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Abstract
In this short survey paper, we focus on some new developments in the study of the regularity
or potential singularity formation for solutions of the 3D Navier–Stokes equations. Some of
the motivating questions are the following. Are certain norms accumulating/concentrating
on small scales near potential blow-up times? At what speed do certain scale-invariant norms
blow-up? Can one prove explicit quantitative regularity estimates? Can one break the criti-
cality barrier, even slightly? We emphasize that these questions are closely linked together.
Many recent advances for the Navier–Stokes equations are directly inspired by results and
methods from the field of nonlinear dispersive equations.

Keywords Navier–Stokes equations · Norm concentration · Quantitative estimates ·
Regularity criteria · Supercritical norms · Slight criticality breaking · Kolmogorov scales
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1 Introduction

This short survey paper is concerned with recent developments in the study of the regularity
or potential singularity formation for solutions of the 3D Navier–Stokes equations

∂tU − �U + U · ∇U + ∇ P = 0, ∇ · U = 0.

Wemostly focus on the whole-space caseR3 or localize away from physical boundaries. We
will mainly concentrate on two topics, concentration of solutions on small scales on the one
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hand and quantitative regularity on the other hand, and show how these subjects are related.
The study of these questions is recent for the Navier–Stokes equations. Indeed all the main
results in this paper were published in the last five years.

In 2003 Escauriaza, Seregin and Šverák [29] were able to prove the blow-up of the critical
borderline norm L3 for singular solutions of 3D Navier–Stokes, provided such solutions
exist. This paper was followed by a tremendous amount of works proving analogous results
for many kind of evolution equations with a scaling symmetry1 [15, 28, 41, 42, 44, 58, 61,
62]... These results are all qualitative, with the exception of the work by Merle and Raphaël
[58] for nonlinear Schrödinger, which gives a quantitative blow-up rate for a critical norm of
radially symmetric solutions.

A breakthrough for the Navier–Stokes equations was achieved by Tao in 2019 [84]. He
was able to explicitly quantify the rate of blow-up of the critical L3 norm near a potential
first-time singularity

lim sup
t→T ∗

‖U (·, t)‖L3(R3)(
log log log(T ∗ − t)

)c = ∞, (1.1)

for a universal constant c ∈ (0,∞). Previously, only abstract quantitative results were known,
which were based on abstract quantification of the seminal (qualitative) result of Escauriaza,
Seregin and Šverák [29] and the use of persistence of singularities, see for instance [72].

Some techniques described in this paper are directly inspired by methods introduced for
nonlinear dispersive equations. In this vein, let us mention the ‘stacking of scales scheme’
used to prove quantitative regularity estimates in Section 6 and Section 7 inspired by [58],
and the ‘mild criticality breaking’ result in Section 9 inspired by [13].

Explicit quantitative estimates: for what purpose? Blow-up rates and quantitative regu-
larity estimates are two sides of the same coin. Let us outline five motivations for the study
of quantitative regularity and blow-up rates:

(1) In the field of PDEs, there seems to be very few quantitative rates for critical norms near
the maximal time of existence.

(2) Quantitative regularity estimates with explicit bounds under a priori boundedness of
critical norms enable to break (to some limited extent) the criticality barrier. For instance
in Section 9, we use the result of Tao [84] to derive a new regularity criteria in terms of
a slightly supercritical Orlicz norm.

(3) Blow-up rates for critical norms such as (1.1) may enable to rule out certain blow-
up scenarios for which the numerically computed growth of the L3 norm is too slow.
However, the extremely slow triple logarithmic rate in (1.1) means testing it may be
beyond computing capacities, as is emphasized in Hou’s recent paper [34].

(4) As is well understood for dispersive equations, finding blow-up rates and concentration
estimates is a first step toward understanding potential blow-up profiles.

(5) In turbulence theory, cascade processes are the dominant feature of the inertial range,
where nonlinear inertial effects dominate (or are in balance with) viscous dissipative
effects. Beyond certain scales though, so-called ‘Kolmogorov scales’, for very high
wavenumbers or small spatial scales, dissipative effects dominate. Estimating those dis-
sipative scales quantitatively is one of the main objectives of the quantitative regularity
theory, see Section 5.3 and Objective C.

Outline of the paper This survey paper is partly based on several talks given in the past three
years. Further comments and topics are found in the habilitation thesis [71]. Thefirst three sec-

1 Divergence of critical norms near maximal time of existence for PDEs with a scaling symmetry does not
follow from local well-posedness theory, see [58].
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From Concentration to Quantitative Regularity... 709

tions are devoted to ‘weak concentration’ (Section 2), ‘strong concentration’ (Section 4) and a
fundamental tool for the quantitative regularity, namely local-in-space smoothing (Section 3).
The rest of the paper is concerned with quantitative regularity and blow-up rates for critical
norms. Section 5 describes three facets of quantitative regularity: blow-up rates, quantitative
regularity estimates and quantitative estimates for dissipative scales. Moreover, two cases
are studied, the case of L5

t,x which is a toy model, and the case of L∞
t L3

x studied by Tao.
Section 6 focuses on the strategy to estimate the dissipative scales in a quantitative manner.
Section 7 concentrates on the Type I case. Section 8 reviews some recent developments in
the wake of [84]. Section 9 shows that the scaling barrier can be slightly broken thanks to
good quantitative estimates in the critical case. This section is based on the paper [8]. There
a (partial) answer to a question asked in [84] about the blow-up of certain Orlicz norms is
given. Finally in Section 10, we summarize some results in two tables.

Notice that C and c are universal positive constants that may change from line to line.

2 Weak Concentration

In this paper we distinguish between:

‘weak concentration’ of norms near a potential blow-up time T ∗; these results assert
the existence of points x(t) (or a sequence of points xn) and scales λ(t) (or a sequence
of scales λn) such that certain norms accumulate on Bx(t)(λ(t)) as t → T ∗;
‘strong concentration’ of norms near a potential space-time blow-up point (x∗, T ∗);2
these results assert the existence of scales λ(t) (or a sequence of scales λn) such that
certain norms accumulate on shrinking balls Bx∗(λ(t)) as t → T ∗.

A short review of concentration for certain nonlinear PDEs The first results on concentra-
tion near potential singularities date back to more than 30 years ago. They mainly fall into
the class of ‘weak concentration’. The study of ‘mass concentration’ i.e. concentration of the
L2 norm for the nonlinear Schrödinger equations has triggered a lot of developments in this
direction, in the wake of the seminal results by Weinstein [86], Merle and Tsutsumi [59],
Nawa [64, Theorem B and Theorem C] and [65, Theorem B], Merle [56, 57]. These results
were followed by many others: Bourgain [11], Nawa and Tsutsumi [66], Hmidi and Keraani
[32, Corollary 1.8] for nonlinear Schrödinger, Kenig, Ponce and Vega [43, Corollary 1.4] for
the KdV equation, Merle and Zaag [60, Theorem 1, (ii)] for the semilinear wave equation...
We also refer to the books by Cazenave [17, Section 6.5], Tao [82] and Sulem and Sulem
[80, Section 5.2.4 and Section 14.3.2].

There are also a number of results that fall into the category of ‘strong concentration’
results, especially for the nonlinear Schrödinger equation, for radially symmetric solutions:
Merle and Tsutsumi [59], Tsutsumi [85, Theorem 1.1], Holmer and Roudenko [33, Theo-
rem 1.2]...

The topic of concentration is also strongly tied to proving the blow-up of certain critical
norms. The recent paper of Mizoguchi and Souplet on the semilinear heat equation states a
strong concentration property for a Type I singularity [62, Lemma 3.1] that is key to proving
the blow-up of a critical norm in that case; see also Miura and Takahashi [61] without the
Type I assumption.

2 A ‘blow-up/singular point’ (x∗, T ∗) is a point for which the solution is unbounded in any parabolic cylinder
Q(x∗,T ∗)(r) = Bx∗ (r) × (T ∗ − r2, T ∗) centered at that point. Conversely, a ‘regular point’ is a point which
is not a singular point. It is known that determining whether or not the singular points occur for Leray–Hopf
solutions is equivalent to the Millenium Problem.
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710 T. Barker and C. Prange

As for fluids, we mention two results dealing with the possible energy concentration
in solutions of Euler and Navier–Stokes equations. These results are a bit orthogonal to the
concentration results onwhich we focus in this paper, but are also interesting directions. Chae
and Wolf [19] proved that for 3D Euler under a Type I condition there is no concentration
of the energy into isolated points at possible blow-up times. For 3D Navier–Stokes, Arnold
and Craig [3, Theorem 4.5] gave a lower bound on the energy concentrating set.

