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Abstract
We prove (with a mild restriction on the multidegrees) that all secant varieties of Segre–
Veronese varieties with k > 2 factors, k − 2 of them being P1, have the expected dimension.
This is equivalent to compute the dimension of the set of all partially symmetric tensors with
a fixed rank and the same format. The proof uses the case k = 2 proved by Galuppi and
Oneto. Our theorem is an easy consequence of a theorem proved here for arbitrary projective
varieties with a projective line as a factor and with respect to complete linear systems.
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1 Introduction

For any positive integer z and for any integral and non-degenerate varietyW ⊂ P
r let σz(W )

denote the z-secant variety of W , i.e. the closure of the union of all linear spaces spanned by
z points of W . Many practical linear algebra problems and applications use secant varieties
or, at least, their dimensions [18]. For instance, if σz−1(W ) �= P

r , then the integer dim σz(W )

is the dimension of the set of all q ∈ P
r with W -rank z. If we take as W a multiprojective

space, then the W -rank decompositions are the partially symmetric tensor decompositions
with the minimal number of addenda. If we take W = P

n , then the W -ranks correspond to
the additive decompositions of forms in n + 1 variables with a minimal number of addenda.

Segre–Veronese varieties are related to partially symmetric tensors and hence their secant
varieties (or at least their dimensions) are an active topic of research with several papers
devoted to the study of the dimensions of their secant varieties [1, 2, 11, 15–17]. As a corollary
of our results we prove the following result in which we only use the secant non-defectivity
of almost all Segre–Veronese varieties with 2-factors [15].
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Theorem 1 Take X := P
n1 ×P

n2 × (P1)k−2, k ≥ 3, embedded by the complete linear system
OX (d1, . . . , dk) with di ≥ 2 for all i , d1 ≥ 3 and d2 ≥ 3. Then this embedding of X is not
secant defective.

We prove a more interesting result, which applies to all varieties with a projective line as
a factor and with respect to complete linear systems (Theorem 2).

Let Y be an integral projective variety. Set X := Y × P
1. Let π1 : X → Y and π2 :

X → P
1 denote the 2 projections. For any L ∈ Pic(Y ) and any integer t set L[t] :=

π∗
1 (L) ⊗ π∗

2 (OP1(t)).

Theorem 2 Let Y be an integral projective variety. Fix an integer t ≥ 2. Set X := Y × P
1.

Let L be a very ample line bundle on Y with h1(L) = 0. Set n := dim X, α := h0(L)

and e := 	α/n
. Assume n ≥ 3, α > n2 and that the e-th secant variety of (Y ,L) has the
expected dimension. Then the pair (X ,L[t]) is not secant defective.

We assume n ≥ 3 in Theorem 2 because if n = t = 2 no lower bound on α may work, as
shown by Example 1. The integer e is the maximal integer such that the e-secant variety may
have dimension ne − 1. We assume that it has dimension ne − 1, the expected dimension,
but if ne < α we do not assume that (Y ,L) is not secant defective, i.e. we do not assume that
σe+1(Y ) is the entire projective space. We do not assume it, because we do not need it and
assuming it will not help for the proof. There are plenty of defective pairs (Y ,L) and t such
that (Y × P

1,L[t]) is not defective. For instance, take Y = P
n with L := OPn (a) defective

and either t odd or a > 2 [7, Theorem 3.1]. Conversely, (P2,OP2(3)) is not defective, but
if we take t = 1 we get a defective variety [7, Theorem 3.1]. This is not very surprising.
For any o ∈ P

1, the subvariety Y × {o} is only a tiny part of X = Y × P
1, while the secant

varieties only depend on a Zariski open subset of X . Having a covering family of defective
varieties does not (a priori) exclude the non-defectivity of X . Assuming that σe+1(Y ) is the
full projective space would not shorten our proof.

Theorem 1 is an easy consequence of Theorem 2.
Our tools work even if (Y ,L) is secant defective, adding conditions on t and/or α. As

an example we prove one case in which we only assume that σ	α/n
−1(Y ) has the expected
dimension (Theorem 3). We also see that even for t = 1 we may get non-trivial results
(Propositions 1 and 2).

We often use theDifferential Horace Lemma [5, 6] and an inductive procedure (theHorace
Method) but from top to bottom with smaller and smaller zero-dimensional schemes to be
handled. This approach may be considered as a controlled asymptotic tool which does not
require the low cases to start the inductive procedure [8, 9], [12, Lemma 3]. A long and
detailed explanation of this method is contained in [8, pp. 1005–1008]; see in particular the
diagram of logical implications in [8, p. 1008]. See Lemma 1 and Remark 2 for a key part of
this approach. Then sometimes the low cases may be proved, e.g. with a computer assisted
proof [9, 13]. However, a standard use of this tool would only give a very weak result (e.g.
Theorem 2 only for t ≥ dim Y + 2 and hence the inductive proof to get Theorem 1 for k ≥ 4
would require very large t).

