
https://doi.org/10.1007/s10013-023-00656-w

ORIG INAL ART ICLE

On the Stability of Shear Flows in Bounded Channels,
I: Monotonic Shear Flows

Alexandru D. Ionescu1 · Hao Jia2

Received: 28 December 2022 / Accepted: 23 May 2023
© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023

Abstract
We discuss some of our recent work on the linear and nonlinear stability of shear flows as
solutions of the 2D Euler equations in the bounded channel T × [0, 1]. More precisely, we
consider shear flows u = (b(y), 0) given by smooth functions b : [0, 1] → R. We prove
linear inviscid damping and linear stability provided that b is strictly increasing and a suitable
spectral condition involving the function b is satisfied. Thenwe show that this can be extended
to full nonlinear inviscid damping and asymptotic nonlinear stability, provided that b is linear
outside a compact subset of the interval (0, 1) (to avoid boundary contributions which are
not compatible with inviscid damping) and the vorticity is smooth in a Gevrey space. In the
second article in this series wewill discuss the case of non-monotonic shear flows bwith non-
degenerate critical points (like the classical Poiseuille flow b : [−1, 1] → R, b(y) = y2).
The situation here is different, as nonlinear stability is a major open problem. We will prove
a new result in the linear case, involving polynomial decay of the associated stream function.
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1 Introduction

The purpose of this series of two articles is twofold.Wefirst review some of our recentwork in
[22] and [19] on the linear and nonlinear stability of strictlymonotonic shear flows in bounded
channels. Then we will prove a new linear stability theorem in the case of non-monotonic
shear flows with non-degenerate critical points.
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We invest the global dynamics of solutions of the two dimensional incompressible Euler
equation in a bounded channel. More precisely we consider solutions u : [0,∞) × T ×
[0, 1] → R

2 of the equation

∂t u + u · ∇u + ∇ p = 0, div u = 0, (1.1)

with the boundary condition uy |y=0, 1 ≡ 0. Lettingω := −∂yux +∂xuy be the vorticity field,
the equation (1.1) can be written in vorticity form as

∂tω + u · ∇ω = 0, u = ∇⊥ψ = (−∂yψ, ∂xψ), (1.2)

for (x, y) ∈ T × [0, 1], t ≥ 0, where the stream function ψ is determined through

�ψ = ω on T × [0, 1], ψ(x, 0) ≡ 0, ψ(x, 1) ≡ C0, (1.3)

and C0 is a constant preserved by the flow. We remark that our domain is a finite, peri-
odic channel: periodicity in x is a key condition for inviscid damping and stability, while
compactness in y is a physical choice motivated by finite energy considerations.

The two dimensional incompressible Euler equation is globally well-posed for smooth
initial data, by the classical results of Wolibner [40] and Yudovich [34, 35]. The long time
behavior of general solutions is however very difficult to understand, due to the lack of an
asymptotic relaxation mechanism.

Amore realistic goal is to study the global nonlinear dynamics of solutions that are close to
steady states of the 2D Euler equation. Coherent structures, such as shear flows and vortices,
are particularly important in the study of the 2D Euler equation, since precise numerical
simulations and physical experiments, such as those of McWilliams [27, 28], Benzi–
Paladin–Patarnello [10], Branchet–Meneguzzi–Politano–Sulem [11], Santanqelo–Benzi–
Leqras [32], and Bassom–Gilbert [2, 3], show that coherent structures tend to form and
become the dominant feature of incompressible 2D Euler evolutions, for a long time.

In this paper we consider a perturbative regime for the Euler equation (1.1) on the bounded
channel T × [0, 1], with velocity field given by (b(y), 0)) + u(x, y) and vorticity given by
−b′(y) + ω. In vorticity formulation, the system (1.2)–(1.3) is equivalent to the following
evolution equation for the vorticity deviation ω,

⎧
⎨

⎩

∂tω + b(y)∂xω − b′′(y)∂xψ + u · ∇ω = 0,
u = (ux , uy) = (−∂yψ, ∂xψ), �ψ = ω, ψ(t, x, 0) = ψ(t, x, 1) = 0,
ω(0, x, y) = ω0(x, y),

∫

T×[0,1] ω0(x, y) dxdy = 0.
(1.4)

The normalization condition in the last line may be assumed by modifying (linearly in y) the
function b, and is preserved by the flow.