Weak concentration for the Navier –Stokes equations Li, Ozawa and Wang [51, Theo-
rem 1.2] prove what we believe is the first concentration result for potential blow-up solutions
of the 3D Navier–Stokes equations. It is proved that for any Leray–Hopf solution U that first
blows-up at time T ∗ ∈ (0,∞), one has for any q ∈ [1,∞], the following concentration of
the Lq norm:

‖U (·, t)‖Lq (|·−xn |�ω(tn)−1) � ω(tn)
1− 3

q , (2.1)

where tn → T ∗, xn ∈ R
3 and ω(tn) := ‖U (·, tn)‖L∞(R3)

t→T ∗−→ ∞. The proof is based on:
(i) selecting a sequence of times tn on which one has large growth of the L∞ norm of the
solution, (ii) showing that the low frequencies� ω(tn) contribute to a large part of the growth
of the L∞ norm of U .

Let us make two comments on this result. First, it is a concentration result that holds for
any Leray–Hopf solution that blows-up. The price to pay for this generality is the fact that
the concentration is weak, i.e. not localized in space. Second, the concentration (2.1) holds
for any norm in the Lebesgue scale, no matter whether the norm is subcritical (q ∈ (3,∞]),
critical (q = 3) or supercritical (q ∈ [1, 3)). Notice that in this last case, the lower bound in
(2.1) goes to zero as t → T ∗. In the case of q ∈ (3,∞], one can bound the right hand side of
(2.1) from below by (T ∗ − tn)

− 1
2 (1− 3

q ) thanks to Leray’s [50] lower bound, see (5.1) below,
and get the concentration on a ball of size

√
T ∗ − tn .

Existence results of mild solutions with Lq
uloc initial data also enable to prove weak con-

centration for potential blow-up solutions to the Navier–Stokes equations. This was remarked
in [54, Corollary 1.1], where the existence of mild solutions in Lq

uloc is combined with a sim-
ple scaling argument to yield that for every t ∈ (0, T ∗), there exists x(t) ∈ R

3, such that for
any q ∈ [3,∞],3

‖U (·, t)‖Lq (|·−x(t)|≤√
T ∗−t) � (T ∗ − t)−

1
2 (1− 3

q )
. (2.2)

This strategy is robust enough to apply to the half-space R3+ as in [54].
In [39, Theorem 1.6 (i)], Kang, Miura and Tsai prove a statement that can be read as weak

concentration result for the supercritical L2 norm near potential singularities of the Navier–
Stokes equations: there exists γuniv ∈ (0,∞), S ∈ (0,∞) and a function x = x(t) ∈ R

3

such that for all t ∈ (0, T ∗),
1√

T ∗ − t

∫

Bx(t)

(√
T ∗−t

S

) |U (x, t)|2 dx > γuniv.

This result is in the vein of the one of Bradshaw and Tsai [12, Theorem 8.2], see also Grujić
and Xu [31, Theorem 4.1].

3 Let us stress that although the paper [54] is actually concerned with the existence of mild solutions for
data in Lq

uloc in the half-space, we state (2.2) for the whole-space. This concentration result is implied by the
existence result of mild solutions in the whole-space from [55] and the argument of [54, Corollary 1.1].
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From Concentration to Quantitative Regularity... 711

The bottom line is that ‘weak concentration’ results are in general a consequence of global
regularity results or local well-posedness results and hence use a limited amount of specific
structure of the equations. In order to have ‘strong concentration’ results, one needs more
localized regularity results at the price of additional a priori assumptions such as a Type I
bound on U . This is the topic of the next section.

3 Local-in-Space Smoothing

The idea behind local-in-space smoothing is very natural. Assume that one is given a rough
initial data, for instance finite-energy or L2

uloc i.e. of uniformly locally finite energy, that
happens to be more integrable, i.e. critical or subcritical, on some fixed ball, say B0(1) to fix
the ideas. For Navier–Stokes the general question becomes:

Is the local smoothing due to the heat part of the equation strong enough to compensate
for the nonlocal effects of the pressure that tend to propagate irregularities of the
solutions from large-scale spatial scales to B0(1)?

The answer is yes in many situations, when the local ‘regular’ data is taken in critical or
subcritical Lebesgue, Lorentz or Besov spaces. More surprisingly, such results remain even
true for theNavier–Stokes equations in the half-spacewith no-slip boundary condition, where
nonlocal effects are known to be strong, see for instance [36, 37, 76]. When the answer is
yes, we call such results ‘local-in-space short-time smoothing’. The solution U then satisfies
bounds of the type

sup
t∈(0,S(M))

t
1
2 ‖U (·, t)‖L∞(B0(

1
2 ))) � 1 (3.1)

under the condition that ‖U0‖L3(B0(1)) � 1 and for a short time S = S(M) 
 1, where
M quantifies the large-scale or global ‘background’ assumption on the solution. Typically
M is taken to be the L2

uloc norm of the initial data, which controls the local energy of the
associated solution on a certain time interval. This line of research was pioneered by Jia and
Šverák in the seminal paper [35]. We find three main classes of methods of proofs that we
sketch below. For more details and in particular statements of theorems, we refer to [35,
Theorem 3.1, Sections 2 and 3], [6, Theorem 1, Sections 2 and 4], [71, Chapter 5], [39,
Theorem 1.1 and Section 3] and [46, Theorem 1.6 and Section 5].

Let us stress that local-in-space smoothing is a versatile tool that proved to be efficient in
many situations, such as the existence proof of self-similar solutions [35], strong concentra-
tion (see below Section 4) and quantitative regularity (see below Section 5 and Section 7).
For the last point in particular, it is important to have quantitative versions of local-in-space
smoothing, see for instance [9, Theorem 5.1].

Local-in-space smoothing also helps us gain understanding of a very natural question: for
which initial data does the associated solution exhibit improved regularity properties?

3.1 Lin Type Compactness Methods

We work with U a global-in-time local energy solution to the Navier–Stokes equations
on R

3 × (0,∞) with initial data U0 ∈ L2
uloc(R

3) with some mild decay at space infinity
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712 T. Barker and C. Prange

in order to rule out parasitic solutions and get a formula for the pressure.4 Assume that
U0|B0(1) ∈ Lq(R3), with q ∈ [3,∞].5

The compactness method proceeds in two steps. One first decomposes the solution U to
the Navier–Stokes equations into a mild solution a originating from the critical or subcritical
data U0|B0(1)

6 and a perturbation V solving a perturbed Navier–Stokes system, with critical
or subcritical drift terms and initial data locally zero in B0(1). The perturbation has small
energy locally in B0(

1
2 ) near the initial time and can be extended by zero backward in time.

Hence, the regularity of V falls into the realm of epsilon-regularity results, which is the
second step of this method.

The method for establishing the epsilon-regularity for the perturbed equation is inspired
from the compactness method [52] that Lin used to prove epsilon-regularity for the Navier–
Stokes equations. Since the equation for the perturbation V is a Navier–Stokes equation with
drift terms, one needs to discriminate between subcritical and critical drifts:

– For subcritical drifts (q ∈ (3,∞]), one has improved Hölder regularity for the limit
equation in the compactness argument, hence one can directly prove local space-time
Hölder regularity near the initial time of the perturbation V . This was done in [35].

– For critical drifts (q = 3), there is no improved Hölder regularity at the limit in general.
One therefore aims at first proving a subcritical Morrey bound for the perturbation that
just misses boundedness; see [38]. Then one can combine this subcritical information
for V with subcritical information for the mild solution a away from initial time to apply
standard epsilon-regularity results for the Navier–Stokes equations to give boundedness
of V up to the initial time; see for instance [38, Section 5.3]. It is also possible using
information from the initial data to bootstrap the regularity of the perturbation to be
Hölder continuous near the initial time; see for instance [6, Section 3].

In the half-space with no-slip boundary condition, we were able to use the compactness
method to prove local-in-space smoothing for subcritical and critical data in the Lebesgue
scale; see [2]. This work relies on the new estimates for the harmonic pressure obtained in
[53]. The compactness scheme is convenient, because in the critical case, the smallness of
the drift can be incorporated in the scheme, which avoids proving regularity for the limiting
Stokes equation with drift terms, as is done for the whole-space in [35, Lemma 2.2] in the
subcritical case or [38, Section 4] in the critical case.

The bottom line is that the compactness method is flexible to handle both the global and
the local settings and the regularity away or near boundaries.

