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Abstract
We consider the magnetic Ginzburg–Landau equations in a compact manifold N{−ε2ΔAu = 1

2 (1 − |u|2)u,

ε2d∗d A = 〈∇ Au, iu〉.
Here u : N → C and A is a 1-form on N . We discuss some recent results on the construction
of solutions exhibiting concentration phenomena near prescribed minimal, codimension 2
submanifolds corresponding to the vortex set of the solution. Given a codimension-2minimal
submanifold M ⊂ N which is also oriented and non-degenerate, we construct a solution
(uε, Aε) such that uε has a zero set consisting of a smooth surface close to M . Away from
M we have

uε(x) → z

|z| , Aε(x) → 1

|z|2 (−z2dz
1 + z1dz

2), x = expy(z
βνβ(y)) (1)

as ε → 0, for all sufficiently small z �= 0 and y ∈ M . Here, {ν1, ν2} is a normal frame forM in
N . These results improve, by giving precise quantitative information, a recent construction
by De Philippis and Pigati (arXiv:2205.12389, 2022) who built solutions for which the
concentration phenomenon holds in an energy, measure-theoretical sense. In addition, we
consider the non-compact case N = R

4 and the special case of a two-dimensional minimal
surface in R

3, regarded as a codimension 2 minimal submanifold in R
4, with finite total

curvature andnon-degenerate.Weconstruct a solution (uε, Aε)whichhas a zero set consisting
of a smooth 2-dimensional surface close to M × {0} ⊂ R

4. Away from the latter surface we
have |uε| → 1 and asymptotic behavior as in (1).
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968 M. Badran and M. del Pino

1 Introduction

Let (N , g) be a closed Riemannian manifold of dimension n ≥ 3. For ε > 0, the magnetic
Ginzburg–Landau energy on N is given by

Eε(u, A) = 1

2

∫
N

|∇ Au|2 + ε2|d A|2 + 1

4ε2
(1 − |u|2)2, (1.1)

where A is the magnetic potential, represented as a 1-form A ∈ Ω1(N ). In (1.1) we denoted
with d the exterior derivative and ∇ A := d − i A. Explicitly, the quantities involved are

|∇ Au|2 =
n∑

j,k=1

gi j (∂ j u − i A j u)(∂k ū + i Ak ū),

|d A|2 = 1

2

n∑
j,k,s,t=1

gksg jt (∂k A j − ∂ j Ak)(∂s At − ∂t As),

where g is the metric of the manifold N . The corresponding equations are given by
{−ε2ΔAu = 1

2 (1 − |u|2)u
ε2d∗d A = 〈∇ Au, iu〉 on N , (1.2)

where d∗ is the L2-adjoint of d and 〈z, w〉 = Re(zw̄). Explicitly, the operators in (1.2) read

−ΔAu = − 1√
det g

(∂ j − i A j )
[√

det gg jk(∂k − i Ak)u
]
,

d∗d A = − 1√
det g

g jk∂i

(√
det ggli gtk(∂l At − ∂t Al)

)
dx j ,

where we used Einstein’s summation convention on repeated indices. Energy (1.1) models
phenomena of superconductivity in presence of a magnetic field, where the regions in which
|u| ≈ 1 represent portions of the material in superconducting state, while where |u| ≈ 0 the
material is in its normal state. This phase transition shares many similarities to that famously
described by the Allen–Cahn equation

− ε2Δu = (1 − u2)u. (1.3)

In particular, both models exhibit concentration for solutions as the scaling parameter
ε → 0. This means that the energy densities of solutions concentrate their mass (as mea-
sures) around a minimal submanifold (more generally, a rectifiable stationary varifold). Such
limiting object has codimension 1 in theAllen–Cahn case and codimension 2 in theGinzburg–
Landau case.

A natural question to ask is wether or not the converse holds true.

Question 1 Given a minimal submanifold M of some ambient space N can we construct a
family of solutions concentrating around M?

If N is a compact manifold and M ⊂ N a separating hypersurface, Pacard and Ritoré [26]
proved that the answer is positive for the Allen–Cahn equation (1.3) under the assumption
of non-degeneracy of M . In the case M = R

3, a similar result was found in [11] associated
to a non-degenerate minimal surface without boundary, complete with final total curvature.
In this paper, we review very recent results parallel to those in [11, 26] in the codimension 2
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Concentrating Solutions to the Magnetic Ginzburg–Landau Equations... 969

case for the Ginzburg–Landau equation (1.2). We present a detailed summary of the proofs
whose full versions can be found in our preprints [1, 2].

Energy (1.1) is invariant under the action of the unitary group U (1), namely

E(u, A) = E(Gγ (u, A)), for any γ ∈ C∞(N ), where Gγ (u, A) := (ueiγ , A + dγ ).