Our main topic in this article is asymptotic stability. The study of stability properties of
shear flows and vortices is one of the most important problems in hydrodynamics, and has a
long history. Early investigations were started by Kelvin [24], Rayleigh [31], Orr [30], Taylor
[33], among many others, with a focus on mode stability. Later, more detailed understanding
of the general spectral properties and suitable linear decay estimates were also obtained, see
Section 1.1.2 below for more references. In the direction of nonlinear results, Arnold [1]
proved a general stability criteria, using the energy Casimir method, but this method does not
give asymptotic information on the global dynamics. The full nonlinear asymptotic stability
problem has only been investigated in recent years, starting with the remarkable work of
Bedrossian–Masmoudi [7], who proved inviscid damping and global nonlinear stability in
the simplest case of perturbations of the Couette flow on T × R.
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1.1 Linear Stability

We start by analyzing the linearized Euler equation associated to the system (1.4), which can
be written in the form

⎧
⎨

⎩

∂tω + b(y)∂xω − b′′(y)∂xψ = 0,
�ψ = ω, ψ(t, x, 0) = ψ(t, x, 1) = 0,
ω(0, x, y) = ω0(x, y),

∫

T×[0,1] ω0(x, y) dxdy = 0.
(1.5)

One can gain some intuition by examining a simple explicit case, corresponding to the
Couette flow b(y) = y. In this case b′′(y) = 0 and the linearized equation (1.5) becomes

∂tω + y∂xω = 0,

which was studied by Orr in a pioneering work [30]. To simplify the discussion, we assume
x ∈ T, y ∈ R (to avoid the boundary issue which is not our main concern here).

By direct calculation we have

ω(t, x, y) = ω0(x − yt, y).

The stream function is given by �ψ(t, x, y) = ω(t, x, y) for (x, y) ∈ T × R, so in the
Fourier space we have the formulas

ω̃(t, k, ξ) = ω̃0(k, ξ + kt), ψ̃(t, k, ξ) = − ω̃0(k, ξ + kt)

k2 + |ξ |2 , (1.6)

where g̃ denotes the Fourier transform in x and y.
Wemake some important observations by examining these explicit formulas. Assume that

ω0 is smooth, so ω̃0(k, ξ) decays fast in k, ξ . Then:

(1) The main contribution comes from the frequencies ξ = −kt+O(1), therefore ψ̃(t, k, ξ)

decays like |k|−2〈t〉−2 if k �= 0. Similarly, the relations ux = −∂yψ and uy = ∂xψ show
that ũx decays like |k|−1〈t〉−1 and ũ y decays like |k|−1〈t〉−2.

(2) It can be seen from (1.6) that the functions ω(t, x, y) and ψ(t, x, y) are not uniformly
smooth as t → ∞, in the original variables x, y. To obtain smooth “profiles” we define

F(t, x, y) = ω(t, x + t y, y), φ(t, x, y) = ψ(t, x + t y, y). (1.7)

Notice that F(t, x, y) = ω0(x, y) (independent of t), while φ(t, x, y) is uniformly
smooth for all t provided that ω0 is smooth. Taking the Fourier transform in x, y, we
have the formula

φ̃(t, k, ξ) = − ω̃0(k, ξ)

k2 + |ξ − kt |2 . (1.8)

(3) An important observation of Orr is that for k �= 0 and large ξ , the normalized stream
functionφ (aswell as the velocityfield)mayexperience a transient growth as t approaches
the “critical time” tc = ξ/k before decaying to zero. This can be seen easily from the
formula (1.8). This transient growth on the linearized level turns out to be crucial for the
nonlinear analysis as well, and leads to the high regularity assumptions (Gevrey spaces)
that are required for the nonlinear perturbation theory.

We are now ready to state our first linear stability result, for monotonic shear flows. We
assume that the background shear flow b ∈ C4([0, 1]) satisfies the following properties:

(A) For some ϑ0 ∈ (0, 1/10]
ϑ0 ≤ b′(y) for any y ∈ [0, 1] and ‖b‖C4[0,1] ≤ 1/ϑ0.
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(B) For any k ∈ Z\{0} the associated linearized operator Lk : L2(0, 1) → L2(0, 1), k ∈
Z\{0}, given by

Lkg(y) := b(y)g(y) + b′′(y)
∫ 1

0
Gk(y, z)g(z)dz, (1.9)

has no discrete eigenvalues, where Gk is the Green’s function for the operator −∂2y + k2

on (0, 1) with zero Dirichlet boundary conditions, given by

Gk(y, z) := 1

k sinh k

{
sinh(k(1 − z)) sinh(ky) if 0 ≤ y ≤ z ≤ 1,
sinh(kz) sinh(k(1 − y)) if 0 ≤ z ≤ y ≤ 1.

(1.10)

For any function H(x, y) we let 〈H〉(y) denote the average of H in x . Our first linear
result is the following theorem of Wei–Zhang–Zhao [36] and the second author [22].

Theorem 1.1 Assume that b ∈ C4([0, 1]) satisfies properties (A) and (B) above and ω0 ∈
H4(T × [0, 1]) satisfies the properties

‖ω0‖H4(T×[0,1]) ≤ 1,
∫

T×[0,1]
ω0(x, y) dxdy = 0.

(i) Then there is a global solution ω ∈ C([0,∞) : H4) of the linear initial value problem
(1.5) and a function F ∈ L∞(T × [0, 1]) such that for all t ≥ 0,

‖ω(t, x + tb(y), y) − F(x, y)‖L∞(T×[0,1]) � 〈t〉−1, (1.11)

(ii) The velocity field u = (ux , uy) = (−∂yψ, ∂xψ) decays as t → ∞, i.e.