3.2 Caffarelli–Kohn–Nirenberg TypeMethods

The general scheme of the method is exactly as the one previous of the previous method:
decompositionU = a +V and smallness of the local energy of the perturbation V (first step)
and epsilon regularity for the perturbed Navier–Stokes equation with drift terms (second
step). The difference is in the way the epsilon regularity is proved. In the paper [6, Section 2],
we prove an epsilon regularity result for the perturbed Navier–Stokes equations with critical
drift terms by using an iteration scheme à la Caffarelli, Kohn and Nirenberg [14]. The
criticality of the drift a associated to L3 data causes difficulties, as was the case for the

4 The framework here is that of global solutions. However, it is possible to localize the results and state them
for suitable solutions, see for instance [2, 38, 46].
5 If the data is locally in the critical space L3, one requires in addition smallness of the data.
6 One needs to properly extend this data as a compactly supported divergence-free function.
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From Concentration to Quantitative Regularity... 713

compactness method, and therefore only enables to propagate a subcritical Morrey bound
for the perturbation V .

The main advantage of this method lies in the fact that given the current state of the art,
it is the only method that manages to handle data locally small in the borderline endpoint

Besov space B
−1+ 3

q
q,∞ for q ∈ (3,∞); see [6, Appendix C]. The results can also be localized,

see [6, Theorem 3].

3.3 Scaled Local EnergyMethods

This approach was started by Kang, Miura and Tsai [39]. Roughly speaking, it relies on
working with the scale-invariant energy and pressure

Er (t) := 1

r

∫

B0(r)

|U (·, t)|2 + 1

r

∫ t

0

∫

B0(r)

|∇U |2 + 1

r2

∫ t

0

∫

B0(r)

|p| 32 ,

and propagating the smallness at the initial time, i.e. of supr∈(R,1) Er (0) where R is a given
non-negative scale, forward-in-time via local energy estimates and a nonlinear Gronwall-type
inequality for

ER,R̂(t) = sup
r∈[R,R̂]

sup
s∈(0,t)

Er (s),

for a well-chosen parameter R̂.
There are two main advantages of this method. The first advantage is a technical one. The

first step of the previous twomethods, which consists in splitting the solution intoU = a+V
where a is themild solution and V the perturbation is not needed here any longer. One directly
works with the solution. The second advantage is that it enables to directly prove local-in-
space smoothing for small scaled local kinetic energy [39, Theorem 1.1].

All the local-in-space smoothing results in the local setting mentioned so far are for

suitable solutions. Hence the pressure is a priori assumed to be in the Lebesgue space L
3
2 .

Building upon the method of Kang, Miura and Tsai [39], Kwon [46, Theorem 1.6] was able
to extend the local-in-space smoothing result for data locally in L3 to the class of dissipative
solutions, for which the pressure is merely a distribution. Moreover in [46, Theorem 1.6] the
time interval for which the local-in-space smoothing occurs is independent of the pressure.

4 Strong Concentration

Asmentioned above, see the preamble of Section 2, strong concentration is the accumulation
of norms near potential blow-up points, on balls centered at a singularity, whereas ‘weak
concentration’ shows accumulation near blow-up times and is not well localized in space.

Given the current state of the art, strong concentration can be proved in two cases:

– either under some symmetry assumption on the solution, such as radial symmetry for
solutions of the nonlinear Schrödinger equation, see for instance [33, 59, 85],

– or under a Type I assumption, see for instance [62, Lemma 3.1] for the semilinear heat
equation.

In principle, strong concentration results for the Navier–Stokes equations are simply
deduced from local-in-space smoothing results by a contradiction argument, under the
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714 T. Barker and C. Prange

condition that one has a good workable notion of Type I.7 We assume that the solution
satisfies the following generalized Type I bound: for fixed M, T ∗ ∈ (0,∞) and a fixed
radius r0 ∈ (0,∞],

sup
x̄∈R3

sup
r∈(0,r0)

sup
T ∗−r2<t<T ∗

r− 1
2

(∫

Bx̄ (r)

|U (x, t)|2dx

) 1
2 ≤ M . (4.1)

In order to make sense of the condition (4.1) in the case when r0 >
√

T ∗, we may extend U
by zero in negative times.8 That condition ensures that blow-up profiles belong to the class of
local energy solutions in which local-in-space smoothing results are proved, see Section 3.

In [6], strong concentration of the critical L3, L3,∞ andBesov norms B
−1+ 3

q
q,∞ (q ∈ (3,∞))

are proven. Figure 1 explains the idea to deduce strong concentration of the L3 norm from
local-in-space smoothing for critical L3 data. For a solution U satisfying the Type I bound
(4.1), first blowing-up at T ∗ and such that the space-time point (0, T ∗) is a singularity, we
have

‖U (·, t)‖
L3

(
B0

(√
T ∗−t

S(M)/2

)) > γuniv, (4.3)

for all t ∈ (t∗(T ∗, M, r0), T ∗) and S(M) a time appearing in the local-in-space smoothing
estimate (3.1).

In [39, Theorem 1.6 (ii)] Kang,Miura and Tsai prove the strong concentration of the scaled
energy on concentrating balls. Their result holds under the generalized Type I condition (4.1).
There exists γuniv ∈ (0,∞) and S(M) ∈ (0,∞) such that for all t ∈ (t∗(T ∗, M, r0), T ∗),

1√
T ∗ − t

∫

B0

(√
T ∗−t
S(M)

) |U (x, t)|2 dx � 1.

Notice that under the stronger ODE blow-up Type I condition (4.2), this result simply follows
from (4.3) and interpolation.

Figure 6 on page 24 summarizes some results about weak and strong concentration for
the Navier–Stokes equations, as well as local-in-space smoothing.

The bottom line is that strong concentration of certain scale-invariant quantities is at the
heart of quantitative regularity, in particular for proving quantitative estimates of dissipative
scales; see Sections 5.3, 6 and 7.2 below. From now on the paper is concerned with such
questions relating to quantitative regularity.

5 Three Facets of Quantitative Regularity

In our view, there are three main objectives for the quantitative regularity theory: (i) quan-
titative blow-up rates, see Objective A below, (ii) quantitative regularity estimates, see

7 The case of Type I a priori control contains many still unresolved blow-up ansätze, such as backward
discretely self-similar solutions (see [18]).
8 Notice that it is not immediately clear that the generalized notion of Type I (4.1) is implied by more classical
notions of Type I, such as the ODE blow-up Type I

√
T ∗ − t |U (x, t)| ≤ M ′. (4.2)

It turns out to be true, see [78] and the review article [77, pp. 844–849]. This makes (4.1) a good notion. In
the half-space with no-slip boundary conditions such an implication remains true, but is much harder to prove
due to the strong nonlocality of the pressure. It is proved in [7].
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From Concentration to Quantitative Regularity... 715

Fig. 1 Concentration near potential Type I singularities via quantitative local-in-space short-time smoothing

Objective B below, (iii) quantitative estimates of dissipative scales, see Objective C below.
The last objective is in some sense more fundamental, since the two others will in general
follow from it. We formulate the general objectives in a somewhat loose way. In the rest
of the paper, we will explain how the examples fit into that abstract framework. In partic-
ular in this section we illustrate the objectives in two cases: the case of a priori control in
L5(R3 × (−1, 0)) which is a critical non-borderline space,9 and the case of a priori control
in L∞(−1, 0; L3(R3))10 which is a critical borderline space.

5.1 Quantitative Blow-up Rates

It is known since the seminal work of Leray [50] that subcritical norms blow-up with an
algebraic rate near a potential blow-up time T ∗, i.e.

‖U (·, t)‖Lq (R3) � (T ∗ − t)−
3
2 ( 13− 1

q ) for q ∈ (3,∞) and t ∈ [0, T ∗). (5.1)

Objective A Show that for certain critical spaces L p
t Ax and B,11 there exists an explicit

positive function F or Fp,A on [0,∞) such that F (s), Fp,A(s)
s→0−→ ∞ and for a smooth

solution with enough decay12 U to the Navier–Stokes equations on R
3 × (0, T ∗) blowing-up

9 In this case the qualitative regularity is the classical Ladyženskaja–Prodi–Serrin criteria, see for instance
[79, 81].
10 In this case the qualitative regularity is the result of Escauriaza, Seregin and Šverák [29].
11 HereA,B are certainBanach spaces contained inS ′(R3) and p ∈ [1, ∞]. Notice thatB is scaling-invariant,
as well as L p

t Ax .
12 Under this assumption the solution is smooth on (0, T ) for any T < T ∗, hence is a classical solution; see
[9, Section 1.4] for a definition.
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716 T. Barker and C. Prange

at time T ∗, ‖U‖L p(0,t;A)

F (T ∗ − t)
� 1 when t is sufficiently close to T ∗ (5.2)

or ‖U (·, t)‖B
Fp,A(T ∗ − t)

� 1 when t is sufficiently close to T ∗. (5.3)

The toy model L5
t,x Using the same reasoning as (5.5), the quantitative estimate (5.6) com-

bined with Leray’s blow-up rate (5.1) imply that

‖U‖L5(0,t;L5(R3)) �
(
log

(
T ∗

T ∗ − t

)) 1
5

for all t ∈
(

T ∗
2 , T ∗) .