For our proof of Theorem 2 the key part is the proof of the case t = 2. Then the cases
t > 2 have a short inductive proof using Lemmas 2, 3 and 4.

Our method works for some non-complete linear systems (see Remark 5).
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2 Preliminaries

Let W a projective variety and D an effective Cartier divisor of W . For any p ∈ Wreg

let (2p,W ) denote the closed subscheme of W with (Ip,W )2 as its ideal sheaf. We have
deg((2p,W )) = dimW+1and (2p,W )red = {p}. For anyfinite set S ⊂ Wreg set (2S,W ) :=
∪p∈S(2p,W ). We often write 2p and 2S instead of (2p, X) and (2S, X). For any zero-
dimensional scheme Z ⊂ W let ResD(Z) denote the residual scheme of Z with respect to
D, i.e. the closed subscheme of W with IZ : ID has its ideal sheaf. We have deg(Z) =
deg(ResD(Z)) + deg(Z ∩ D), ResD(Z) ⊆ Z , ResD(Z) = Z if Z ∩ D = ∅, ResD(Z) = ∅ if
Z ⊂ D andResD(Z) = ResD(A)∪ResD(B) if Z = A∪B and A∩B = ∅. If p ∈ Dreg∩Wreg,
then ResD((2p,W )) = {p} and (2p,W ) ∩ D = (2p, D). For any line bundleR onW there
is an exact sequence

0 → IResD(Z) ⊗ R(−D) → IZ ⊗ R → IZ∩D,D ⊗ R|D → 0 (1)

of coherent sheaves on W which we call the residual sequence of D. Fix a positive integer
z. By the Terracini Lemma [3, Corollary 1.11], [18, 5.3.1.1] the integer dim σz(W ) is the
codimension of the linear span of the zero-dimensional scheme (2S,W ), where S is a general
subset of W of cardinality z. Thus if the embedding of W is induced by the complete linear
system |R|, thendim σz(W ) = h0(R)−1−h0(I(2S,W )⊗R).Hencedim σz(W ) = z(dimW+
1) − 1 if and only if h1(I(2S,W ) ⊗ R) = h1(R).

Now we describe the so-called Differential Horace Lemma [5, 6].

Remark 1 Let E ⊂ W be a zero-dimensional scheme. Fix i ∈ {0, 1} and an integer g > 0.
Let D be an integral divisor ofW . Let F ⊂ D be a general subset of D with #F = g. Suppose
you want to prove that hi (IE∪(2S,W ) ⊗ R) = 0 for a general S ⊂ W such that #S = g. It is
sufficient to prove that hi (H , I(E∩D)∪F⊗R|D) = 0 and hi (W , IResD(E)∪(2F,D)⊗R(−D)) =
0 [5, 6].

Take X := Y × P
1. Every line bundle on X is of the form L[t] for a uniquely determined

L ∈ Pic(Y ) and a unique t ∈ Z [14, Proposition 3]. Now assume t ≥ 0 and α := h0(L) > 0.
The Künneth formula gives h0(L[t]) = (t + 1)α and h1(L[t]) = (t + 1)h1(L). From now
on we also assume h1(L) = 0 and hence h1(L[t]) = 0. Note that L[t]|H = L[0]|H for all
t and that a double point 2p of X gives the same number of condition of a linear subspace
of H0(X ,L[0]) as the double point 2p1(p) of Y to the corresponding linear subspace of
H0(Y ,L).

As in [8, 9] we often use the following observation, which explain we using Remark 1 in
the step L[t] �⇒ L[t − 1] of a descending induction we also need to handle L[t − 2].
Lemma 1 Let E ⊂ W be a zero-dimensional scheme. Let D be an integral divisor of W and
assume h1(IE ⊗ R) = 0. Set b := h0(IE ⊗ R). Fix a ∈ N and a general A ⊂ D such that
#A = a. We have h1(IE∪A ⊗ R) = max{0, b − a} and h0(IE∪A ⊗ R) = max{0, b − a} if
and only if h0(IResD(E) ⊗ R(−D)) ≤ max{0, b − a}.
Proof First assume a = 0. We have the “only if” part (i.e. the part we will not use in the
proofs of the theorems) by the H0-part of the cohomology sequence of (1). Thus we may
assume a > 0 and use induction on the integer a. We order the points p1, . . . , pa of A. Set
A′ := A\{pa}. By the inductive assumptionwe have h1(IE∪A′ ⊗R) = max{0, b−a+1} and
h0(IE∪A′⊗R) = max{0, b−a+1} if and only if h0(IResD(E)⊗R(−D)) ≤ max{0, b−a+1}.
If h0(IE∪A′ ⊗ R) = 0, i.e. if a > b, adding the point pa /∈ Ered does not change any of
the 3 max. Now assume h0(IE∪A′ ⊗ R) > 0 and hence h1(IE∪A′ ⊗ R) = 0. Adding pa
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does not change ResD(E). Since pa is general in D, we have h1(IE∪A ⊗R) = 0 if and only
if D is not in the base locus of |IE∪A′ ⊗ R|, i.e. if and only if h0(IResD(E) ⊗ R(−D)) <