‖ux (t, x, y) − 〈ux 〉(t, y)‖L∞(T×[0,1]) � 〈t〉−1,

‖uy(t, x, y)‖L∞(T×[0,1]) � 〈t〉−2.
(1.12)

Wewill discuss some the main ingredients in the proof of Theorem 1.1 in Section 2 below.
We conclude this subsection with some remarks of this theorem, in the context of the general
problem of linear inviscid damping.

1.1.1 The Main Assumptions (A) and (B)

The assumption (A) that b(y) is strictly monotonic in y is important for our proof to ensure a
uniform rate of inviscid damping and sharp pointwise decay of the velocity fields in (1.12).

The spectral assumption (B) is also important, since inviscid damping fails if any of
the operators Lk has any eigenvalues. Since Lk is a compact perturbation of the simple
multiplication operator f → b(y) · f , by the general theory of Fredholm operators, the
spectrum of Lk is purely continuous spectrum [b(0), b(1)] for all k ∈ Z\{0}.

Finally, we note that there is a large class of shear flows b satisfying our assumptions. For
instance, if b is strictly convex satisfying b′′ > 0, or if b satisfies |b′| ≥ 1 and |b′′′| < 1 then
the spectrum of the operators Lk consist entirely of the continuous spectrum [b(0), b(1)] for
k ∈ Z\{0}.

1.1.2 Previous Work

The linear stability problem has a long history, starting with the pioneering work of Kelvin
[24], Rayleigh [31], Orr [30], and Taylor [33], among many others, with a focus on mode
stability. It has been investigated intensely in the last few years, in particular around general
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shear flows and vortices, motivated mainly by the potential applications to the full nonlinear
stability problem.

Without attempting to be exhaustive, wemention the results ofWei–Zhang–Zhao [36] and
the second author [22, 23], who proved optimal decay rates for the linearized problem near
monotone shear flows, and the results of Bedrossian–Coti Zelati–Vicol [4] and the authors
[20], who proved sharp linear decay estimates for general vortices with decreasing profiles.
We also refer the reader to recent work on the linear inviscid damping in the case of non-
monotonic shear flows, seeWei–Zhang–Zhao [37, 38] and Grenier–Nguyen–Rousset–Soffer
[16] and in the case of circular flows, see Coti Zelati–Zillinger [13].

1.1.3 The Main Conclusions

The main issue is to prove the time decay of the velocity fields claimed in (1.12). These
bounds are equivalent to showing that

|k|2〈t〉2‖ψk(t, y)‖L∞
y

+ |k|〈t〉‖∂yψk(t, y)‖L∞
y

� |k|4‖ω0k(y)‖L2
y
+ ‖ω0k(y)‖H4

y
(1.13)

for any k ∈ Z \ {0} and any t ≥ 0, where

ωk(t, y) := 1

2π

∫

T

ω(t, x, y)e−ikx dx, ψk(t, y) := 1

2π

∫

T

ψ(t, x, y)e−ikx dx . (1.14)

The bounds (1.11), which show pointwise convergence of the linear profile, follow easily
from (1.13) and the main (1.5).

Notice that the conclusions of the theorem match well with the conclusions derived in the
case of the Couette flow on R from the explicit formulas (1.6)–(1.8).

1.2 Asymptotic Nonlinear Stability

Nonlinear asymptotic stability results are difficult for the 2D incompressible Euler equation,
because the rate of stabilization is slow, the convergence of the vorticity field holds only in
the weak sense, the nonlinear effect is strong, and the space of possible final states is very
large.

To state our main theorem we define the Gevrey spaces Gλ,s(T × R) as the spaces of L2

functions f on T × R defined by the norm

‖ f ‖Gλ,s (T×R) :=
∥
∥
∥eλ〈k,ξ〉s f̃ (k, ξ)

∥
∥
∥
L2
k,ξ

< ∞, s ∈ (0, 1], λ > 0.

In the above (k, ξ) ∈ Z × R and f̃ denotes the Fourier transform of f in (x, y). More
generally, for any interval I ⊆ R we define the Gevrey spaces Gλ,s(T × I ) by

‖ f ‖Gλ,s (T×I ) := ‖E f ‖Gλ,s (T×R),

where E f (x) := f (x) if x ∈ I and E f (x) := 0 if x /∈ I .
Concerning the background shear flow b ∈ C∞(R), we replace the assumption (A) with

the following stronger assumption:

(A’) For some ϑ0 ∈ (0, 1/10] and β0 > 0

ϑ0 ≤ b′(y) ≤ 1/ϑ0 for y ∈ [0, 1] and b′′(y) ≡ 0 for y /∈ [2ϑ0, 1 − 2ϑ0], (1.15)

and
‖b‖L∞(0,1) + ‖b′′‖Gβ0,1/2 ≤ 1/ϑ0. (1.16)
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Our main nonlinear stability result in the article is the following:

Theorem 1.2 Assume that the function b satisfies the properties (A’) and (B) above, with
constants β0, ϑ0, κ > 0 as defined in (1.15)–(1.16) and (2.8). Then there are constants
β1 = β1(β0, ϑ0, κ) > 0 and ε = ε(β0, ϑ0, κ) > 0 such that the following statement is true:

Assume that the initial data ω0 has compact support in T × [2ϑ0, 1 − 2ϑ0], and satisfies

‖ω0‖Gβ0,1/2(T×R) = ε ≤ ε,

∫

T

ω0(x, y) dx = 0 for any y ∈ [0, 1]. (1.17)

Then there is a unique smooth global solution ω : [0,∞) × T × [0, 1] → R of the Euler
(1.4) with the following properties:

(i) For all t ≥ 0, suppω(t) ⊆ T × [ϑ0, 1 − ϑ0].
(ii) There exists F∞(x, y) ∈ Gβ1,1/2 with supp F∞ ⊆ T × [ϑ0, 1 − ϑ0] such that for all

t ≥ 0,

‖ω(t, x + tb(y) + �(t, y), y) − F∞(x, y)‖Gβ1,1/2(T×[0,1]) �β0,ϑ0,κ ε〈t〉−1, (1.18)

where

�(t, y) :=
∫ t

0
〈ux 〉(τ, y) dτ.

(iii) We define the smooth functions ψ∞, u∞ : [0, 1] → R by

∂2yψ∞ = 〈F∞〉, ψ∞(0) = ψ∞(1) = 1, u∞(y) := −∂yψ∞.

Then the velocity field u = (ux , uy) satisfies
∥
∥〈ux 〉(t, y) − u∞(y)

∥
∥Gβ1,1/2(T×[0,1]) �β0,ϑ0,κ ε〈t〉−2, (1.19)

∥
∥ux (t, x, y) − 〈ux 〉(t, y)∥∥L∞(T×[0,1]) �β0,ϑ0,κ ε〈t〉−1, (1.20)

∥
∥uy(t, x, y)

∥
∥
L∞(T×[0,1]) �β0,ϑ0,κ ε〈t〉−2. (1.21)

This theorem was proved by the authors in [19], and we will present the main ideas of the
proof in Section 3 below. A similar theorem was proved slightly later and independently by
Masmoudi–Zhao [26]. In the rest of this subsection we discuss some of the assumptions and
the conclusions of Theorem 1.2, and provide more references and remarks.

1.2.1 Nonlinear Asymptotic Stability of Euler Equations in 2D

The first nonlinear asymptotic stability result was proved by Bedrossian–Masmoudi [7], who
showed that small perturbations of the Couette flow on the infinite cylinder T × R converge
weakly to nearby shear flows. This result was extended by the authors [17] to the finite channel
T×[0, 1], in order to be able to consider solutions with finite energy. In [18] the authors also
proved asymptotic stability of point vortex solutions in R

2, showing that small and Gevrey
smooth perturbations converge to a smooth radial profile, and the position of the point vortex
stabilizes rapidly and forms the center of the final radial profile. Finally, the authors [19] and
Masmoudi–Zhao [26] independently proved asymptotic stability of monotonic shear flows
in bounded channels, which is Theorem 1.2 above. These results are the only known results
on nonlinear asymptotic stability of stationary solutions for the Euler equations.

We remark that inviscid damping ismuch better understood in the linear case, in a variety of
settings, as summarized in Section 1.1.2 above. The reason for this is that there is a very large
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gap between linear and nonlinear theory. In fact, even in the simplest case of the Couette flow,
to prove nonlinear stability one needs to bound the contribution of the so-called “resonant
times”, which can only be detected by working in the Fourier space, in a specific coordinate
system. This requires refined Fourier analysis techniques, including energy functionals with
suitable weights (in the Fourier space), which are not compatible with the natural spectral
theory of the variable-coefficient linearized problems associated to general shear flows and
vortices. In addition, the final state of the flow is determined dynamically by the global
evolution and cannot be described in terms of the initial data and nonlinear decay comes at
the expense of loss of regularity.

Overall, proving nonlinear inviscid damping appears to be a very challenging problem
even in the simplest cases not covered so far, for example for the Poisseuille flow b(y) = y2.
We hope that the general framework we develop here can be adapted to establish nonlinear
asymptotic stability in other outstanding open problems involving 2Dor 3DEuler andNavier-
Stokes equations, such as the stability of smooth radially decreasing vortices in 2D.

1.2.2 The Support Assumptions

The assumption on the compact support ofω0 is likely necessary to prove scattering inGevrey
spaces. Indeed, Zillinger [41] showed that scattering does not hold in high Sobolev spaces
unless one assumes that the vorticity vanishes at high order at the boundary. This is due towhat
is called “boundary effect”, which is not consistent with inviscid damping. This boundary
effect can also be seen clearly in [22] as the main asymptotic term for the stream function.
Understanding quantitatively the boundary effect in the context of asymptotic stability of
Euler or Navier–Stokes equations is a very interesting topic by itself, but we will not address
it here.