Not surprisingly, this estimate is compatible with (and actually a consequence of) the Leray
blow-up rate (5.1) in the case q = 5.

Thecaseof L∞
t L3

x The critical borderline case q = 3 was open until 2019 and a remarkable
paper of Tao [84]. There Tao proves the rate (1.1). Notice that this rate follows from the lower
bound (5.2) proved in [84] with p := ∞, A := L3(R3) and F (s) := (log log log s)c, for a
universal constant c ∈ (0,∞).

5.2 Quantitative Regularity Estimates

Objective B Show that for certain critical spaces L p(−1, 0;A) andB, there exists an explicit
positive function G on [0,∞),13 such that for a critically bounded smooth solution U (with
enough decay) of the Navier–Stokes equations on R

3 × (−1, 0),

‖U‖
L∞

(
R3×

(
− 1

2 ,0
)) ≤ G (‖U‖L p(−1,0;A), ‖U (·, 0)‖B). (5.4)

We previously remarked that certain qualitative regularity results in terms of critical norms
can be quantified abstractly, see [9, Introduction]. This is the case of the Escauriaza, Seregin
and Šverák [29] result that can be abstractly quantified via the use of the persistence of
singularities [72]. The focus of this survey paper is to derive an explicit formula for G .

13 It is hard to give a general statement covering all results in this line of research. Notice that Theorem B in
[9] is a quantitative regularity result without a priori control of a global scale-invariant quantity. Such a result
takes the following form

‖U‖L∞(R3×(−t∗,0)) ≤ G

(

sup
t j ↗0

‖U (·, t j )‖L3(R3)

)

,

where t∗ = t∗
(
(t j ) j∈N, supt j ↗0 ‖U (·, t j )‖L3(R3)

)
. That result quantifies Seregin’s 2012 liminf qualitative

criteria [73], and is hence a result that goes beyond the critical case. For more details about [9, Theorem B],
we also refer to [71, Theorem 6.3 and Section 6.3.4]. Furthermore, in the same vein, we get regularity at time
t = 0 for large L3 data at t = −1 if the profile at time t = 0 is quantitatively small; see [1, Theorem 4.1(i)]
for a qualitative statement and [9, Proposition 4.4] for a quantitative statement.
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Let us also note that a general quantitative result such as (5.4) with an increasing function
G can be combined with the Leray blow-up rate (5.1) to yield quantitative blow-up rates of
the form (5.2)–(5.3). Indeed, by scaling14

1√
t
G

(‖U‖L∞(0,t;L3(R3))

) = 1√
t
G

(
‖U√

t‖L∞(0,1;L3(R3))

)

≥ 1√
t
‖U√

t‖L∞
(
R3×

(
1
2 ,1

))

= ‖U‖L∞(R3×( t
2 ,t))

≥ C(T ∗ − t)−
1
2 . (5.5)

It remains to invert G to get a blow-up rate for ‖U‖L∞(0,t;L3(R3)).

The toymodel L5
t,x Using the strategy described in Section 6 below,15 one can prove the

following quantitative estimate:

‖U‖
L∞

(
R3×

(
− 1

2 ,0
)) � exp

(
‖U‖5L5(R3×(−1,0))

)
, (5.6)

where C ∈ (0,∞) is a universal constant. Here

p = 5, A = L5(R3), and G (A, B) � exp(A5)

in the notation of the general form estimate (5.4).

Thecaseof L∞
t L3

x Tao shows that for classical solutions to the Navier–Stokes equations on

belonging to the critical space L∞(−1, 0; L3(R3)),

‖U‖
L∞

(
R3×

(
− 1

2 ,0
)) � exp exp exp

(
‖U‖c

L∞(−1,0;L3(R3))

)
, (5.7)

where c ∈ (0,∞) is a universal constant. Here

p := ∞, A := L3(R3), and G (A, B) � exp(exp(exp(Ac)))

in the notation of the general form estimate (5.4).

5.3 Quantitative Estimates of Dissipative/Kolmogorov Scales

Objective C Show that for certain critical spaces L p(−1, 0;A) and B,16 there exists an
explicit positive function H on [0,∞) such that for a critically bounded smooth solution
with enough decay U to the Navier–Stokes equations on R

3 × (−1, 0), dissipative effects
take over the nonlinearity17 for physical scales

λ ≤ H
(‖U‖L∞(−1,0;A), ‖U (·, 0)‖B

)
(5.8)

14 We recall that the Navier-Stokes equations are invariant under the scaling Uλ = λU (λ·, λ2·), for λ > 0.
Here we take λ = √

t .
15 A strategy based on energy estimates on the level of the vorticity equation is described in [9, Section 1.2.2].
It also yields a single exponential bound in L5(R3 × (−1, 0)), but has an additional dependence in terms of
the initial data for the vorticity ω(·, −1). Notice that L5 energy estimates can be applied directly, see [63].
16 As in footnote 11, A, B are certain Banach spaces contained in S ′(R3) and p ∈ [1,∞].
17 This is on a formal level. On a practical level, this is where well-posedness theory or epsilon regularity
takes over and gives regularity.
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718 T. Barker and C. Prange

or Fourier scales
N ≥ H

(‖U‖L∞(−1,0;A), ‖U (·, 0)‖B
)
.

The threshold between the scales where diffusive effects dominate vs. where nonlinear
effects dominate is measured by the smallness vs. concentration of certain scale-critical
quantities S . Once this threshold is estimated in a quantitative way, regularity criteria
(epsilon-regularity, local smoothing...) imply the quantitative bounds stated in Objective B.
The estimate of dissipative scales is hence the heart of the matter.

Figure 2 summarizes the general strategy in the three main cases described in this survey
paper.

The toymodel L5
t,x For solutions of the Navier–Stokes equations critically bounded in

L5(R3 × (−1, 0)), we work with the following scale-invariant Weissler–Kato type norms

(−t)
1
5 ‖U (·, t)‖L5(R3) for t ∈ (−1, 0). (5.9)

If the quantity defined by (5.9) is small for all sufficiently small times 0 > t > t∗(A), then
Caffarelli, Kohn and Nirenberg type epsilon-regularity results imply the quantitative bound
(5.6).18

Objective C in the L5
t,x case: If the following statement

S (t) := (−t)
1
5 ‖U (·, t)‖L5(R3) < ε (5.10)

fails for a certain t ∈ (−1, 0), find a quantitative upper bound t∗ ∈ (−1, 0) for t .
Estimate (5.10) together with ε-regularity criteria then implies the quantitative bound

(5.6). It can be shown, applying the general strategy outlined in Section 6, that

− t >
1

2
exp

(
− 32‖U‖5

L5(R3×(−1,0))

ε5

)
=: −t∗(A). (5.11)

Hence, H (A, B) := −t∗(A) = exp(− 32A5

ε5
) with the notation of Objective C.

Thecaseof L∞
t L3

x Tao works with globally defined quantities due to a Fourier based
approach. His analysis is based on the following scale-invariant quantities

S (N ; x, t) := N−1|PN U (x, t)| for (x, t) ∈ R
3 × (−1, 0), (5.12)

where PN is the Littlewood–Paley projection on the frequency N ∈ (0,∞). Indeed, if
the quantity S (N ; x, t) defined by (5.12) is small in terms of A := ‖U‖L∞

t L3
x (R3×(−1,0)),

uniformly in (x, t) ∈ R
3 × (− 1

2 , 0) and for high frequencies N ≥ N∗(A), then
‖U‖L∞

x,t (R
3×(− 1

8 ,0)) can be estimated explicitly in terms of A and N∗. Related observations

were made previously by Cheskidov and Shvydkoy [25, 26] and Cheskidov and Dai [24], but
without the bounds explicitly stated. There the frequency N∗ is called the Kolmogorov scale
and denoted�. If N−1‖PN U‖L∞

x,t

 1 is small, then N‖PN U‖2L∞

t,x

 N 2‖PN U‖L∞

t,x
so that

the diffusion dominates the nonlinearity, heuristically at least, since some of the frequencies
in the paraproduct are neglected, see [83].

From this perspective, Tao’s aim is the following.

Tao’s Objective C: Assume

A := ‖U‖L∞
t L3

x (R3×(−1,0)) < ∞.