h0(IE∪A′ ⊗ R) = b − a + 1. ��
Remark 2 In the applications of Lemma 1 to prove Theorem 2 and similar results we have
E = Z ′ ∪ �, where Z ′ is a general union of double points of W and � is a general union of
double points of D. Note that ResD(E) = Z ′.

Suppose there is a line bundle R on W such that the embedding W ⊂ P
r is induced by

the complete linear system |R|. We call the secant varieties of the embedded varietyW ⊂ P
r

the secant varieties of the pair (W ,R).

Remark 3 Let W ⊂ P
r be an integral and non-degenerate variety. Set n := dimW , z1 :=

	(r + 1)/(n + 1)
 and z2 := �(r + 1)/(n + 1)�. Suppose that σz1(W ) and σz2(W ) have
the expected dimension. Since (n + 1)z2 ≥ r + 1, σx (W ) = P

r for all x ≥ z2. Either
z1 = z2 or z1 = z2 − 1. Let S ⊂ Wreg be a general subset such that #S = z1. Since
dim σz1(W ) = (n + 1)z1 − 1, the Terracini Lemma gives dim(2S,W ) = (n + 1)z1 − 1, i.e.
the scheme (2S,W ) is linearly independent. Hence, (2A,W ) is linearly independent for any
A ⊂ S. The Terracini Lemma gives dim σy(W ) = (n+ 1)y − 1 for all 1 ≤ y < z1 (a similar
statement is proved in [4, Proposition 2.1(i)]). Thus W is not secant defective. Note that z2
is the minimal integer z such that (dimW + 1)z ≥ r + 1. Thus to prove that W is not secant
defective it is sufficient prove that σz(W ) has the expecting dimension for z = z2 and for all
z ≤ z1, i.e. for all positive integers z such that (dimW + 1)z ≤ r + 1+ dimW . In the set-up
of Theorem 2 it is sufficient to test all positive integers z such that (n + 1)z ≤ (t + 1)α + n.

3 The Proofs and Related Results

Set X := Y × P
1 and n := dim X . We fix o ∈ P

1 and set H := Y × {o}. The set H is an
effective Cartier divisor of X and H ∼= Y . We first give 2 cases in which the proof is short
(Propositions 1 and 2). Then we discuss the main idea of the proofs.

Proposition 1 Fix a positive integer z such that n(z−e)+e ≤ α and assume that the e-secant
variety of (Y ,L) has dimension ne − 1. Then the z-secant variety of the pair (X ,L[1]) has
dimension z(n + 1) − 1.

Proof It is sufficient to do the cases with z ≥ e. Take a general (A, B) ⊂ H × H such that
#A = z − e and #B = e. By assumption #A + #B ≤ α. Since the e-secant variety of (Y ,L)

has dimension ne−1 and e is a non-negative integer, h1(H , I(2A,H)∪B,H ⊗L[1]|H ) = 0. By
the Differential Horace Lemma (Remark 1) to prove the proposition it is sufficient to prove
that h1(I(2B,H) ⊗L) = 0. Since (2B, H) ⊂ H and h1(L[−1]) = 0 by the Künneth formula,
we have h1(I(2B,H) ⊗ L) = h1(H , I(2B,H),H ⊗ L|H ) = 0 (because the e-secant variety of
(Y ,L) has dimension ne − 1). ��
Proposition 2 Assume α ≡ 0 (mod n + 1) and that the α/(n + 1)-secant variety of (Y ,L)

has the expected dimension. Then (X ,L[1]) is not defective
Proof Set z := 2α/(n+1).We have h0(L[1]) = 2α. Sinceα ≡ 0 (mod n+1), it is sufficient
to prove that hi (I2S ⊗ L[1]) = 0, i = 0, 1, where S is a general subset of X . Take a general
S′ ∪ S′′ ⊂ H such that #S′ = #S′′ = z/2 and S′ ∩ S′′ = ∅. Since dim σz/2(Y ) = nz/2 and
α = (n + 1)z/2 = nz/2 + z/2, we have hi (H , I(2S′,H)∪S′′ ⊗ L[1]|H ) = 0, i = 0, 1 and
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hi (IS′∪(2S′′,H) ⊗L[0]) = hi (H , IS′∪(2S′′,H)L[0]|H ) = 0, i = 0, 1. We specialize z/2 of the
points of S to S′, while use Differential Horace at each point of S′′. ��

In the statement of Proposition 2 we often have α/(n + 1) < e.