The assumption on the support of b′′ is necessary to preserve the compact support of ω(t)
in T×[ϑ0, 1−ϑ0], due to the nonlocal term b′′(y)∂xψ in (1.4). In principle, one could hope
to remove this assumption (and replace it with a milder decay assumption) by working in the
infinite cylinder T × R domain instead of the finite channel T × [0, 1], but this would be at
the expense of considering solutions of infinite energy.

1.2.3 Gevrey Regularity

The use of Gevrey spaces is necessary in the context of inviscid damping, mainly due to
loss of regularity during the flow. In contrast, Sobolev spaces provide control only on finitely
many derivatives, which is not sufficient in our case. Analytic functions have also been used
in certain cases, but analyticity is a very rigid condition which is not compatible with the type
of localization arguments we need in our problem (the point is that one can work in the class
of compactly supported Gevrey functions, but there are no non-trivial compactly supported
analytic functions).

The Gevrey regularity assumption (1.17) on the initial data ω0 is likely sharp. See the
recent construction of nonlinear instability of Deng–Masmoudi [14] for the Couette flow in
slightly larger Gevrey spaces, and the more definitive counter-examples to inviscid damping
in low Sobolev spaces by Lin–Zeng [25].

1.2.4 The Main Conclusions

The most important statement in Theorem 1.2 is the bound (1.18), which provides strong
control on the “profile” of the vorticity and fromwhich the other statements follow easily.We
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note that the convergence (1.18) of the profile for vorticity holds in a slightly weaker Gevrey
space (β1 < β0). This is connected with the use of energy functionals with decreasing time-
dependent weights to control the profile, and is a reflection of the phenomenon that “decay
costs regularity” in inviscid damping.

We also remark that the pointwise decay of the velocity fields in (1.20)–(1.21) is sharp
and matches the linear pointwise decay in (1.12) (and the decay in the case of the Couette
flow, which follows from the explicit formulas (1.6)).

At the qualitative level, our main conclusion (1.18) shows that the vorticity ω converges
weakly to the function 〈F∞〉(y). This is consistent with a far-reaching conjecture regarding
the long time behavior of the 2D Euler equation, which predicts that for general generic
solutions the vorticity field converges, as t → ∞, weakly but not strongly in L2

loc to a steady
state. Proving such a conjecture for general solutions is, of course, well beyond the current
PDE techniques, but the nonlinear asymptotic stability results we have so far in [7, 17–19,
26] are consistent with this conjecture.

1.2.5 Some Technical Remarks

The equation (1.4) for the vorticity deviation is equivalent to the original Euler equations
(1.1)–(1.3). The condition

∫

T
ω0(x, y) dx = 0 can be imposed without loss of generality,

because we may replace the shear flow b(y) by the nearby shear flow b(y)+〈ux0〉(y). In fact,
since ∂y〈∂yψ〉 = 〈ω〉, this condition is equivalent to

〈ux0〉(y) = 0 for any y ∈ [0, 1].
These identities only hold for the initial data, and are not propagated by the flow (1.4).
However, it is not hard to see that

〈ux 〉(t, y) ≡ 0 for y ∈ [0, 1] \ [ϑ0, 1 − ϑ0] and t ∈ [0, T ],
as long as the vorticity ω is supported in [0, T ] × T × [ϑ0, 1 − ϑ0].

There are several parameters in our proof, and we summarize their roles here. The param-
eters β0, ϑ0, κ > 0 (the structural constants of the problem) are assumed fixed, and implicit
constants in inequalities like A � B are allowed to depend on these parameters. We will
later fix a constant δ0 > 0 sufficiently small depending on these parameters, as part of the
construction of our main weights defined in (3.9)–(3.10).

These weights will also depend on a small parameter δ > 0, much smaller than δ0, which
is needed at many places, such as in commutator estimates using inequalities like (3.18). We
will use the general notation A �δ B to indicate inequalities where the implicit constants
may depend on δ. Finally, the parameters ε and ε1 = ε2/3, which bound the size of the
perturbation, are assumed to be much smaller than δ.

1.2.6 Further Remarks and References

(1) The problem of nonlinear inviscid damping we consider here is connected to the well-
known Landau damping effect for the Vlasov–Poisson equations, and we refer to the
celebrated work of Mouhot–Villani [29] for the physical background and more refer-
ences.

(2) Inviscid damping is a very subtle mechanism of stability, which has only been proved
rigorously in 2D for Euler-type equations. In fact, inviscid damping does not seem to
hold at the nonlinear level even for small variations of the 2D Euler equations, such
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as the generalized SQG equations with slightly less regular stream functions (see [21,
Section 3]).

(3) The Euler equations can be viewed as the limiting case of the Navier–Stokes equations
with small viscosity ν > 0. In the presence of viscosity, one can have more robust
stability results for initial data that is sufficiently small relative to ν, which exploit the
enhanced dissipation due to themixing of the fluid. See [5, 8, 9, 15, 39] and the references
therein. Moreover, in the limit ν → 0 and if there is boundary then the boundary layer
becomes an important issue, and there are significant additional difficulties. We refer the
interested reader to [6, 12] for more details and further references.