18 Notice that well-posedness theory could also be used in replacement of epsilon-regularity.
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Fig. 2 Quantitative regularity via concentration: a summary of the method

If the following statement

N−1‖PN U‖L∞
x,t (R

3×(− 1
2 ,0)) < ε(A) (5.13)

fails for ε(A) = A−c and a certain frequency N , find a quantitative upper bound N∗(A)

for N .
In Tao’s paper [84, Theorem 5.1], it is shown that

H (A, B) := N∗(A) � exp exp exp(Ac) (5.14)

with the notations of Objective C.

6 A General Strategy for Quantitative Estimates of Dissipative Scales

In this part we describe a general strategy to fulfill Objective C, i.e. to estimate quantitatively
the dissipative scales. The scheme is based on the study of the concentration of certain scale-
invariant quantities S , such as the Weissler–Kato norm (5.10) in the case of L5

t,x or the
frequency bubbles (5.12) in the case of L∞

t L3
x . One can summarize the idea as follows:

(Step-1) Propagation of concentration If a certain scale-invariant quantityS concentrates
at a given scale, then it will concentrate at many disjoint scales. One relies on
various tools such as bilinear estimates or local-in-space smoothing when apply-
ing quantitative Carleman inequalities. For this, one needs to work in space-time
regions where one has good quantitative regularity properties: epochs and annuli of
quantitative regularity.

(Step-2) Summation of scales and coercivity of the standing assumption The standing
critical assumption

‖U‖L∞(−1,0;A) < ∞ or ‖U (·, 0)‖B < ∞
implies an upper bound on the number of disjoint scales where the scale-invariant
quantityS concentrates,which directly yields a quantitative estimate of the estimate
of dissipative scales H in Objective C.

6.1 The ToyModel L5t,x

Let us now sketch the proof in the toy model case see Fig. 3. Assume that

A := ‖U‖L5(R3×(−1,0)) < ∞
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720 T. Barker and C. Prange

and that (5.10) fails for a certain t . In order to estimate the dissipative scales quantitatively,
see Objective C above, we argue in the following two-step way:

(Step-1) Backward propagation of Weissler–Kato norm concentration Using the proof
of the well-posedness theory for subcritical L5 data [16] we get

‖U (·, t)‖L5(R3) >
ε

(−t)
1
5

⇒ ‖U (·, t ′)‖L5(R3) >
ε/2

(−t ′) 1
5

for all t ′ ∈ (−1, 2t).

(Step-2) Summation of scales and coercivity of the standing assumption Integrating the
concentration for t ′ ∈ (−1, 2t),

‖U‖5L5(R3×(−1,0)) ≥
∫ 2t

−1
‖U (·, t ′)‖5L5(R3)

dt ′ ≥ − ε5

32
log(−2t).

Hence, we get the estimate (5.11), which is the upper bound for the times where
the Weissler–Kato norm concentrates.

6.2 The Case of L∞
t L3x

We now sketch the strategy of Tao to prove his main Objective C described on page 13. A
slightly different summary of the strategy is given in [9, Section 1.1] and in [84, Section 1].
Assume that

A := ‖U‖L∞(−1,0;L3
x (R3)) < ∞ (6.1)

and that (5.13) fails for ε(A) = A−c and a certain frequency N . Hence, there exists (x0, t0) ∈
R
3 × (− 1

2 , 0) such that
N−1|PN u(x0, t0)| > A−c. (6.2)

Fig. 3 Quantitative regularity via concentration of scale-critical quantities: the toy model L5
t,x
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We call this the ‘initial concentration’.

(Step-1) Propagation of concentration The idea is to transfer the initial concentration (6.2)
in space and time in order to get a lower bound on the L3(R3) norm at time zero.
That propagation of concentration, or ‘frequency bubbling’, relies on:

(i) Backward frequency bubbling For all n ∈ N, there exists a frequency Nn ∈ (0,∞),
(xn, tn) ∈ R

3 × (−1, tn−1) such that

N−1
n |PNn u(xn, tn)| > A−c (6.3)

with
xn = x0 + AO(1)(−tn)

1
2 , Nn � AO(1)| − tn |− 1

2 . (6.4)

(ii) Transfer of concentration in Fourier space to physical space In order to use quanti-
tative Carleman inequalities, see the next point, one needs to transfer the information
on the concentration in Fourier space to physical space quantities, namely a scale-
invariant enstrophy. To do this it seems important to have a priori control of a global
scale-invariant norm, such as (6.1).

(iii) Large-scale and forward-in-time propagation of concentration Using quantitative
versions of the Carleman inequalities in [29], see [84, Propositions 4.2 and 4.3], Tao
shows that the lower bounds on the scale-invariant enstrophy can be transferred to a
lower bound on the L3 norm of U at the final moment of time 0. The applicability of
the quantitative Carleman inequalities to the vorticity equation requires the ‘epochs
of regularity’ in the previous step and the existence of ‘good spatial annuli’ where the
solution enjoys good quantitative estimates. Specifically, Tao shows that for certain
admissible time scales S,19 one has the concentration of the L3 norm on the annulus
{S

1
2 ≤ | · −x0| ≤ exp(Ac)S

1
2 }, i.e.

∫

S
1
2 ≤|x−x0|≤exp(Ac)S

1
2

|U (x, 0)|3dx ≥ exp(− exp(Ac)). (6.5)

(Step-2) Summation of scales and coercivity of the standing assumption Summing (6.5)

over admissible time scales S such that the annuli {S
1
2 ≤ | · −x0| ≤ exp(Ac)S

1
2 }

are disjoint, one eventually obtains

A3 ≥
∫

R3
|U (x, 0)|3dx � log(N ) exp(− exp(Ac)).

This concludes the proof of the triple exponential upper bound (5.14) for N .20

Let us note that ideas in a similar spirit were used by Merle and Raphaël in [58] to prove a
quantitative rate of blow-up of a critical norm for radial solutions of a supercritical nonlinear
Schrödinger equation; see [58, Theorem 2]. In particular a lower bound on annuli analogous
to (6.5) is obtained and the final log blow-up rate is obtained by a similar stacking of scales
argument; see [58, Section 4.2].

19 These admissible time scales are related to where one has backward concentration in frequency space, see
step ‘Backward frequency bubbling’ above and [84, Proof of Theorem 5.1].
20 Notice that due to the stacking of scales, we always get at least one exponential in the quantitative estimates.
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7 Quantitative Regularity in the Type I Case

We focus here on the quantitative regularity results in the Type I case proved in [9]. Let us
emphasize that the regularity in the Type I case is proved only for axisymmetric flows21 [21,
22, 45]. We now show how the results in [9] fulfill the three objectives stated in Section 5.

7.1 Three Facets of the Quantitative Regularity in the Type I Case

Answer to Objective A

Result A ([9, Theorem A], localized quantitative rate of blow-up) Assume that U is a smooth
solution with sufficient decay to the Navier–Stokes equations and that T ∗ is a first blow-up
time.

Assume in addition that (0, T ∗) is a Type I singular point i.e.

A := ‖U‖L∞(0,T ∗;L3,∞(R3)) < ∞.

Then the above assumptions imply that there exists S(A) � A−30 such that for any t ∈
( T ∗

2 , T ∗) and

R ∈
(√

T ∗−t
S(A)

, eA1022√
T ∗

)

we have
∫

|x |<R
|U (x, t)|3dx ≥

log
(

R2

A802(T ∗−t)

)

exp(exp(A1025))
. (7.1)

Estimate (7.1) is written in a scale-invariant form. Notice that this estimate implies an

estimate of the form (5.3). Indeed taking R = (T ∗ − t)
1
2−δ for δ > 0 and small, we have (5.3)

withB := L3(B0((T ∗−t)
1
2−δ))), p := ∞,A := L3,∞(R3),Fp,A � − log

(
A802(T ∗−t)2δ

)

and |T ∗ − t | �A 1.
Notice that contrary to (1.1), it is stated in (7.1) that the norm blows-up not only along a

subsequence but pointwise for t → T ∗. This is due to the fact that the quantitative regularity
under the a priori Type I control, see Result B, just involves the L3 norm at the final time and
not the whole L∞

t L3
x norm of the solution as the estimate (5.7) of [84].

Answer to Objective B

Result B ([9, Proposition 2.1, estimate (52)], localized quantitative regularity) Assume that
U is a smooth solution with sufficient decay to the Navier–Stokes equations.

Assume in addition that U satisfies the Type I bound

A := ‖U‖L∞(−1,0;L3,∞(R3)) < ∞.

Then, letting

t∗ = t∗(A, U (·, 0))
:= −A−c exp

(
− exp exp(A1024)

∫

B0(exp(A1023))

|U (·, 0)|3
)

,

21 In the half-space, this appears to still be an open problem even without swirl.
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the following quantitative boundedness holds

‖U‖L∞(B0(Ac√−t∗)×(t∗/2,0)) � A−c

√−t∗
, (7.2)

with c ∈ (0,∞) a universal constant.