(1.4)
In the case N = R

2 with ε = 1 it is well known that there is a unique (up to gauge
transformations) degree 1 radial solution U0 = (u0, A0)

T , with

u0(ζ ) = f (r)eiθ , A0(ζ ) = a(r)dθ, ζ = reiθ ∈ C � R
2 (1.5)

for which f (0) = a(0) = 0. As established in [15, 35], the solution U0 is linearly stable.
The asymptotic profile as r → ∞ is given by

f (r) = 1 + O(e−r ), a(r) = 1 + O(e−r ),

see for instance [4, 29].
We find solutions Uε = (uε, Aε) of (1.2) concentrating as ε → 0 around a 2-

codimensional minimal submanifold M ⊂ N . These solutions look like ε-scalings of U0

in a region close to M in the following sense: let {ν1, ν2} be an orthonormal basis for T⊥M .
We describe a neighbourhood of M in N by Fermi coordinates

x = X(y, z) = expy(z
1ν1(y) + z2ν2(y)), y ∈ M, |z| < τ (1.6)

for some τ > 0. We construct solutions Uε(x) = (uε(x), Aε(x)) with asymptotic behaviour
given by

uε(x) ≈ f
( z

ε

) z

|z| , Aε(x) ≈ a
( z

ε

) 1

|z|2 (−z2dz
1 + z1dz

2).

We do this in two different settings.

1.1 The Compact Case

We consider first a closed, n-dimensional manifold N and a closed (n − 2)-dimensional
minimal submanifold M ⊂ N . We say that a minimal manifold M ⊂ N is admissible if

(H) M is the boundary of a (n− 1)-dimensional, oriented, embedded submanifold Bn−1 ⊂
Nn .

Recall that the Jacobi operator of M is the second variation of the area functional, which
explicitly is given by J [h] = (J 1[h],J 2[h]), where

J γ [h] = ΔMhγ +
n−2∑
i, j=1

n∑
β=n−1

(
Riβiγ + Aβ

i j A
γ

i j

)
hβ, γ = 1, 2.

In the above expression R is the curvature tensor and A is the second fundamental form.
We require that M is non-degenerate in the sense that the Jacobi operator has trivial bounded
kernel, namely

h ∈ L∞(M), J [h] = 0 �⇒ h = 0. (1.7)

Assumption (1.7) of non-degeneracy and Fredholm alternative for elliptic operators imply
the following result.
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970 M. Badran and M. del Pino

Lemma 1.1 Let f ∈ C0,γ (M,R2). Then the system

J (h) = f on M

admits a solution h = H( f ) satisfying

‖h‖C2,γ (M) ≤ C‖ f ‖C0,γ (M).

Our first result is the following.

Theorem 1 ([2]) Let (N , g) be a closed n-dimensional Riemannian manifold and let M ⊂ N
be an admissible, non-degenrate, codimension-2 minimal submanifold. Then there is δ > 0
such that for σ ∈ (0, 1) and all sufficiently small ε > 0 there exists a solution (uε, Aε) to
(1.2) which as ε → 0 satisfies

uε(x) = u0

(
z − ε2h0(y)

ε

)
+ O

(
ε2e− σ |z|

ε

)
,

Aε(x) = A0

(
z − ε2h0(y)

ε

)
+ O

(
ε2e− σ |z|

ε

)
,

|z| < δ, (1.8)

for all points x = X(y, z) of the form (1.6) and where h0 is a smooth function on M.
Moreover, |uε| → 1 uniformly on compact subsets of N \ M.

1.2 The Non-compact Case

Consider the class of complete, minimal surfaces embedded in R
3 and with finite total

curvature, that is ∫
M

|K | < ∞,

where K is the Gaussian curvature of M . It is known, see [18, 25, 33], that outside a large
cylinder a generalmanifoldM in this class decomposes into the disjoint unionofm unbounded
connected componentsM1, . . . , Mm , called its ends, which are asymptotic to either catenoids
or planes with parallel axes. After a rotation, we can choose coordinates x = (x1, x2, x3) =
(x ′, x3) in R

3 and a large number R0 such that

M \ {|x ′| < R0} =
m⋃

k=1

Mk .

Each end Mk can be represented by

Mk = {x ∈ R
3 : |x ′| ≥ R0, x3 = Fk(x

′)},
where

Fk(x
′) = ak log |x ′| + bk + bik

xi
|x ′|2 + O(|x ′|−2), |x ′| ≥ R0, (1.9)

for some constants ak , bk , bik , such that the coefficients ak are ordered and balanced, in the
sense that

a1 ≤ a2 ≤ · · · ≤ am,

m∑
k=1

ak = 0.
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Concentrating Solutions to the Magnetic Ginzburg–Landau Equations... 971

Given M in this class we find solutions to (1.2) when N = R
4 concentrating around M ×

{0}. As for the compact case a form of non-degeneracy is needed. However, the symmetries
of the immersion of M × {0} in R

4 automatically generate bounded Jacobi fields, given by

z j =
(
z j
0

)
, j = 0, 1, 2, 3, z4 =

(
0
1

)
, (1.10)

where
z0(y) = ν(y) · (−y2, y1, 0, 0), zi (y) = ν(y) · ei i = 1, 2, 3,

being ν a choice of unit normal vector field on M and y ∈ M . Thus, the non-degeneracy
condition in the non-compact case becomes

h ∈ L∞(M) and J (h) = 0 �⇒ h ∈ span{z0, z1, z2, z3, z4}.
We need a further geometrical condition before stating the theorem. Let (λ1, . . . , λm) be

a balanced, ordered vector of real numbers

λ1 ≤ λ2 ≤ · · · ≤ λm,

m∑
i=1

λi = 0 (1.11)

and assume that, for some σ ∈ (0, 1) to be determined

λk+1 − λk > 4/σ if ak+1 = ak . (1.12)

We are now ready to state the main result in the non-compact case.

