Q∗ [μ

1
2 (ε f1), μ

1
2 R

]

= −2�[ f1, R],
S := S0 + S1 + S2 + S3 + S4 + S5 + S6,
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910 R. Esposito et al.

for

S0 := 2ε−1μ− 1
2 Q∗ [μ

1
2 (ε2 f2), μ

1
2 R

]

= 2ε�[ f2, R],

S1 := 2ε−1μ− 1
2 Q∗

[

μ
1
2
w(ε f B1 ), μ

1
2 R

]

= 2�

[

μ− 1
2 μ

1
2
w f B1 , R

]

,

S2 := εα−1μ− 1
2 Q∗ [μ

1
2 R, μ

1
2 R

]

= εα−1�[R, R],

S3 := ε1−αμ− 1
2

1

R1 − εη

(

v2φ
∂

∂vη

− vηvφ

∂

∂vφ

)(

μ
1
2
w f B1

)

+ε1−αμ− 1
2

1

R2 − εη

(

v2ψ
∂

∂vη

− vηvψ

∂

∂vψ

)(

μ
1
2
w f B1

)

−ε1−αμ− 1
2

1

L1L2

(
R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vφvψ + R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2ψ

)
∂

∂vφ

(

μ
1
2
w f B1

)

−ε1−αμ− 1
2

1

L1L2

(
R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vφvψ + R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2φ

)
∂

∂vψ

(

μ
1
2
w f B1

)

−ε1−αμ− 1
2

(
R1vφ

L1(R1 − εη)

∂

∂ι1
+ R2vψ

L2(R2 − εη)

∂

∂ι2

)(

μ
1
2
w f B1

)

+ε−αμ− 1
2 vηχ(ε−1vη)

∂χ(εη)

∂η

(

μ
1
2
w�̃

)

+ε−αμ− 1
2 μ

1
2
wχ(εη)

(

χ(ε−1vη)Kw[�̃] − Kw[χ(ε−1vη)�̃]) ,

S4 := −ε−αμ− 1
2

(

v · ∇x

(

μ
1
2
(

ε2 f2
))) = −ε2−αμ− 1

2

(

v · ∇x

(

μ
1
2 f2

))

,

S5 := ε3−αμ− 1
2 Q∗ [μ

1
2 f2, μ

1
2 f2

]

+ 2ε2−αμ− 1
2 Q∗ [μ

1
2 f2, μ

1
2 f1

]

+2ε2−αμ− 1
2 Q∗

[

μ
1
2 f2, μ

1
2
w f B1

]

+ 2ε1−αμ− 1
2 Q∗

[

μ
1
2
w f B1 , μ

1
2 f1

]

+ε1−αμ− 1
2 Q∗

[

μ
1
2
w f B1 , μ

1
2
w f B1

]

+ ε−αμ− 1
2 Q∗

[

μ − μw,μ
1
2
w f B1

]

= ε3−α�[ f2, f2] + 2ε2−α�[ f2, f1] + 2ε2−α�

[

f2, μ
− 1

2 μ
1
2
w f B1

]

+2ε1−α�

[

μ− 1
2 μ

1
2
w f B1 , f1

]

+ ε1−α�

[

μ− 1
2 μ

1
2
w f B1 , μ− 1

2 μ
1
2
w f B1

]

+ε−α�

[

μ− 1
2 (μ − μw), μ− 1

2 μ
1
2
w f B1

]

,

and

S6 := −ε−αμ− 1
2

(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]

−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

+ε−αzμ− 1
2

∫∫

�×R3

(

ε−1Qgain

[

Fa + εαμ
1
2 R,Fa + εαμ

1
2 R

]
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−ε−1Qgain

[(

Fa + εαμ
1
2 R

)

+ ,
(

Fa + εαμ
1
2 R

)

+

])

.