1.3 Non-monotonic Shear Flows

Nonlinear asymptotic stability in the case of shear flows that are not monotonic is a wide
open and important problem, even in the simplest case of the Poiseuille flow b(y) = y2 on
the infinite channel T × R. However, some linear stability are known, see for example the
recent work of Wei–Zhang–Zhao [37].

In the second part of this series of two papers we will prove a new linear stability result
for a certain class of shear flows with one critical point. We remark that the conclusions are
weaker than in the case of monotonic shear flows, but we are still able to prove quantitative
decay for the associated stream function, thus improving on the results of [37].

1.4 Organization

The rest of the paper is organized as follows: in Section 2 we present the main ideas in
the proof of Theorem 1.1, while in Section 3 we present the main ideas in the proof of
Theorem 1.2.

2 Linear Stability

In this section we outline the proof of Theorem 1.1, following the paper [22].

2.1 TheMain Formulas

Taking Fourier transform in x in the (1.5) for ω, we obtain that

∂tωk + ikb(y)ωk − ikb′′(y)ψk = 0,

for k ∈ Z, t ≥ 0, y ∈ [0, 1], where ωk and ψk are defined as in (1.14). This is equivalent to

∂tωk + ikLkωk = 0, (2.1)

see (1.9)–(1.10). The spectrum of the operator Lk is included in the interval [−A, A] for
A sufficiently large, due to the spectral assumption (B). By the standard theory of spectral
projections, it follows from (2.1) that for any y ∈ [0, 1],

ωk(t, y) = 1

2π i
lim

ε→0+

∫

[−A,A]
eiλkt

{[
(λ + Lk − iε)−1 − (λ + Lk + iε)−1] ω0k

}
(y) dλ,
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where (λ + Lk ± iε)−1 denote resolvent operators. Thus, for any y ∈ [0, 1],

ψk(t, y) = − 1

2π i
lim

ε→0+

∫

[−A,A]
e−ikλt

[
ψ−
k,ε(y, λ) − ψ+

k,ε(y, λ)
]
dλ, (2.2)

where, for y ∈ [0, 1] and λ ∈ [−A, A],

ψ±
k,ε(y, λ) :=

∫ 1

0
Gk(y, z)

[
(−λ + Lk ± iε)−1ω0k

]
(z) dz. (2.3)

The definition (2.3) shows that, for any λ ∈ R and ε ∈ [−1, 1] \ {0},

−k2ψ±
k,ε(y, λ) + d2

dy2
ψ±
k,ε(y, λ) − b′′(y)

b(y) − λ ± iε
ψι
k,ε(y, λ) = −ω0k(y)

b(y) − λ ± iε
.

Therefore
ψ±
k,ε(y, λ) + (T 1

k,±ε,λψ
±
k,ε)(y, λ) = (T 0

k,±ε,λω0k)(y, λ) (2.4)

where, for any λ ∈ R and ρ ∈ R \ {0},

T 0
k,ρ,λ f (y, λ) :=

∫ 1

0
Gk(y, z)

f (z)

b(z) − λ + iρ
dz,

T 1
k,ρ,λ f (y, λ) :=

∫ 1

0
Gk(y, z)

b′′(z) f (z)
b(z) − λ + iρ

dz.

(2.5)

The main issue is to prove decay of the stream functions ψk and their y-derivatives,

|k|2〈t〉2‖ψk(t, y)‖L∞
y

+ |k|〈t〉‖∂yψk(t, y)‖L∞
y

� |k|4‖ω0k(y)‖L2
y
+ ‖ω0k(y)‖H4

y
. (2.6)

The idea is to use the identity (2.2) and integrate by parts in the spectral parameter λ. For
this we need good bounds on the generalized eigenfunctions ψ±

k,ε and their first and second
order derivatives in λ; we prove such bounds by analyzing the identity (2.4).

2.2 The Operators Tlk,�,�, l ∈ {0, 1}

To implement this strategy we need to understand well the operators T 0
k,ρ,λ and T

1
k,ρ,λ defined

in (2.5). Here we start using the lower bound b′(z) � 1 in assumption (A); to gain some
intuition we integrate by parts in z, to eliminate the singular factor b(z)−λ+iρ, and calculate

T 0
k,ρ,λ f (y, λ) = −

∫ 1

0
log[b(z) − λ + iρ] d

dz

{

Gk(y, z)
f (z)

b′(z)

}

dz, (2.7)

and then

(∂yT
0
k,ρ,λ f )(y, λ) = −log[b(y)− λ+ iρ] f (y)

b′(y)
−

∫ 1

0
log[b(z)− λ+ iρ]G ′

k(y, z)
f (z)

b′(z)
dz

−
∫ 1

0
log[b(z) − λ + iρ](∂yGk)(y, z)

d

dz

f (z)

b′(z)
dz,

where

∂y∂zGk(y, z) = δ0(y − z) + G ′
k(y, z),

G ′
k(y, z) := 1

sinh k

{−k cosh(k(1 − z)) cosh(ky) if 0 ≤ y ≤ z ≤ 1,
−k cosh(kz) cosh(k(1 − y)) if 0 ≤ z ≤ y ≤ 1.
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These formulas show that the operators T 0
k,ρ,λ have a smoothing effect. For example, if

f ∈ H1(0, 1) then

‖T 0
k,ρ,λ f ‖L∞

y
� |k|‖ f ‖H1 ,

∥
∥
∥
∥(∂yT

0
k,ρ,λ f )(y, λ) + log[b(y) − λ + iρ] f (y)

b′(y)