Theorem 2 ([1]) Let M be a complete, minimal surface embedded in R3 and with finite total
curvature and whose ends are represented by (1.9). Then there is a number δ > 0 such that
for all sufficiently small ε > 0, σ ∈ (0, 1) and λ = (λ1, . . . , λm) satisfying conditions (1.11)
and (1.12) there exists a solution (uε, Aε) to (1.2) with N = R

4 which as ε → 0 satisfies

uε(x) = u0

(
z − εh0(y)

ε

)
+ O

(
ε2e− σ |z|

ε

)
,

Aε(x) = A0

(
z − εh0(y)

ε

)
+ O

(
ε2e− σ |z|

ε

)
,

|z| < δ,

for all points
x = y + z1ν(y) + z2e4, y ∈ M, |z| < δ.

Here, the smooth function h0 : M → R
2 satisfies

h0(y) =
(
(−1)kλk log |y′|, 0

)
+ O(ε), y = (y′, y3, 0) ∈ Mk × {0}. (1.13)

Besides, |uε| → 1 uniformly in compact subsets of R4 \ M.

Remark 1 Consider the family uε(x) predicted by Theorem 1. Using (1.8) we see that locally
around M the equation uε = 0 has the form

u0

(
z − ε2h0(y)

ε

)
+ θ

( z
ε
, y

)
= 0,

where θ is a regular function. By the implicit function theorem and the fact that ∂zuε(0) �= 0
we find that locally around M the zero level set of uε can be parametrized by

z = ε2h0(y) + O(ε3), y ∈ M . (1.14)
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972 M. Badran and M. del Pino

Also, using thatuε doesn’t vanish away fromM wefind that the parametrization (1.14) defines
the entire 0 level set. The same argument can also be applied in the setting of Theorem 2.

There is a rich literature devoted to the connection between critical points of Allen–Cahn
(resp. Ginzburg–Landau) energy and minimal submanifolds of codimension 1 (resp. 2).
Concentration phenomena on minimal hypersurfaces for local minimizers of the Allen–
Cahn energy have been studied in [19, 23, 24, 34], then generalized to the case of general
critical points in [16] with the limiting object being a stationary varifold (a measure theoretic,
non-regular generalization of minimal manfiold). The connection between solutions to the
inhomogeneus Allen–Cahn equation and constant-mean-curvature hypersurfaces has been
studied in [31]. The reverse problem, namely the construction of concentrating families
of solution has been explored, among other works, in [1, 2, 10–12, 26]. This concentration
phenomenon has also been used as a PDE alternative to theAlmgren–Pitts min-max approach
[22, 28, 32] for the construction of minimal (resp. CMC) submanifolds of codimension 1,
see [3, 6, 13, 14].

Similar results in the context of complex-valued Ginzburg–Landau equations have been
obtained, among others, by [5, 7, 8, 17, 20, 21, 27, 30].

Recently, De Philippis and Pigati [9] established a result that complements the findings
in [27] for the scenario of a non-degenerate codimension 2 minimal submanifold. Their
method, based on variational techniques, does not provide detailed asymptotic information.
However, they have successfully resolved the more challenging case of Ginzburg–Landau
equations where no induced magnetic field is present. Our techniques do not extend to cover
that particular case.

1.3 The Linearized Operator

We start by defining an inner product on the pairs W = (u, A)

〈W1,W2〉 :=
∫
N

(
u1
A1

)
·
(
u2
A2

)

=
∫
N
〈u1, u2〉 + ε2A1 · A2,

where 〈u1, u2〉 = Re(u1ū2) and A1 · A2 = gi j (A1)i (A2) j , being g the metric on N . Let

S(W ) =
(−ε2ΔAu − 1

2 (1 − |u|2)u
ε2d∗d A − 〈∇ Au, iu〉

)
.

If W is a solution to (1.2), i.e. S(W ) = 0, gauge-invariance (1.4) implies the existence of
an infinite dimensional subspace of the kernel of the linearised operator S′(W ) around a pair
W . It’s easy to check that the gauge-kernel is given by the range of ΘW , where

ΘW [γ ] = (iuγ, dγ ).