Discussion of the Main Idea Suppose you want to prove the first step in the proof that the z-
secant variety of (X ,L[t])has the expected dimension and that (n+1)z ≤ (t+1)α. Let S ⊂ X
be a general union of z double points of X .We need to prove that h1(IZ ⊗L[t]) = 0.Wewant
to find a zero-dimensional schemeW such that deg(W ) = deg(Z)−α, h1(IW ⊗L[t−1]) = 0
and such that h1(IW ⊗ L[t − 1]) = 0 implies h1(I2S ⊗ L[t]) = 0. Take (x, y) ∈ N

2

and assume z ≥ x + y. Let Z ′ ⊂ X be a general union of z − x − y double points of
X . One can try to specialize 2S to the union of Z ′, x general double points of X with
reduction contained in H and apply y times Differential Horace with respect to y general
points of H . On H we get a scheme � which is a general union of x double points of
H and y points of H . To get hi (H , I� ⊗ L[t]|H ) = 0, i = 0, 1, we need to assume
nx + y = α. Since y ≥ 0, we have x ≤ e and hence the assumption nx + y = α gives
hi (H , I� ⊗ L[t]|H ) = 0, i = 0, 1. By the Differential Horace Lemma it is sufficient to
prove that h1(IZ ′∪S′∪(2S′′,H) ⊗ L[t − 1]) = 0. Since S′ ∪ (2S′′, H) has degree x + ny,
we certainly need x + ny ≤ α, i.e. y ≤ x . But we also have to handle Z ′. We first check
that, for the integers x and y we carefully took we have h1(IZ ′∪(2S′′,H ⊗ L[t − 1]) = 0.
This is often possible even if we do not know that (X ,L[t − 1]) is not defective, because
h0(L[t]) − h0(L[(t − 1)]) = α, deg(Z ′ ∪ (2S′′, H)) = deg(Z) − α − x and x is “large”.
Then we use that S′ is general in H to reduce the proof that h1(IZ ′∪S′∪(2S′′,H ⊗L[t−1]) = 0
to h0(IZ ′ ⊗ L[t − 2]) ≤ max{0, tα − deg(Z ′ ∪ S′ ∪ (2S′′, H)} (Lemma 1 and Remark 2).
Note that h0(L[t − 2]) = (t − 1)α, while we require h0(IZ ′ ⊗ L[t − 2]) ≤ max{0, tα −
deg(Z ′ ∪ S′ ∪ (2S′′, H)}. Lemma 1 explains the use of L[t − 2]. For t = 2 we use that either
h0(IZ ′ ⊗ L[0]) = α − n(z − x − y) (case z − x − y ≤ e) or h0(IZ ′ ⊗ L[0]) ≤ n − 2
(case z − x − y > e). For t > 2 the proof is easier, because we may use that L[t − 1] is
not defective and, if t ≥ 4, even that L[t − 2] is not defective. For t > 2 we always take
x := e and y := f , which is the usual choice to apply the Differential Horace Lemma. We
use different (x, y) for t = 2, because we cannot assume that L[1] is not defective.

For all positive integers t and z call A(t, z) the following statement:
A(t, z): We have h0(I2S ⊗ L[t]) = max{α(t + 1) − (n + 1)z, 0} for a general S ⊂ X

such that #S = z.
By the Terracini Lemma A(t, z) is true if and only if the z-secant variety of the pair

(X ,L[t]) has the expected dimension. Since h1(L[t]) = 0, A(t, z) is equivalent to h1(I2S ⊗
L[t]) = max{0, (n + 1)z − α(t + 1)} for a general S ⊂ X such that #S = z.

We say that A(t) is true if A(t, z) are true for all z ∈ {	(t+1)α/(n+1)
, �(t+1)α/(n+1)�}.
Remark 3 shows that A(t) is true if and only if A(t, z) is true for all positive integers z.

Write α = ne+ f with e, f integers and 0 ≤ f < n, i.e. set e := 	α/n
 and f := α−ne.
The following example is well-known [17, p. 1457].