∥
∥
∥
∥
L∞
y

� |k|‖ f ‖H1 ,

∥
∥
∥∂yT

0
k,ρ,λ f

∥
∥
∥
L p
y

�p |k|‖ f ‖H1 , p ∈ [2,∞),

uniformly for λ ∈ [−A, A] and δ ∈ [−1, 1] \ {0}. Similar bounds hold for the operators
T 1
k,ρ,λ as well. The |k| dependence in the right-hand sides of these inequalities is not optimal,

but this is not an issue here.

2.3 The Limiting Absorption Principle

The spectral condition (B) is a qualitative condition, and we need to make it quantitative in
order to link it to the perturbation theory. For this we define, for any k ∈ Z \ {0},

‖ f ‖H1
k (0,1) := ‖ f ‖L2(0,1) + |k|−1‖ f ′‖L2(0,1).

The following lemma provides the critical quantitative bounds.

Lemma 2.1 Then there is a constant κ > 0 such that, for any f ∈ H1
k (0, 1),

‖ f + T 1
k,ε,λ f ‖H1

k (0,1) ≥ κ‖ f ‖H1
k (0,1), (2.8)

uniformly in λ ∈ [−A, A], k ∈ Z\{0}, and ε ∈ [−κ, κ] \ {0}.

2.4 Smoothness of the Generalized EigenfunctionsÃ±
k,"

To use the formula (2.2) and prove 〈t〉−2 decay of the stream function (in the form (2.6))
we need to integrate by parts twice in λ. For this we need to calculate λ-derivatives of the
the operators T l

k,δ,λ, l ∈ {0, 1}. Taking λ-derivatives leads to more singular factors in the
integrals representing these operators, which require additional integrations by parts in z. For
example, starting from the formula (2.7) and integrating by parts once more,

(∂λT
0
k,ρ,λ f )(y, λ) =

∫ 1

0

1

b(z) − λ + iρ

d

dz

{

Gk(y, z)
f (z)

b′(z)

}

dz

=
{

log[b(z) − λ + iρ]∂zGk(y, z)
f (z)

b′(z)

} ∣
∣
∣
1

0

−
∫ 1

0
log[b(z) − λ + iρ] d

dz

{
1

b′(z)
d

dz

{

Gk(y, z)
f (z)

b′(z)

}}

dz.

Since ∂2z Gk(y, z) = k2Gk(y, z) − δ0(y − z), this can be written in the form

(∂λT
0
k,ρ,λ f )(y, λ)= log[b(1)−λ+iρ]∂zGk(y, 1)

f (1)

b′(1)
−log[b(0) − λ + iρ]∂zGk(y, 0)

f (0)

b′(0)
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+ log[b(y) − λ + iρ] f (y)

[b′(y)]2 −
∫ 1

0
log[b(z) − λ + iρ]

{

∂zGk(y, z)
2 f ′(z)b′(z) − 3 f (z)b′′(z)

[b′(z)]3

+Gk(y, z)
b′(z)[ f ′′(z)b′(z)− f (z)b′′′(z)]−3b′′(z)[ f ′(z)b′(z)− f (z)b′′(z)]+k2 f (z)[b′(z)]2

[b′(z)]4
}

dz.

Similar calculations give explicit formulas for ∂y∂λT 0
k,ρ,λ f and ∂2λT

0
k,ρ,λ f , involving the

singular factors 1/(b(p) − λ − iρ), p ∈ {0, 1, y}. One can then use limiting absorption
principles, similar to Lemma 2.1, and the identities (2.4) to prove bounds on the functions
∂λψ

±
k,ε and ∂2λψ±

k,ε . Then we use the formula (2.2) and integrate by parts in λ twice to prove
the desired pointwise decay estimates (2.6).

3 Nonlinear Inviscid Damping and Asymptotic Stability

We describe now some of the main ideas involved in the proof of Theorem 1.2, following
the paper [19].

3.1 Renormalization and theMain Equations

To obtain uniform control in time we need to unwind the transportation in x . As in [7, 17,
18], we make the nonlinear change of variables

v = b(y) + 1

t

∫ t

0
〈ux 〉(τ, y) dτ, z = x − tv. (3.1)

The point of this change of variables is to eliminate two of the non-decaying terms in the
evolution equation in (1.4), namely the terms b(y)∂xω and 〈ux 〉∂xω. The change of variable
y → v is crucial for our analysis, and it allows us to link the renormalized stream function φ

to the profile F using the elliptic equation (3.8). The point is that this equation has constant
coefficients at the top linear level (in a suitable sense), so it is compatible with Fourier
analysis.