It is also direct to check that L2-orthogonality with the space generated by ΘW [γ ] is
characterised by it’s adjoint: if Φ = (φ, ω)

Φ ⊥ ΘW [γ ] ∀γ ⇐⇒ Θ∗
W [Φ] := ε2d∗ω + 〈φ, iu〉 = 0.
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Concentrating Solutions to the Magnetic Ginzburg–Landau Equations... 973

We recall the decomposition of the linearised operator, given by

S′(W ) = LW − ΘWΘ∗
W ,

where

LW [Φ] =
(−ε2ΔAφ − 1

2 (1 − 3|u|2)φ + 2iε2∇ Au · ω

−ε2Δω + |u|2ω − 2〈∇ Au, iφ〉
)

is an elliptic operator which is well defined in the space of pairs (φ, ω) for which

‖Φ‖H1
W (N ) := ‖∇ Aφ‖L2(N ) + ‖φ‖L2(N ) + ‖∇ω‖L2(N ) + ‖ω‖L2(N ) < ∞,

where ∇ω is the Levi-Civita connection applied to the 1-form ω. We call LW the “gauge-
corrected linearised”. Define the operator ∇W and −ΔW = ∇∗

W∇W as

∇W

(
φ

ω

)
=

( ∇ Aφ

dω + d∗ω

)
, −ΔW

(
φ

ω

)
=

(−ΔAφ

−Δω

)
.

By doing so, we can write

LW [Φ] = −ε2ΔWΦ + Φ + TWΦ,

where

TW

(
φ

ω

)
=

(− 3
2 (1 − |u|2)φ + 2iε2∇ Au · ω

−(1 − |u|2)ω − 2〈∇ Au, iφ〉
)

. (1.15)

Recall the solution U0 = (u0, A0) defined in (1.5). We denote the gauge-corrected lin-
earised operator around U0 with ε = 1 with

L := S′(U0) − ΘU0Θ
∗
U0

. (1.16)

It is known that ZU0 := span{V1,V2} ⊂ ker L, where

V1 =
(

f ′
a′
r dt

2

)
, V2 =

(
i f ′

− a′
r dt

1

)
. (1.17)

Lastly, recall that the coercivity estimate (proved in [35])

〈L[Φ], Φ〉L2 ≥ c‖Φ‖2
H1
U0

, ∀Φ ∈ Z⊥
U0

, (1.18)

for some c > 0, and Lax–Milgram theorem imply the validity of the following existence
result.

Lemma 1.2 For any Ψ ∈ L2(R2) ∩ Z⊥
U0

there exists a unique solution Φ ∈ H1
U0

(R2) ∩ Z⊥
U0

to
L[Φ] = Ψ

satisfying
‖Φ‖H1

U0
(R2) ≤ C‖Ψ ‖L2(R2)

for some C > 0.
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974 M. Badran and M. del Pino

2 Sketch of the Proof of Theorem 1

2.1 The First Approximation

In what follows we use indices i, j, k . . . and α, β, γ, . . . respectively for coordinates tan-
gential and normal to M , while we use a, b, c, . . . to indicate all coordinates at once. More
precisely

1 ≤ i, j, k, . . . ≤ n − 2, n − 1 ≤ α, β, γ, . . . ≤ n, 1 ≤ a, b, c, . . . ≤ n.

The admissibility hypothesis (H) allows us to choose canonically a basis {ν1, ν2} for T⊥M
by setting ν2 as the normal to B in N and ν1 as the vector field in T B restricted to M which
is normal to T M (we can assume that ν1 is directed towards B).

We describe a neighbourhood of M in N through Fermi coordinates, that is we consider
the points x ∈ N such that

x = X(y, z) = expy(z
βνβ(y)), (y, z) ∈ M × B(0, τ ),

where B(0, τ ) ⊂ R
2 and τ is sufficiently small.Given a smooth function h = (h1, h2) : M →

R
2 satisfying

‖h‖C2,γ (M) ≤ K ε (2.1)

consider the change of coordinates

zβ = ε(tβ + hβ(y)), β = 1, 2.

Then, the neighbourhood of M can be described as the set N = Xh(Oh), where Oh =
{(y, t) : y ∈ M, |t + h(y)| < τ/ε} and

Xh(y, t) = expy
(
ε(tβ + hβ(y))νβ(y)

)
. (2.2)

On N we define the first local approximation W0 by setting

W0(x) = U0(t), x = Xh(y, t),

where U0 = (u0, A0)
T is the degree 1 solution in R2, given by (1.5).