Example 1 Fix a positive integer a, t = 2 and (Y ,L) = (P1,OP1(2a)). We have n = 2,
α = 2a + 1, (X ,L[2]) is secant defective with only defective the (2a + 1)-secant variety.
Indeed, a general S ⊂ P

1 × P
1 with #S = 2a + 1 is contained in the singular locus of a

unique D ∈ |OP1×P1(2a, 2)|, the double curve 2T with T the unique element of |IS(a, 1)|.
Remark 4 It is very important for our proof that f ≤ e. Since f ≤ n − 1, it is sufficient to
assume e ≥ n − 1. If dim σe(Y ) = ne − 1, it is sufficient to assume α ≥ n(n − 1), which is
quite mild.
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For all positive integers t and z we call B(t, z) the following statement:
B(t, z): Either z < e + f or

h0(IE ⊗ L[t − 1]) = max{0, tα − (n + 1)(z − e − f ) − ne − f },
where E ⊂ X is a general union of z − e − f double points of X , f double points of H and
e points of H .

Note that B(t, z) is always true if z < e + f . In the proof of Theorem 2 we will separate
the 2 cases, z < e + f and z ≥ e + f .

For all t ≥ 2 we call C(t, z) the following statement:
C(t, z): We have h0(IW ⊗ L[t − 2]) ≤ max{0, (t − 1)α − deg(W )}, where W is a

general union of max{0, z − e − f } double points of X .
Note that C(2, z) is true if and only if z ≤ e + f .
We say that B(t) (resp. C(t)) is true if B(t, z) (resp. C(t, z)) is true for all z. As in [8] the

assertions B(t, z) and C(t, z) are motivated by Lemma 1 and Remark 2.
Using the Differential Horace Lemma it is quite easy to get A(t) if we know B(t). A key

step is to get B(t) knowing that C(t) is true. Indeed, for z ≤ �h0(L[t])/(n + 1)� the integer
z− e− f usually is much smaller than 	h0(L[t −2])/(n+1)
 and hence it should be “easy”
to prove that h1(IW ⊗L[t − 2]) = 0. But of course, t − 2 < t and so to use this strategy we
need to prove that 	h0(L[t − 2])/(n + 1)
 − (z − e − f ) is very large (depending on t). For
t = 2 we also need another trick. Then we prove C(3). Then Lemmas 2, 3, and 4 give the
case t ≥ 4 by induction on t .

Lemma 2 Assume that the e-secant variety of (Y ,L) has dimension ne − 1. If t ≥ 2 and
B(t, z) is true, then A(t, z) is true.

Proof Let Z ⊂ X be a general union of z double points.
First assume z ≥ e + f . Let Z ′ ⊂ X be a general union of z − e − f double points.

Fix a general S ⊂ H such that #S = e + f and write S = S′ ∪ S′′ with #S′ = e and
#S′′ = 2. Set A := (2S′, H) ∪ S′′ and B := S′ ∪ (2S′′, H). Note that deg(A) = α.
Since dim σe(Y ) = en − 1, h1(H , I(2S′,H) ⊗ L[t]|H ) = 0. Since S′′ is general in H ∼= Y
and deg(A) = α, hi (H , IA,H ⊗ L[t]|H ) = 0, i = 0, 1. The Differential Horace Lemma
(Remark 1) gives hi (IZ ⊗ L[t]) = hi (IZ ′∪S′∪(2S′′,H) ⊗ L[t − 1]) for i = 0, 1. Thus B(t, z)
implies A(t, z) if z ≥ e + f .

Now assume z ≤ e + f − 1. The proof of the case z ≥ e + f works taking Z ′ = ∅,
#S′ = min{e, z} and #S′′ = z − #S′. ��
Lemma 3 Assumeα > n2, t ≥ 3 and that the e-secant variety of (Y ,L) has dimension ne−1.
Take z ≤ �(t + 1)α/(n + 1)�. If C(t, z) is true and either z ≤ e + f or A(t − 2, z − e − f )
is true, then B(t, z) and A(t, z) are true.

Proof By Remark 3 it is sufficient to check all positive integers z such that (n + 1)z ≤
(t + 1)α + n. By Lemma 2 it is sufficient to prove B(t, z). By the definition of B(t, z)
we may assume z ≥ e + f . Let W ⊂ X be a general union of z − e − f double points.
Take a general S ⊂ H such that #S = e + f and write S = S′ ∪ S′′ with #S′ = e and
#S′′ = f . By assumption h0(IW ⊗ L[t − 2]) ≤ max{0, (t − 1)α − deg(W )}, i.e. either
h0(IW ⊗ L[t − 2]) = 0 or h1(IW ⊗ L[t − 2]) = 0. Assume that B(t, z) fails. Hence
h1(IW∪(2S′′,H)∪S′ ⊗ L[t − 1]) > 0.