Notice that (7.2) involves the a priori Type I control in L∞
t L3,∞

x and the control of the L3

norm at the final time. Given the current state of the art, such assumptions are needed to prove
the regularity; a mere Type I assumption is at this point not enough to beat the scaling except
in the axisymmetric case and the self-similar case.22 For more insights on the qualitative
regularity in borderline endpoint critical spaces such as the Lorentz space L3,∞ or the Besov

space B
−1+ 3

p
p,∞ , see [1].23

Estimate (7.2) also implies a localized quantitative bound in the spirit of (5.4) with B :=
L3(B0(exp(A1023))), p := ∞, A := L3,∞(R3),

G (A, B) � exp
(
exp(exp(Ac))B), where A := ‖U‖L∞(−1,0;L3,∞(R3))

and B :=
∫

B0(exp(A1023))

|U (·, 0)|3.

Answer to Objective C

Result C ([9, Proposition 2.1, estimate (50)], quantitative estimates of dissipative/Kolmogorov
scales) Assume that U is a smooth solution with sufficient decay to the Navier–Stokes equa-
tions.

Assume in addition that U satisfies the Type I bound

A := ‖U‖L∞(−1,0;L3,∞(R3)) < ∞.

Then the threshold determining where the dissipative effects dominate the nonlinear effects
is estimated as follows:

t∗ = t∗(A, U (·, 0))
:= −A−c exp

(
− exp exp(A1024)

∫

B0(exp(A1023))

|U (·, 0)|3
)

. (7.3)

It is not surprising that the definition of t∗ already appears in Result B, since Result B
is (almost) an immediate consequence of Result C and a regularity criteria (namely a local-
in-space short-time regularity result). More precisely, −t∗ defined by (7.3) is the time after
which the following scale-invariant enstrophy

S (A; t) := (−t)
1
2

∫

B0

(
Ac(−t)

1
2

) |ω(x, t)|2dx (7.4)

is smaller than a given small number ε(A) = A−c, where ω = ∇ × U is the vorticity as is
usual.

22 This is due to an additional scalar structure in those cases.
23 These spaces are sometimes also referred to as ‘ultracritical spaces’. Unlike L3, a function in these spaces
can have a simultaneous presence in terms of its norm at an arbitrary amount of disjoint scales/frequencies,
see [4, Footnote 7].
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Fig. 4 Quantitative regularity in the Type I case via concentration of a scale-invariant enstrophy Step-1:
backward (label 2 above), large-scale (label 3 above) and forward propagation of enstrophy concentration
(label 4 above)

Estimate (7.3) also implies a quantitative bound like (5.8) withB := L3(B0(exp(A1023))),
p := ∞, A := L3,∞(R3),

H (A, B) � A−c exp
( − exp exp(A1024)B

)
, where A := ‖U‖L∞(−1,0;L3,∞(R3))

and B :=
∫

B0(exp(A1023))

|U (·, 0)|3.

7.2 Quantitative Estimates of Dissipative Scales in the Type I Case

The general scheme to get the estimate (7.3) is a physical space parallel to Tao’s Fourier
based strategy described in Section 6.2. Assume thatS (A; t) defined by (7.4) concentrates,
i.e. is not small, for a certain time t. Then, the goal is to find an upper bound t∗ for t. More
precisely, assume that

S (A; t) := (−t)
1
2

∫

B0

(
Ac(−t)

1
2

) |ω(x, t)|2dx > A−c, (7.5)

for a t ∈ (−1, 0) not too close to −1. We call this the ‘initial concentration’.

(Step-1) Propagation of concentration For this stepwe refer to Fig. 4. The idea is to transfer
the initial concentration (7.5) in space and time in order to get a lower bound on the
localized L3 norm at time zero. That propagation of concentration relies on:
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Fig. 5 Quantitative regularity in the Type I case via concentration of a scale-invariant enstrophy Step-2:
summation of scales

(i) Backward propagation of concentration For all t ′ ∈ (−1, t) such that −t ′ is not too
close to −t , we have

(−t ′)
1
2

∫

B0

(
Ac(−t ′)

1
2

) |ω(x, t ′)|2dx > A−c.

(ii) Large-scale and forward-in-time propagation of concentration It is shown that for
certain admissible time scales S,24 one has the concentration of the L3 norm on the
annulus {S

1
2 ≤ | · | ≤ exp(Ac)S

1
2 }, i.e.

∫

S
1
2 ≤|·|≤exp(Ac)S

1
2

|U (x, 0)|3dx ≥ exp(− exp(Ac)). (7.6)

The role of the Type I bound is to show that the solution U obeys good quantitative
estimates in certain space-time regions, epochs of quantitative regularity and annuli
of quantitative regularity, which is needed to apply the Carleman inequalities to the
vorticity equation, see [29], see [84, Proposition 4.2 and Proposition 4.3].

(Step-2) Summation of scales and coercivity of the standing assumption We refer to
Fig. 5 for this step. Summing (7.6) over all permissible disjoint annuli finally gives
us the desired lower bound for −t ′. We note that the localized L3 norm of U at
time 0 plays a distinct role to that of the Type I condition described in the previous
step. Its sole purpose is to bound the number of permissible disjoint annuli that
can be summed. This concludes the proof of the single exponential upper bound in∫

B0(exp(A1023))
|U (·, 0)|3 for t , see (7.3).

24 These admissible time scales are related to where one has backward concentration, see [9, equations
(106)–(107)].
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Notice that quantitative local-in-space smoothing, see Section 3 above, is a fundamental
tool to achieve the backward propagation of enstrophy concentration in (Step-1) above as
well as to go from Result C to Result B.

7.3 A Comparison with Tao’s Strategy

We outline here the twomain differences between: on the one hand Tao’s strategy [84] for the
quantitative regularity in the case of a priori control of the solution in the borderline critical
space L∞

t L3
x and on the other hand the strategy of [9] for the quantitative regularity in the

case of a priori control of the solution in the borderline endpoint critical space L∞
t L3,∞

x with
additional control of the L3 norm of U (·, 0). There are two main aspects, see below. The first
aspect is the decisive difference that also explains the second point. Let us state these two
differences for the sake of clarity.

Fourier space vs. physical space We already underlined this aspect above. Tao works with
the frequency bubbles of concentration (5.12), which are scale-invariant quantities defined in
Fourier space. Therefore these quantities involve the solution U (·, t) on the whole-spaceR3.
On the contrary, the analysis of [9] relies on the localized scale-invariant enstrophies (7.4).
Those quantities are defined in physical space and involve the solution U only on the ball

B0(Ac(−t)
1
2 ). Therefore, one can obtain localized results, such as the blow-up rate (7.1) of

Result A.

Global scale-critical vs. criticalityalongasequenceof times/atagiven timeThis aspect is a con-
sequence of the point made above about Fourier vs. physical space approach. In Tao’s work,
there is a step, see ‘Transfer of concentration in Fourier space to physical space’ in Sec-
tion 6.2, that consists in transferring the concentration of frequency bubbles to concentration
of a scale-invariant enstrophy, see [84, equation (5.6)]. That localized L2 norm of the vor-
ticity is needed to work with quantitative Carleman inequalities in order to propagate the
concentration at large scales and forward in time. The process of transfer is based on the fact
that the solution is bounded in L∞(−1, 0; L3(R3)). In the case of the strategy described in
Section 7.2 above in the Type I case, this step is not needed.

This remark has several implications:

(1) The scheme developed in the Type I case, see Section 7.2, enables to handle the case
when a global scale-critical standing assumption is lacking, which is the case in [9,
Theorem B] that quantifies Seregin’s 2012 criteria [73].

(2) In a related vein, we get regularity at time t = 0 for large L3 data at t = −1 if the profile
at time t = 0 is quantitatively small; see [1, Theorem 4.1 (i)] for a qualitative statement
and [9, Proposition 4.4] for a quantitative statement.

8 Some Further Developments

There are many interesting research developments in the wake of the two papers [9, 84]. Let
us review some of them.

Very recently, the paper [5] was able to give a localized version of Tao’s blow-up rate (1.1).
For a smooth suitable weak solution U to the Navier–Stokes equations on B(0, 4)× (0, T ∗),
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that possesses a singular point (x0, T ∗) ∈ B(0, 4) × {T ∗}, then for all δ > 0 sufficiently
small

lim sup
t↑T ∗

‖U (·, t)‖L3(B(x0,δ))
(
log log log

(
1

(T∗−t)
1
4

)) 1
1129

= ∞.