This is a good first approximation if the error of W0

S(W0) =
(−ε2ΔA0u0 − 1

2 (1 − |u0|2)u0
ε2d∗d A0 − 〈∇ A0u0, iu0〉

)
(2.3)

is small. The computation of (2.3) relies on expressing the differential operators −ΔA and
d∗d A in coordinates (y, t). Using the fact that U0 is a solution of the corresponding system
in R

2 (see [2]), we find

S(W0) = ε2tγ
(
Riβiγ (y, 0) + Aβ

i j (y)A
γ

i j (y)
)
Vβ(t) + 1

3ε
2Rαγβδ(y, 0)t

γ tδ∇γ δ,U0U0

−ε2
(
(ΔMhβ)(y) + Riβiγ (y, 0)hγ (y) + Aβ

i j (y)A
γ

i j (y)h
γ (y)

)
Vβ(t)

+ε3Aα
i j (y)A

β
jk(y)A

γ

ki (y)t
γ tδVβ(t) + O(ε3), (2.4)

where (2.4) has been broken down into sizes in ε, accounting also (2.1). The terms Vβ are as
in (1.17).
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Concentrating Solutions to the Magnetic Ginzburg–Landau Equations... 975

We look for a better approximation to a solution of (1.2) as a perturbation of W0, namely
of the form W1 = W0 + Λ1. The error of approximation can be split in the following parts

S(W1) = S(W0) + L[Λ1] + (S′(W0) − L)[Λ1] + N0(Λ1),

where
N0(Λ1) = S(W0 + Λ1) − S(W0) − S′(W0)[Λ1]

where we recall that the 2-dimensional linearized operator L, given by (1.16), is an operator
in the t-variable only. The largest term of S(W0), namely that of order ε2, is locally given by

Q2(y, t) = ε2tγ
(
Riβiγ (y, 0) + Aβ

i j (y)A
γ

i j (y)
)
Vβ(t) + 1

3ε
2Rαγβδ(y, 0)t

γ tδ∇γ δ,U0U0.

(2.5)
Therefore, if we solve

L[Λ1] = −Q2(y, t)

the biggest part of the error in terms of ε is cancelled. Such Λ1 exists thanks to Lemma 1.2,
using that ∫

R2
Q2(y, t) · Vα(t)dt = 0, ∀y ∈ M .

Also, since the right-hand side (2.5) is O(e−|t |) for |t | large a standard barrier argument along
with the fact that L ∼ −Δ + Id at infinity ensures that

sup
t∈R2

eσ |t ||Q2(y, t)| < ∞, ∀y ∈ M

for any 0 < σ < 1. Moreover, the error created

E(y, t) = (S′(W0) − L)[Λ1] + N0(Λ1)

satisfies
|E(y, t)| ≤ Cε4e−σ |t |.

To further improve the approximation the non-degeneracy assumption (1.7), and the con-
sequent invertibility Lemma 1.1, are crucial. Indeed if we set W2 = W1 + Λ2 we can try to
cancel the ε3-terms in (2.4)

Q3(y, t) = ε2J β [h]Vβ(t) + ε3Aα
i j (y)A

β
jk(y)A

γ

ki (y)t
γ tδVβ(t) + O(ε3)

in the same manner as before. This can be done by virtue of Lemma 1.2 if the right-hand side
satisfies the orthogonality condition with ZU0,t , that is if∫

R2
Q3(y, t) · Vγ (t) dt = cε2J γ (h)(y) + ε3qγ (y) = 0, γ = 1, 2, ∀y ∈ M . (2.6)

Here, c = ∫
R2 |Vγ (t)|2dt (independent of γ = 1, 2) and

qγ (y) = Aα
i j (y)A

β
jk(y)A

γ

ki (y)
∫
R2

tδtβ |Vγ (t)|2dt + O(1).

Now, Lemma 1.1 guarantees the existence of a bounded h0(y) with

J (h0) = −(q1,q2)T on M . (2.7)

Choosing h = εh0, the right-hand side of (2.6) vanishes for γ = 1, 2, allowing us to find the
sought Λ2.
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976 M. Badran and M. del Pino

The problem with this procedure is that the term in the error created given by S′(W1) − L
carries second derivatives in y which are not included in the invertibility theory of L, which
will create problems in further iterations of the process. Thus, an invertibility theory for the
full linearised needs to be made, which is the content of Proposition 2.1 below. We also point
out that the approximation W1(y, t) will be sufficient for our purposes, and the function
Λ2(y, t) will be part of the expansion of perturbation in the full solution.

The approximated solution found so far is defined only locally around M . To get a global
approximation we extend W1 to the whole ambient space N . The idea is that of “gluing” W1

to a pure gauge, namely with a pair of the form

Ψ =
(

ψ
dψ
iψ

)
, |ψ | = 1

whereψ is a smooth S1-valued function defined away from M and that links well withW1 in
a region close to M . We recall that, being a pure gauge, Ψ satisfies automatically S(Ψ ) = 0.
The existence of such ψ is guaranteed by the admissibility hypothesis (H), by means of the
following lemma, proved in [2].

Lemma 2.1 The admissibility hypothesis (H) guarantees the existence of a δ > 0 and smooth
function

ψ : N \ Mh → S1,

where Mh = {expy(hβ(y)νβ(y)) : y ∈ M}, such that for every x = Xh(y, t) ∈ supp ζ3

ψ(x) = t

|t | , |t + h(y)| < δ/ε.

Let now δ > 0 and ζ be a smooth cut-off function such that ζ(s) = 1 if s < 1 and
ζ(s) = 0 if s > 2. For m = 1, 2, . . . consider the cut-off functions defined by

ζm(x) =
{

ζ( ε
δ
|t + h(y)| − m) if x = Xh(y, t) ∈ N ,

0 otherwise.
(2.8)

We define the global approximation W to a solution of (1.2) as

W = ζ3W1 + (1 − ζ3)Ψ .