(a) Assume h1(IW ⊗L[t − 2])) = 0. Since f ≤ e, Remark 3 gives dim σ f (Y ) = n f − 1.
Thus h1(H , I(2S′′,H),H ⊗ L[t − 1]|H ) = 0. Thus the residual exact sequence of H gives
h1(IW∪(2S′′,H) ⊗L[t − 1]) = 0. Let a be the maximal integer such that h1(IW∪(2S′′,H)∪A ⊗
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L[t − 1]) = 0, where A is a general subset of H with cardinality a. By assumption a < e.
Take a general p ∈ H . The definition of a gives h1(IW∪(2S′′,H)∪A∪{p} ⊗L[t−1]) > 0. Since
h1(IW∪(2S′′,H)∪A⊗L[t−1]) = 0, we see that H is in the base locus of |IW∪(2S′′,H)∪A⊗L[t−
1]|, i.e. (sinceResH (W∪(2S′′, H)∪A) = W and h1(IW⊗L[t−2]) = 0), h0(IW∪(2S′′,H)∪A⊗
L[t − 1]) = (t − 1)α − deg(W ). We get a + n f = α, which is false because a < e, e ≥ f
(Remark 4) and α = ne + f .

(b) Assume h0(IW ⊗L[t−2]) = 0.We get (n+1)(z−e− f ) ≥ (t−1)α. By assumption
(n + 1)z ≤ (t + 1)α + n. Hence 2α ≤ (n + 1)e+ (n + 1) f + n. We have ne+ f = α. Thus
α ≤ n f + n ≤ n2, a contradiction. ��
Lemma 4 Fix an integer t ≥ 3 and assume A(t − 2). Then C(t) is true.

Proof Fix a positive integer z for which we want to prove C(t, z). If z < e+ f , then C(t, z)
is true. Now assume z ≥ e+ f and letW ⊂ X be a general union of z− e− f double points
of X . If deg(W ) ≥ h0(L[t − 2]), we get h0(IW ⊗ L[t − 2]) = 0 by A(t − 2). If deg(W ) <

h0(L[t − 2]), then h1(IW ⊗ L[t − 2]) = 0, i.e. h0(IW ⊗ L[t − 2]) = (t − 1)α − deg(W ).
Thus C(t, z) is true. ��
Proof of Theorem 2 By Remark 3 it is sufficient to test all positive integers z such that (n +
1)z ≤ (t + 1)α + n.

Outline of the Proof We start with the proof of some numerical inequalities. Recall that
B(t, z) implies A(t, z) for t ≥ 3 (Lemma 3). We first prove the theorem for t = 2 without
using Lemma 3 (step (a)). Then we take t = 3 and prove C(3) and B(3) (step (b)). Then for
t ≥ 4 we prove the theorem by induction on t using that A(t − 2) is proved.

Let S ⊂ H (resp. S′ ⊂ H , resp. S′′) be a general subset of H with cardinality e (resp. f ,
resp. e− f ). Let Z ⊂ X be a general union of z double points of X . By the Terracini Lemma
it is sufficient to prove that either h0(IZ ⊗L[t]) = 0 or h1(IZ ⊗L[t]) = 0. Since f ≤ n−1,
f + ne = α and α ≥ n2 − 1, we have f ≤ e. Thus the f -secant variety of the pair (Y ,L)

has dimension f n − 1 (Remark 3). Note that hi (Y , I(2A,Y )∪B ⊗ L) = 0, i = 0, 1, where A
is a general subset of Y with cardinality e and B is a general subset of Y with cardinality f .
Set � := (t + 1)α + n − z(n + 1) and w := z − (t − 1)e − f .

Claim 1 We have

� + z ≥ t f + e + n (2)

Proof of Claim 1 We have � + (n + 1)z = (t + 1)α + n. Thus (n + 1)� + (n + 1)z =
n� + (t + 1)α + n. Since α = ne + f , to prove Claim 1 it is sufficient to prove that
(t + 1)ne + (t + 1) f − n ≥ (n + 1)t f + (n + 1)e + n(n + 1), i.e. ϕn(t) ≥ 0, where
ϕn(t) := (t + 1)ne + (t + 1) f − (n + 1)t f − (n + 1)e − n(n + 2). We have ϕn(2) =
(2n − 1)ne + (1 − 2n) f − n(n + 2). Since f ≤ e, ϕn(2) ≥ (2n − 1)(n − 1)e − n(n + 2).
Since α ≥ n2, e ≥ n. Since n ≥ 3, ϕn(2) ≥ 0. The derivative ϕ′

n(t) of ϕn(t) is ne− (n+1) f .
Since f ≤ n − 1, ϕ′

n(t) ≥ 0 if e ≥ n, i.e. if α ≥ n2. ��
Claim 2 We have n f + n(w − e) + e ≤ α.