Proof This follows directly from (4.3). ��

We decompose

R = P[R] + (I − P)[R] := μ
1
2 (v)

(

pR(x) + v · bR(x) + (|v|2 − 5T )cR(x)
) + (I − P)[R],

We further define the orthogonal split

(I − P)[R] = A · dR(x) + (I − P)[R],
where (I−P)[R] is the orthogonal complement toA ·dR(x) inN⊥ with respect to (·, ·)L =
(·,L[·])L, i.e.

(A , (I − P)[R])L = 〈A , (I − P)[R]〉 = 0.

In summary, we decompose the remainder as (4.6),

R = (

p + b · v + c(|v|2 − 5T )
)

μ
1
2 + d · A + (I − P)[R]. (4.6)

We can further define the Hodge decomposition d = ∇xξ + e with ξ solving the Poisson
equation

{∇x · (κ∇xξ) = ∇x · (κd) in �,

ξ = 0 on ∂�.

We reformulate the remainder equation with a global Maxwellian in order to obtain L∞
estimates. Considering ‖∇x T ‖ � oT for oT defined in (1.3), choose a constant TM such that

TM < min
x∈�

T < max
x∈�

T < 2TM and max
x∈�

T − TM = oT . (4.7)

Define a global Maxwellian

μM := P

(2π)
3
2 T

5
2
M

exp

(

− |v|2
2TM

)

.

We can rewrite (4.5) as

{

v · ∇x RM + ε−1LM [R] = SM in � × R
3,

RM (x0, v) = PM [RM ](x0, v) + hM (x0, v) for x0 ∈ ∂� and v · n(x0) < 0,

where RM = μ
− 1

2
M μ

1
2 R, SM = μ

− 1
2

M μ
1
2 S, hM = μ

− 1
2

M μ
1
2 h and for mM,w :=

μ
− 1

2
M μ

1
2 (x0, v)mw(x0, v) = Mwμ

− 1
2

M

LM [RM ] := −2μ
− 1

2
M Q

[

μ,μ
1
2
M RM

]

:= νM RM − KM [RM ],

PM [RM ](x0, v) := mM,w(x0, v)

∫

v′·n(x0)>0
μ

1
2
M RM (x0, v

′)|v′ · n(x0)|dv′.
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Denote the working space X via the norm

‖R‖X := ε−1‖p‖L2 + ε− 1
2 ‖b‖L2 + ‖c‖L2 + ε−1‖ξ‖L2 + ε− 1

2 ‖ξ‖H2 + ε−1‖e‖L2 (4.8)

+ε−1‖(I − P)[R]‖L2
ν
+ ‖p‖L6 + ‖b‖L6 + ‖c‖L6 + ε−1‖ξ‖L6 + ‖ξ‖W 2,6

+‖e‖L6 + ‖(I − P)[R]‖L6 + |Pγ [R]|L2
γ

+ ε− 1
2 |(1 − Pγ )[R]|L2

γ+

+
∣
∣
∣μ

1
4 (1 − Pγ )[R]

∣
∣
∣
L4

γ+
+ ε− 1

2 |∇xξ |L2
∂�

+ ε
1
2 ‖RM‖L∞

�,ϑ
+ ε

1
2 |RM |L∞

γ,�,ϑ
.

In the companion paper [12], we prove the following:

Theorem 4.1 Assume that � is a bounded C3 domain and (1.4) holds. Then for any given
P > 0, there exists ε0 > 0 such that for any ε ∈ (0, ε0), there exists a nonnegative solution
F to the equation (0.1) represented by (0.4) with α = 1 satisfying

∫

�

p(x)dx = 0 (4.9)

and
‖R‖X � oT , (4.10)

where the X norm is defined in (4.8). Such a solution is unique among all solutions satisfying
(4.9) and (4.10). This further yields that in the expansion (0.4),μ+εμ(u1 ·v) is the leading-
order terms in the sense of

∥
∥
∥μ− 1

2 [F − μ]
∥
∥
∥
L2
x,v

� ε

and ∥
∥
∥
∥

∫

R3
[F − μ − εμ(u1 · v)]v

∥
∥
∥
∥
L2
x

� ε
3
2 ,

where (ρ, u1, T ) is determined by the ghost-effect equations (0.2) and (0.3).
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