For σ ∈ (0, 1), it holds

S(W ) = ζ3S(W1) + (1 − ζ3)S(Ψ ) + E,

where
|E(x)| ≤ Ce− 4σδ

ε χ{0<ζ3<1}(x)

and again S(Ψ ) = 0.

2.2 Proof of Main Result

We look for a solution to (1.2) as a small perturbation of the global approximationW , namely
we are looking for a Φ such that (Figs. 1, 2 and 3)

S(W + Φ) = 0 on N . (2.9)
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B
21

M

N

Fig. 1 A representation of M as the boundary of an oriented manifold B in N . Assumption (H) determines
the normal fields {ν1, ν2}

Roughly, the strategy to find such Φ is the following. First we write (2.9) as

0 = −ΘWΘ∗
W [Φ] + LW [Φ] + S(W ) + N (Φ),

where N (Φ) = S(W + Φ) − S(W ) − S′(W )[Φ]. Secondly, we use a suitable invertibility
theory for the gauge-corrected linearised LW in order to solve

LW [Φ] + S(W ) + N (Φ) = 0 (2.10)

as a fixed point problem. Finally, we use the contraction mapping principle and the small
Lipschitz character of N to find a Φ satisfying (2.9). By doing so, we find a solution to

S(W + Φ) = ΘW [γ ] on N , where γ = −Θ∗
W [Φ].

We claim that in this case γ = 0. Denoting W = (u, A) and Φ = (ϕ, ω), we have by
gauge invariance (1.4),

0 = d

dt

∣∣∣
t=0

E(Gtγ (W + Φ))

=
∫
N
S(W + Φ) · ΘW+Φ [γ ]

=
∫
N

ΘW [γ ] · ΘW+Φ [γ ]

=
∫
N

γ · [
(−ε2Δ + |u|2 + 〈u, ϕ〉)γ ]

M
1

2

Fig. 2 The normal frame around M
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and since−ε2Δ+|u|2+〈u, ϕ〉 is a positive operator given that ϕ is small with respect to u, it
must be γ = 0 and the claim is proved. It is thus sufficient to findΦ solving (2.10). However,
(2.10) is not solvable, with the appropriate estimates, in absolute terms. Rather than that, we
consider the corrected problem

LW [Φ] = −S(W ) − N (Φ) + ζ2b
α(y)Vα(t) on N . (2.11)

The adjustment on the right-hand side provides unique solvability in terms of Φ for a
precise choice of b = (b1, b2), in the sense of the following result.

Proposition 2.1 Let 0 < γ < 1 and let Λ ∈ C0,γ (N ). Then, there exists b ∈ C0,γ (M) and
a unique solution Φ = G(Λ) to

LW [Φ] = Λ + ζ2b
α(y)Vα(t)

satisfying
‖Φ‖C2,γ (N ) + ‖b‖C0,γ (M) ≤ C‖Λ‖C0,γ (N )

for some C > 0.

Proposition 2.1 allows us to write (2.11) as a fixed point problem

Φ = −G (S(W ) + N (Φ))

on the space
XA = {

Φ ∈ C2,γ (N ) : ‖Φ‖C2,γ (N ) ≤ Aε3
}

which admits a solution by the Lipschitz estimate

‖N (Φ1) − N (Φ2)‖C2,γ (N ) ≤ Cε3‖Φ1 − Φ2‖C2,γ (N ), Φ1, Φ2 ∈ XA,

if A is chosen sufficiently large. The final step is to choose h suitably to make the projection
ζ2bαVα in (2.11) vanish. We find an expression for bγ by multiplying (2.11) by ζ4Vγ (t),
γ = 1, 2 and integrating on R

2.

bγ (y) = 1∫
R2 ζ2|Vγ |2

∫
R2

ζ4 [S(W ) + N (Φ) + LW [Φ]] · Vγ .

Aspreviously observed (cfr. (2.6)) the expansion of bγ yields at first order aO(ε2)multiple
of the γ -th component of the Jacobi operator. Precisely, letting

qm(y) =
∫
R2

ζm(y, t)|Vα(t)|2, m = 1, 2, . . . ,

the system bγ = 0, γ = 1, 2, can be written as

J (h) = G(h), (2.12)

where G(h) = q−1
4 (G1(h),G2(h)) and

Gα(h) = q4J α(h) − ε−2
∫
R2

ζ4 [S(W ) + N (Φ) + LW [Φ]] · Vα, α = 1, 2.

We can use Lemma 1.1 to restate (2.12) as a fixed point problem

h = H(G(h)). (2.13)

To conclude the proof we use the following lemma (we refer to our work [2] for a proof).
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Lemma 2.2 The map G satisfies

‖G(0)‖C0,γ (M) ≤ Cε

and
‖G(h1) − G(h2)‖C0,γ (M) ≤ Cε‖h1 − h2‖C2,γ (M),

for some C > 0.