Proof of Claim 2 By Remark 4 we may assume w ≥ e, i.e. z ≥ te + f . Since w = z − (t −
1)e− f , w − e = z − te− f . Thus n f + n(w − e) + e = (n + 1)z − z − tα + t f + 1. Since
(n + 1)z = (t + 1)α + n − �, we have n f + n(w − e) + e ≤ α by (2). ��
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(a) Assume t = 2. We assume z ≥ e + f , since the case z < e + f only requires a
small modification and it is never a critical case z ∈ {	3α/(n + 1)
, �3α/(n + 1)�}. Set
w := z − e − f . We write E ∪ Z ′ with E ∩ Z ′ = ∅, E union of w − e − f general
double points and Z ′ a general union of e + f double points. We use Differential Horace
Lemma (Remark 1) e + f times to the connected of Z ′ with respect to the general subset S′
of H . To prove that h0(IZ ⊗ L[2]) = max{0, 3α − (n + 1)z} it is sufficient to prove that
h0(IE∪S∪(2S′,H) ⊗ L[1]) = max{0, 2α − (n + 1)(z − e − f ) − n f − e)}. Since e ≥ n ≥
(n+1)z−3α and S is general in H , it is sufficient to prove that h1(IE∪(2S′,H)⊗L[1]) = 0 and
that h0(IE ⊗L[0]) ≤ max{0, h0(IE∪(2S′,H)⊗L[1])−e}. The last inequality is critical for the
proof (see Claim 4) and it fails in Example 1 with n = 2, z = 2a+ 1, e = a, f = 0, because
h0(IE ⊗L[0]) = 1 and (assuming h1(IE∪(2S′,H) ⊗L[1]) = 0) h0(IE∪(2S′,H) ⊗L[1])− e =
4a + 2 − 3a − 2 − a = 0.

Claim 3 Either h1(IE∪(2S′,H) ⊗ L[1]) = 0 or h0(IE∪(2S′,H) ⊗ L[1]) = 0.

Proof of Claim 3 Take a general S3 ⊂ H such that #S3 = w − e and a general S4 ⊂ H \ S
such that #S4 = e. By the Differential Horace Lemma to prove Claim 3 it is sufficient to
prove that h1(I2S4,H ⊗ L[0]) = 0 and either h1(H , I(2S′,H)∪(2S3,H)∪S4 ⊗ L[1]|H ) = 0 or
h0(H , I(2S′,H)∪(2S3,H)∪S4 ⊗ L[1]|H ) = 0. We have h1(I2S4,H ⊗ L[0]) = h1(H , I(2S4,H) ⊗
L) = 0 (Remark 4). We have h1(H , I(2S′,H)∪(2S3,H) ⊗ L[1]|H ) = 0, because #S′ + #S3 =
w − e + f ≤ e by Claim 2. Since S4 is general in H , either h1(H , I(2S′,H)∪(2S3,H)∪S4 ⊗
L[1]|H ) = 0 or h0(H , I(2S′,H)∪(2S3,H)∪S4 ⊗ L[1]|H ) = 0. ��

If h0(IE∪(2S′,H) ⊗ L[1]) = 0, then h0(IZ ⊗ L[2]) = 0, proving the theorem in this
case. Thus we may assume h1(IE∪(2S′,H) ⊗ L[1]) = 0, i.e. h0(IE∪(2S′,H) ⊗ L[1]) = 2α −
deg(E) − n f .

Claim 4 h0(IE ⊗ L[0]) ≤ max{0, h0(IE∪(2S′,H) ⊗ L[1]) − e}.
Proof of Claim 4 We saw that we may assume h0(IE∪(2S′,H) ⊗ L[1]) = 2α − deg(E) − n f .
Since E is a general union of some, γ , double points of X , h0(IE ⊗L[0]) = h0(Y , IU ⊗L),
where U is a general union of γ double points of Y . First assume γ ≤ e. The assumption
on (Y ,L) gives h0(Y , IU ⊗ L) = α − nγ (Remark 3). We have deg(E) = (n + 1)γ . Thus
in this case it is sufficient to check that α ≥ γ + n f . Since γ ≤ e, it is sufficient to use that
ne + f ≥ e + n f (Remark 4). Now assume γ > e. A general union � of e double points
of Y and f points of Y satisfies hi (Y , I� ⊗ L) = 0, i = 0, 1. Thus h0(Y , IU ⊗ L) = 0 if
γ ≥ e+ f , while if e < γ < γ + f , then h0(Y , IU ⊗L) ≤ f − (γ − e). If e < γ < γ + f
we have h0(IE∪(2S′,H) ⊗L[1]) = 2α−(n+1)γ −n f = α−γ −(n−1) f ≥ α−e−n f −1.
It is sufficient to have α ≥ e + (n + 1) f − 2. Since α = ne + f , it is sufficient to have
(n − 1)e + 2 ≥ n f , i.e. n(n − 1)e + 2n ≥ n2 f . Since f ≤ (n − 1), it is sufficient to have
ne + 2n/(n − 1) ≥ n2, which is true for α > n2. ��

Claims 3 and 4 prove the case t = 2.
(b) In this step we prove C(3, z). We may assume z ≥ e + f . Let W ⊂ X be a general

union ofw′ := z−e− f double points.We need to prove that h0(IW ⊗L[1]) ≤ max{0, 3α−
deg(W )}. Ifw′ ≥ 2e+ f , using twice theDifferentialHoraceLemmawith respect to H weget
h0(IW ⊗L[1])) = 0. Ifw′ ≤ e using once the usual Horace Lemmawe get h1(IW ⊗L[1]) =
0. If e ≤ w′ ≤ 2e, using twice the usual Horace Lemma we get h1(IW ⊗ L[1]) ≤ 2e − w′,
which is enough to get C(3, z). If w′ > 2e we get C(3, z) in the following way. We first
degenerateW toW ′ ∪W ′′ withW ′ ∩W ′′ = ∅,W ′ a general union of e double points of X and
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W ′′ a general union of w′ − 2e double points of X with S5 := W ′′
red ⊂ H . Since the e-secant

variety of (Y ,L) has the expected dimension, h0(H , IW ′′∩H ,H ⊗ L[1]|H ) ≤ max{0, f +
2e − w′}. Thus the residual exact sequence of H gives h0(IW ⊗ L[1]) ≤ max{0, f + 2e −
w′} + h0(IW ′∪S5 ⊗ L[0]). We have h0(IW ′∪S5 ⊗ L[0]) = h0(H , IW ′∩H∪S5 ⊗ L[0]|H ) = 0,
because e ≥ f .

(c) Step (b) and Lemma 3 proves A(3). Thus, we may assume t ≥ 4 and that A(x) is true
for 2 ≤ x < t . By Lemma 3 it is sufficient to prove C(t). Since A(t − 2) is true, Lemma 4
gives C(t). ��

Sometimes we get (X ,L[t]) not secant defective even if dim σe(Y ) ≤ ne−2, but we need
to add other conditions. We give the following example in which we only assume that the
(e − 1)-secant variety of the pair (Y ,L) has dimension n(e − 1) − 1.

Theorem 3 Fix integer t ≥ 2 and z > 0. Assume n ≥ 3, α ≥ 2n2+4n, t ≥ 2, dim σe−1(Y ) =
n(e − 1) − 1. Then the z-secant variety of (X ,L[t]) has the expected dimension.
Proof The proof is very similar to the one of Theorem 2, just using the integers g := e − 1
and h := f + n instead of e and f . The stronger assumption on α comes from the inequality
h ≤ 2n − 1 instead of the inequality f ≤ n − 1. ��
Proof of Theorem 1 We have n := dim X = n1 + n2 + k.

First assume k = 3. We apply Theorem 2 to Y := P
n1 × P

n2 with α = (n1+d1
n1

)(n2+d2
n3

)
.

Since α is an increasing function of d1 and d2, it is sufficient to check that α > n2 if
d1 = d2 = 3. In this case α − n2 − 1 = (n1+3

3

)(n2+3
3

) − (n1 + n2 + 1) − 1. Taking the
derivatives with respect to n1 and n2 we see that it is sufficient to check the case n1 = n2 = 1.
In this case n = 3 and α = 16.

Now assume k > 3 and that Y := P
n1 × P

n2 × (P1)k−1 is not secant defective. We apply
Theorem 2 to Y with α = (n1+d1

n1

)(n2+d2
n3

)
(d3 + 1) · · · (dk−1 + 1) ≥ 3k−1

(n1+d1
n1

)(n2+d2
n3

)
. We

immediately get α > n2. ��
Remark 5 Fix a non-degenerate embedding Y ⊂ P

r for which we know that many secant
varieties have the expect dimension. SetL := OY (1) and X := Y ×P

1. Let V ⊂ H0(OY (1))
denote the image of the restrictionmap H0(OPr (1)) → H0(L). For any integer t > 0 let V [t]
denote the linear subspaceπ∗

1 (V )⊗π∗
2 (OP1(t))ofL[t].Wehavedim V [t] = (r+1)(t+1) and

we may use the proofs of this paper with r + 1 instead of α. Hence, under the assumptions
of one of the results we get the non-defectivity of the secant varieties with respect to the
embedding induced by a general linear subspace of dimension (r + 1)(t + 1) of H0(L[t]).
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