In that sense, this bound is a true quantification of the qualitative Escauriaza, Seregin and
Šverák [29] criteria, which is also localized but qualitative. The main difficulty with the
localization is related to showing that the local solution possesses quantitative annuli and
epochs of regularity, which is required in (Step-1)(iii).

The quantitative regularity for solutions U ∈ L∞
t Ld

x to the Navier–Stokes equations in
higher dimensions d ≥ 4 was handled by Palasek in [69]. This work gives an effective
quantification of the qualitative result by Dong and Du [27]. For the blow-up rate, one pays
the price of an additional logarithm compared to the result in dimension three (1.1).

Palasek [68]was also able to improve upon the triple logarithmic rate (1.1) obtained byTao
in [84]: in the case of axisymmetric solutions for instance, the triple logarithm is replaced by a
double logarithm.Without any symmetry assumption on the solution, a similar improvement

can be obtained by replacing the L3 norm by the scale-invariant norm ‖r1−
3
q U‖L∞

t Lq
x
for

q ∈ (3,∞) and r := |xh |.
Finally, let us mention a related research line that aims at quantifying the regularity of

axisymmetric solutions satisfying a critical or slightly supercritical Type I a priori bound.
In the wake of the result of Pan [70], De Giorgi methods were intensively used to improve
upon the regularity beyond the Type I case (see [21, 22, 45, 48]) by slightly breaking the a
priori scale-invariant assumption. This research was carried by Seregin [74, 75] and Chen,
Tsai and Zhang [23]. In this last paper, a double-logarithmic quantitative blow-up rate for
the Ḃ−1∞,∞(R3) norm of U is obtained; see [23, Theorem 1.4]. Using Harnack inequalities
instead of the Carleman inequalities used by Tao [84], Ożański and Palasek [67] recover the
blow-up rate of the L3,∞(R3) norm of U ; see [67, Corollary 1.2]. In addition, they obtain a
quantitative bound of the form (5.4) in terms of the L∞

t L3,∞
x norm of the solution only; see

[67, Theorem 1.1]. For other developments, see [47].

9 Mild Criticality Breaking and a Conjecture of Tao

Recently, in [84, Remark 1.6], Tao conjectured that if a solution first loses smoothness at
time T ∗ > 0, then the Orlicz norm ‖U (·, t)‖L3(log log log L)−c(R3) must blow-up as t tends to
T ∗. Result D provides a positive answer to Tao’s conjecture, at the cost of one additional
logarithm.

Result D (Blow-up of slightly supercritical Orlicz norms; [8, Theorem 2]) There exists a
universal constant θ ∈ (0, 1) such that the following holds.

Let U be a Leray–Hopf solution to the Navier–Stokes equations on R
3 × (0,∞) with

initial data U0 ∈ L2(R3) ∩ L4(R3). Assume that U first blows-up at T ∗ ∈ (0,∞). Then

lim sup
t↑T ∗

∫

R3

|U (x, t)|3
(
log log log

(
(log(ee3ee + |U (x, t)|)) 1

3

))θ
dx = ∞.
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As far as we know, Result D is the first result of this type for the Navier–Stokes equations
concerned with slight criticality breaking in borderline spaces. Previously, it was shown for
non-borderline spaces by Chan and Vasseur [20] that ifU is a Leray–Hopf solution satisfying

∫ ∞

0

∫

R3

|U |5
log(1 + |U |)dxdt < ∞

thenU is smooth onR3 × (0,∞). Subsequent improvements were obtained in [49] and [10];
see also [63]. Let us mention that the techniques used in these papers cannot be used to treat
the borderline case considered in Result D.

Anewmethod for transferringsubcriticalityof thedata forward in time The method for proving
Result D relies on the following lemma and on a careful tuning of the parameters (esti-
mating the L3−μ norm for a well-chosen parameter μ). Lemma E is directly inspired by the
recent result of Bulut [13] for a nonlinear supercritical defocusing Schrödinger equation.

Result E (‘mild criticality breaking’; [8, Theorem 1]) For all M, A ∈ [1,∞) sufficiently
large, there exists δ(M, A) ∈ (0, 1

2 ] such that the following holds. Let U be a suitable
weak Leray–Hopf solution to the Navier–Stokes equations on R

3 × (0,∞) with initial data
U0 ∈ L2(R3) ∩ L4(R3).

Assume that
‖U0‖L2 , ‖U0‖L4 ≤ M,

and that
‖U‖L∞(0,∞;L3−δ(M,A)(R3)) ≤ A.

Then, the above assumptions imply that U is smooth on R
3 × (0,∞). Moreover, there is an

explicit formula for δ(M, A), see [8, equation (26)], and δ(M, A) → 0 when M → ∞ or
A → ∞.

We call Result E a ‘mild breaking of the criticality’, or a ‘mild supercritical regularity
criteria’ as opposed to strong criticality breaking results obtained for instance in the axisym-
metric case [23, 70, 74, 75], see Section 8. Indeed, the supercritical space L∞

t L3−δ(M,A) in
whichwe break the scaling depends on the size A of the solution in this supercritical space via
δ(M, A). In other words this can be considered as a non-effective regularity criteria, hence
the term ‘mild’. Moreover, given a solution U , assume that you knew all the L∞

t L3−δ
x norms

for δ → 0. Then the question whether Lemma E applies to U or not becomes a question
about how fast

‖U‖L∞(0,∞;L3−δ(R3))

grows when δ → 0. Of course one would have regularity if the solution was a priori bounded
in the critical space L∞

t L3
x . The result shows that with L4 initial data one can relax the

exponent 3 to a slightly supercritical 3−δ(M, A). Let us also remark that the initial condition
U0 ∈ L4(R3) can be replaced by any subcritical initial condition U0 ∈ L3+(R3).

The main idea of the proof of Lemma E is to transfer subcritical information from the
initial time forward in time. In a nutshell, subcritical energy estimates are combined with
quantitative regularity estimates as obtained by Tao [84]. Hence, the growth of the subcritical
norm along the evolution can be estimated.25 In that perspective the main objective is the
following.

25 Result E can be abstractly quantified using persistence of singularities, see [8, Introduction].
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Objective D Prove that there exists δ(M, A) ∈ (0, 1
2 ] and K (M, A) ∈ [1,∞) such that for

all U0 ∈ L2(R3) ∩ L4(R3) and any suitable weak Leray–Hopf solution associated to the
initial data U0, if

‖U0‖L2 , ‖U0‖L4 ≤ M,

and
‖U‖L∞(0,∞;L3−δ(M,A)(R3)) ≤ A,

then
‖U‖L∞(0,T ;L4(R3)) ≤ K (M, A).

for any T > 0.

This then obviously implies the result stated in Result E. The crucial point is that K (M, A)

is uniform in time.
Let us emphasize that the only a priori globally controlled quantity is a supercritical

L∞
t L3− norm.We are not aware of any regularity mechanism enabling to break the critically

barrier based on the sole knowledge of such a supercritical bound. Therefore, the idea,
following Bulut [13], is to transfer the subcritical information coming from the initial data
U0 ∈ L4(R3) to arbitrarily large times by using three ingredients:

(1) the control of the critical L∞
t L3

x norm via interpolation between the supercritical norm

L∞
t L3−δ(M,A)

x and the subcritical L∞
t L4

x norm

‖U‖L∞(0,T ;L3(R3)) ≤ ‖U‖
3−δ
3+3δ

L∞(0,T ;L3−δ(R3))
‖U‖

4δ
3+3δ

L∞(0,T ;L4(R3))

≤ A
3−δ
3+3δ K

4δ
3+3δ ;

(2) the quantitative control of the critical non borderline L5
t,x norm (see [8, Proposition 3])

in terms of the critical norm ‖U‖L∞(0,∞;L3(R3)), and the supercritical L2 and subcritical
L4 norms of the initial data U0

‖U‖L5(0,T ;L5(R3)) ≤ C(M) exp exp exp
(

Cuniv

(
A

3−δ
3+3δ K

4δ
3+3δ

)c) ;

this hinges on the quantitative bounds on solutions belonging to the critical space L∞
t L3

x ,
which were established by Tao in [84], see (5.7); this step enables the slicing of the
interval (0, T ) into a T -independent number m of disjoint epochs I j = (t j , t j+1), such
that ‖U‖L5(I j ;L5(R3)) ≤ ε. Moreover,

ε5m =
m∑

j=1

‖U‖5L5(I j ;L5(R3))
≤ ‖U‖5L5(0,T ;L5(R3))

≤ C(M) exp exp exp
((

A
3−δ
3+3δ K

4δ
3+3δ

)c) ;

(3) an L4 energy estimate [8, Proposition 4] under the L5
t,x control of U , which enables the

transfer the subcritical information from time t j to t j+1

E4,t j+1 ≤ ‖U (·, t j )‖4L4(R3)
+ C‖U‖L5(R3×I j )

E4,t j+1

≤ ‖U (·, t j+1)‖4L4(R3)
+ CεE4,t j+1 ,
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Fig. 6 Weak and strong concentration: a selection of results

where E4,t j+1 is the L4 energy, see [8, equation (13)], and eventually to T

‖U‖4L∞(0,T ;L4(R3))
= max

1≤ j≤m+1

{
‖U‖4L∞(I j ;L4(R3))

}
≤ 64M42m . (9.1)

One then designs the number K (M, A) and δ(M, A) to bound the right hand side (9.1)
above by (K (M, A))4.