Thanks to Lemma 2.2we see that by contractionmapping principle equation (2.13) admits
a solution in the space {

h ∈ C2,γ (M) : ‖h‖C2,γ (M) ≤ Aε
}

for any A sufficiently big. Also, the solution found satisfies h = εh0 + O(ε2), where h0 is
the unique solution to (2.7). This concludes the proof.

2.3 Proof of Proposition 2.1

To prove the invertibility theory for LW we use the fact that, on a region close to M , the
gauge-corrected linearised operator can be approximated by LU0 , namely the scaled gauge-
corrected linearised operator on M × R

2 around the canonical profile U0(y, t) := U0(t),
which in the scaled coordinates (y, t) = (y, z/ε) reads

LU0 [Φ] = −Δt,U0Φ − ε2ΔMΦ + Φ + TU0(t)Φ,

where TU0 is as in (1.15). We start by considering the cut-off functions introduced in (2.8)
and looking for a solution to

LW [Φ] = −ε2ΔWΦ + Φ + TWΦ = Λ + ζ2b
αVα on N (2.14)

of the form
Φ(x) = ζ2(x)Φ(y, t) + Ψ (x),

where Φ is defined on M × R
2 and Ψ is defined on N . In terms of the pair (Φ,Ψ ) the

equation
LW [Φ] = −ε2ΔWΦ + Φ + TWΦ = Λ + ζ2b

αVα on N (2.15)

can be broken down in the system

LU0 [Φ] + (LW − LU0)[Φ] + ζ1TWΨ = Λ + bαVα on supp ζ2, (2.16)

−ε2ΔWΨ + Ψ + (1 − ζ1)TWΨ + ε2RW [ζ2, Φ] = (1 − ζ2)Λ on N , (2.17)

where we denoted
RW [ f , Φ] = −ΔW ( f Φ) + f ΔWΦ. (2.18)

Equation (2.17) is solvable directly using the positivity of the operator on the left-hand
side on H1

W (N ). For Φ fixed, we find a solution Ψ to (2.17) satisfying

‖Ψ ‖C2,γ (N ) ≤ C
(
‖(1 − ζ1)Λ‖C0,γ (N ) + e− σδ

ε ‖Φ‖
C0,γ

σ (M×R2)

)
.

Plugging such Ψ = Ψ (Λ,Φ) inside of (2.16) we reduce the problem to an equation for
Φ only. Define

B̃[Φ] = ζ4B[Φ] = ζ4(LW − LU0)[Φ], Λ̃ = ζ4Λ, (y, t) ∈ M × R
2.
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Here B̃ satisfies
‖B̃[Φ]‖C0,γ (M×R2) ≤ Cδ‖Φ‖C2,γ (M×R2),

where δ is the one from the definition of ζ4 in (2.8). With this notation equation (2.16) is
equivalent to

LU0 [Φ] + B̃[Φ] + ζ1TWΨ = Λ̃ + bαVα on M × R
2. (2.19)

Define the weighted norm C0,γ
σ on functions ψ(y, t) defined on M × R

2 as

‖ψ‖
Ck,γ

σ (M×R2)
= ‖eσ |t |ψ‖Ck,γ (M×R2),

where k ≥ 0 and γ, σ ∈ (0, 1). The following result holds.

Proposition 2.2 Let γ ∈ (0, 1) and σ > 0 sufficiently small. Then for every Λ̃ ∈ C0,γ
σ (M ×

R
2) there exists b ∈ C0,γ (M) such that the problem

LU0 [Φ] = Λ̃ + bαVα on M × R
2

admits a unique solution Φ = T (Λ̃) satisfying

‖Φ‖
C2,γ

σ (M×R2)
+ ‖b‖C0,γ (M) ≤ C‖Λ̃‖

C0,γ
σ (M×R2)

for some C > 0.

To prove this result we restrict to an open cover {Uk} of M and solve the problem locally
on Uk × R

2 for every k, finding then a global solution by gluing of all the local solutions.
See [2] for details. Using Proposition 2.2 we can rephrase (2.19) as

Φ + G[Φ] = H, (2.20)

where

G[Φ] = T
(
B̃[Φ] + ζ1T

ε
WΨ1[Φ]

)
,

H = T
(
Λ̃ − ζ1T

ε
WΨ2[Λ]

)
.

Now, using that

‖B̃[Φ]‖
C0,γ

σ (M×R2)
≤ Cδ‖Φ‖

C2,γ
σ (M×R2)

,

‖ζ1TWΨ1[Φ]‖
C0,γ

σ (M×R2)
≤ C ‖Ψ1[Φ]‖C0,γ (N ) ≤ Ce− δ′

ε ‖Φ‖
C2,γ

σ (M×R2)

we find

‖G[Φ]‖
C2,γ

σ (M×R2)
≤ C

(
‖B̃[Φ]‖

C0,γ
σ (M×R2)

+ ‖ζ1TWΨ1[Φ]‖
C0,γ

σ (M×R2)

)

≤ C

(
δ + e− δ′

ε

)
‖Φ‖

C2,γ
σ (M×R2)

and hence by picking ε, δ sufficiently small we find a unique solution to (2.20), from which
we get the existence of a unique solution (Φ,Ψ ) to system (2.16)–(2.17). In conclusion,
Φ = ζ2Φ + Ψ solves (2.15) and it follows directly that

‖Φ‖C2,γ (N ) ≤ C‖Λ‖C0,γ (N ).

The proof of Proposition 2.1 is complete. ��
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Fig. 3 An outline of the asymptotic behaviour of the ends of the surface M in the case where m = 4

3 Sketch of the Proof of Theorem 2

As already mentioned, the proof of Theorem 2 follows the same lines of the proof of
Theorem 1. The first main difference is that the solution’s 0 level set will actually depart
logarithmically from the manifold around the ends, according to (1.13).

This fact prevents the formation of small but non-decaying errors in the space between
two consecutive ends, see [11]. This fact is formulated in the following way: we choose
h = h∗ + h1, with

‖h1‖∗ := ‖h1‖∞ + ‖DMh1‖C0,γ
2 (M)

+ ‖D2
Mh1‖C0,γ

4 (M)
≤ Cε,

where the norms ‖ · ‖
C0,γ

μ (M)
are defined by

‖φ‖
C0,γ

μ (M)
= ‖rμφ‖C0,γ (M), r(y) =

√
1 + |y|2, y ∈ M ⊂ R

3

and account for the decay along M . The function h∗ = (h1∗, h2∗)T satisfies J (h∗) = 0 and

h1∗(y) = (−1) jλ j log r + η on Mj , h2∗ = 0,

where Mj is the j-th end of M . The local approximation of a solution is then given by

W0(y, z) = U0(t), t = z/ε − h∗(y) − h1(y).

The fact that J (h∗) = 0 will allow us to formulate the final, reduced problem as a fixed
point involving only the Jacobi operator of h1, namely of the form

J (h1) = G(h1) on M,

similar to (2.12). In this geometrical setting, the Jacobi operator is given by

J
(
h1
h2

)
=

(
ΔMh1 + |AM |2h1

ΔMh2

)

and we recall that we assumed non-degeneracy, which here means

h ∈ L∞(M) and J (h) = 0 �⇒ h ∈ span{z0, z1, z2, z3, z4},
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982 M. Badran and M. del Pino

where zk , k = 0, . . . , 4 are given by (1.10). The presence of this kernel creates an obstruction
to a direct invertibility theory for J . Instead, we consider the corrected problem

J (h1) = G(h1) −
4∑

k=0

ck |AM |2zk (3.1)

for some constants c0, . . . , c4. The correction on the right-hand side provides unique solv-
ability for (3.1) in the sense of the following lemma.

Lemma 3.1 Let f = ( f 1, f 2)T be a function defined on M such that ‖ f ‖
C0,γ
4 (M)

< +∞.

Then, there exist constants c0, . . . , c4 such that the system{
ΔMh1 + |AM |2h1 = f 1 − ∑3

j=0 c
j |AM |2 ẑ j ,

ΔMh2 = f 2 − c4|AM |2

admits a solution h = (h1, h2)T = H( f ) satisfying

‖h‖∗ ≤ C‖ f ‖
C0,γ
4 (M)

.

With the aid of Lemma 3.1 we formulate (3.1) as a fixed point problem

h1 = H(G(h1))

which admits a solution by contraction mapping principle, using also the Lipschitz character
of G (coming from calculations similar to that of the compact case, see [1]). To conclude the
proof of Theorem 2 we only need to show that ck = 0 for every k. This is a consequence of
the fact that the Jacobi fields zk are generated by the symmetries of the ambient manifold. In
what follows we consider coefficients dil and linear combinations

ẑ j =
4∑

i=0

di j zi , j = 0, . . . , 4,

such that ∫
M

|AM |2 ẑi ẑ j = δi j , i, j = 0, . . . , 4.

At this we have constructed a solution U = W + Φ of

S(U ) = q|AM |2
3∑
j=0

c j ẑ jV1 + q|AM |2c4V2 − ΘWΘ∗
W [Φ],

where we set q = ε2ζ4q̃ and 0 < c ≤ q̃ ≤ C . Consider the quantities

Zi := ∇xi ,UU , i = 1, 2, 3, 4,

Z0 := x1∇x2,UU − x2∇x1,UU ,

γ := −Θ∗
W [Φ].

It holds ∫
R4

S(U ) · ΘU [γ ] = 0,
∫
R4

S(U ) · Zi = 0, i = 0, . . . , 4. (3.2)

This follows from gauge-invariance, the invariances of M under rigid motions and from the
balancing condition (1.11). Using (3.2) it is possible to show that the vector (c0, c1, c2, c3, c4,
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γ ) is mapped to zero by a linear operator which, for ε small enough, is positive (see [1]).
This implies that all coefficients vanish, and thus that we found a true solution. The proof is
concluded.
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