10 Summary of Selected Results

Figure 6 on page 24 summarizes some results about weak and strong concentration for the
Navier–Stokes equations, as well as local-in-space smoothing. Figure 7 on page 24 summa-
rizes qualitative and quantitative regularity results for the Navier–Stokes equations.

Fig. 7 Qualitative vs. explicit quantitative regularity: a selection of results

123



From Concentration to Quantitative Regularity... 731

Acknowledgements Both authors thank the Institute of Advanced Studies of Cergy Paris University for
their hospitality. CP is partially supported by the Agence Nationale de la Recherche, project BORDS, grant
ANR-16-CE40-0027-01, project SINGFLOWS, grant ANR-18-CE40-0027-01, project CRISIS, grant ANR-
20-CE40-0020-01, by the CY Initiative of Excellence, project CYNA (CY Nonlinear Analysis) and project
CYFI (CYngular Fluids and Interfaces).

References

1. Albritton, D., Barker, T.: Global weak Besov solutions of the Navier-Stokes equations and applications.
Arch. Rational Mech. Anal. 232, 197–263 (2019)

2. Albritton, D., Barker, T., Prange, C.: Localized smoothing and concentration for the Navier-Stokes equa-
tions in the half space. J. Funct. Anal. 284, 109729 (2023)

3. Arnold, M., Craig, W.: On the size of the Navier-Stokes singular set. Discrete Contin. Dyn. Syst. 28,
1165–1178 (2010)

4. Barker, T.: Higher integrability and the number of singular points for the Navier-Stokes equations with a
scale-invariant bound. arXiv:2111.14776 (2021). To appear in Proceedings of the AMS

5. Barker, T.: Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations.
SIAM J. Math. Anal. 55, 5221–5259 (2023)

6. Barker, T., Prange, C.: Localized smoothing for the Navier-Stokes equations and concentration of critical
norms near singularities. Arch. Rational Mech. Anal. 236, 1487–1541 (2020)

7. Barker, T., Prange, C.: Scale-invariant estimates and vorticity alignment for Navier-Stokes in the half-
space with no-slip boundary conditions. Arch. Rational Mech. Anal. 235, 881–926 (2020)

8. Barker, T., Prange, C.: Mild criticality breaking for the Navier-Stokes equations. J. Math. Fluid Mech.
23, 66 (2021)

9. Barker, T., Prange, C.: Quantitative regularity for the Navier-Stokes equations via spatial concentration.
Commun. Math. Phys. 385, 717–792 (2021)

10. Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyženskaja-Prodi-Serrin
criteria. J. Math. Fluid Mech. 13, 259–269 (2011)

11. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity.
Int. Math. Res. Not. 1998, 253–283 (1998)

12. Bradshaw, Z., Tsai, T.-P.: On the local pressure expansion for the Navier-Stokes equations. J. Math. Fluid
Mech. 24, 3 (2022)

13. Bulut, A.: Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global
scattering bounds. Amer. J. Math. 145, 543–567 (2023)

14. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes
equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

15. Camliyurt, G., Kenig, C.E.: Scattering for focusing supercritical wave equations in odd dimensions.
arXiv:2201.04710 (2022)

16. Cannone, M.: A generalization of a theorem by Kato on Navier-Stokes equations. Rev. mat. iberoam. 13,
515–541 (1997)

17. Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos,
vol. 22. Universidade Federal do Rio de Janeiro, Centro de ciências Matemáticas e da Natureza, Rio de
Janeiro, RJ (1989)

18. Chae, D., Wolf, J.: Removing discretely self-similar singularities for the 3D Navier-Stokes equations.
Commun. Partial Differ. Equ. 42, 1359–1374 (2017)

19. Chae, D., Wolf, J.: Energy concentrations and type I blow-up for the 3D Euler equations. Commun. Math.
Phys. 376, 1627–1669 (2020)

20. Chan, C.H., Vasseur, A.: Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations.
Methods Appl. Anal. 14, 197–212 (2007)

21. Chen, C.-C., Strain, R.M., Tsai, T.-P., Yau, H.-T.: Lower bounds on the blow-up rate of the axisymmetric
Navier-Stokes equations II. Commun. Partial Differ. Equ. 34, 203–232 (2009)

22. Chen, C.-C., Strain, R.M., Yau, H.-T., Tsai, T.-P.: Lower bound on the blow-up rate of the axisymmetric
Navier–Stokes equations. Int. Math. Res. Not. 2008, rnn016 (2008)

23. Chen, H., Tsai, T.-P., Zhang, T.: Remarks on local regularity of axisymmetric solutions to the 3D Navier-
Stokes equations. Commun. Partial Differ. Equ. 47, 1680–1699 (2022)

24. Cheskidov, A., Dai, M.: Kolmogorov’s dissipation number and the number of degrees of freedom for the
3D Navier-Stokes equations. Proc. R. Soc. Edinb. Sect. A Math. 149, 429–446 (2019)

123

http://arxiv.org/abs/2111.14776
http://arxiv.org/abs/2201.04710


732 T. Barker and C. Prange

25. Cheskidov, A., Shvydkoy, R.: The regularity of weak solutions of the 3D Navier-Stokes equations in
B−1∞,∞. Arch. Rational Mech. Anal. 195, 159–169 (2010)

26. Cheskidov, A., Shvydkoy, R.: A unified approach to regularity problems for the 3D Navier-Stokes and
Euler equations: the use of Kolmogorov’s dissipation range. J. Math. Fluid Mech. 16, 263–273 (2014)

27. Dong, H., Du, D.: The Navier-Stokes equations in the critical Lebesgue space. Commun. Math. Phys.
292, 811–827 (2009)

28. Duyckaerts, T., Yang, J.: Blow-up of a critical Sobolev norm for energy-subcritical and energy-
supercritical wave equations. Anal. PDE 11, 983–1028 (2018)

29. Escauriaza, L., Seregin, G.A., Šverák, V.: L3,∞-solutions of Navier-Stokes equations and backward
uniqueness. Uspekhi Mat. Nauk 58, 3–44 (2003)

30. Gallagher, I., Koch, G.S., Planchon, F.: Blow-up of critical Besov norms at a potential Navier-Stokes
singularity. Commun. Math. Phys. 343, 39–82 (2016)

31. Grujić, Z., Xu, L.: A regularity criterion for 3D NSE in ‘dynamically restricted’ local Morrey spaces.
Appl. Anal. 101, 5809–5823 (2021)

32. Hmidi, T., Keraani, S.: Remarks on the blowup for the L2-critical nonlinear Schrödinger equations. SIAM
J. Math. Anal. 38, 1035–1047 (2006)

33. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl.
Math. Res. eXpress. 2007, abm004 (2007)

34. Hou, T.Y.: Potentially singular behavior of the 3DNavier-Stokes equations. Found. Comput.Math. (2022).
https://doi.org/10.1007/s10208-022-09578-4

35. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier-Stokes
equations and forward self-similar solutions. Invent. Math. 196, 233–265 (2014)

36. Kang, K.: Unbounded normal derivative for the Stokes system near boundary. Math. Ann. 331, 87–109
(2005)

37. Kang, K., Lai, B., Lai, C.-C., Tsai, T.-P.: Finite energy Navier-Stokes flows with unbounded gradients
induced by localized flux in the half-space. Trans. Amer. Math. Soc. 375, 6701–6746 (2022)

38. Kang, K., Miura, H., Tsai, T.-P.: Short time regularity of Navier-Stokes flows with locally L3 initial data
and applications. Int. Math. Res. Not. 2021, 8763–8805 (2021)

39. Kang, K., Miura, H., Tsai, T.-P.: Regular sets and an ε-regularity theorem in terms of initial data for the
Navier-Stokes equations. Pure Appl. Anal. 3, 567–594 (2021)

40. Kenig, C.E., Koch, G.S.: An alternative approach to regularity for the Navier–Stokes equations in critical
spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28, 159–187 (2011)
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