This change of variables leads to new functions satisfying new equations. We summarize
our main conclusions in the following proposition:

Proposition 3.1 Assume ω : [0, T ] × T × [0, 1] → R is a sufficiently smooth solution of the
system (1.4) on some time interval [0, T ], with initial data ω0 satisfying (1.17). Assume that
ω(t) is supported in T × [ϑ0, 1 − ϑ0] and that ‖〈ω〉(t)‖H10 � 1 for all t ∈ [0, T ]. Then

〈ux 〉(t, y) = 0 for any t ∈ [0, T ] and y ∈ [0, ϑ0] ∪ [1 − ϑ0, 1].
We let (z, v) : [0, T ] × T × [0, 1] → [0, T ] × T × [b(0), b(1)] denote the change of

variables (3.1), and define the new variables F, φ : [0, T ] × T × [b(0), b(1)] → R and
V ′, V ′′, V̇ , B ′, B ′′,H : [0, T ] × [b(0), b(1)] → R by the formulas

F(t, z, v) := ω(t, x, y), φ(t, z, v) := ψ(t, x, y), (3.2)

V ′(t, v) := ∂yv(t, y), V ′′(t, v) = ∂yyv(t, y), V̇ (t, v) = ∂tv(t, y), (3.3)

B ′(t, v) := ∂yb(y), B ′′(t, v) := ∂yyb(y), (3.4)

H(t, v) := tV ′(t, v)∂v V̇ (t, v) = B ′(t, v) − V ′(t, v) − 〈F〉(t, v). (3.5)
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Then V ′(t, v) ≥ ϑ0/2 and the new variables F, V ′ − B ′, V̇ , and H are supported in
[0, T ] × T × [b(ϑ0), b(1 − ϑ0)] and satisfy the evolution equations

∂t F − B ′′∂zφ = V ′∂vP�=0φ ∂z F − (V̇ + V ′∂zφ) ∂vF, (3.6)

∂t B
′(t, v) + V̇ ∂vB

′(t, v) = ∂t B
′′(t, v) + V̇ ∂vB

′′(t, v) = 0,

∂t (V
′ − B ′) + V̇ ∂v(V

′ − B ′) = H/t,

∂tH + V̇ ∂vH = −H/t − V ′〈∂vP�=0φ ∂z F〉 + V ′〈∂zφ ∂vF〉. (3.7)

The variables φ, V ′′, and V̇ satisfy the elliptic-type identities

∂2z φ + (V ′)2(∂v − t∂z)
2φ + V ′′(∂v − t∂z)φ = F, (3.8)

∂v V̇ = H/(tV ′), V̇ (t, b(0)) = V̇ (t, b(1)) = 0, V ′′ = V ′∂vV
′.

We explain briefly the roles of our new variables (see also the more precise discussion
after the statement of Proposition 3.2):

(1) The main variable we need to control is F , which is the profile for the vorticity ω. The
second important variable is the renormalized stream function φ, which is linked to F
through the elliptic equation (3.8).

(2) The functions V ′, V ′′, B ′, B ′′ are connected to the change of variables y → v. These
functions appear in many of the nonlinear terms in the equations, so it is important to
control their smoothness as well, as part of a combined bootstrap argument, in a way that
is consistent with the smoothness of the functions F and φ.

(3) The variables V̇ and H play a different role: they encode the convergence of the coor-
dinate system as t → ∞. The function H satisfies the more favorable (3.7), and we use
this equation to prove asymptotic decay. The identity in (3.5) can be proved using the
definitions.

3.2 Energy Functionals and the Bootstrap Proposition

The main idea of the proof is to estimate the increment of suitable energy functionals, which
are defined using special weights. These weights are defined by

ANR(t, ξ) := eλ(t)〈ξ〉1/2

bN R(t, ξ)
e
√

δ〈ξ〉1/2 , AR(t, ξ) := eλ(t)〈ξ〉1/2

bR(t, ξ)
e
√

δ〈ξ〉1/2 , (3.9)

and

Ak(t, ξ) := eλ(t)〈k,ξ〉1/2
(
e
√

δ〈ξ〉1/2

bk(t, ξ)
+ e

√
δ|k|1/2

)

, (3.10)

where k ∈ Z, t ∈ [0,∞), ξ ∈ R. The function λ : [0,∞) → [δ0, 3δ0/2] is defined by

λ(0) = 3

2
δ0, λ′(t) = − δ0σ

2
0

〈t〉1+σ0
,

where δ0 > 0 is a fixed parameter and σ0 = 0.01. In particular, λ is decreasing on [0,∞),
and the functions ANR , AR , Ak are also decreasing in t . The parameter δ > 0, which appears
also in the weights bR , bN R , bk , is to be taken sufficiently small, depending only on the
structural parameters δ0, ϑ0, and κ .
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The precise definitions of the weights bN R , bR , bk are very important; we will discuss
some of the basic requirements in Section 3.2.1 below. For now we note that these functions
are essentially increasing in t and satisfy

e−δ
√|ξ | ≤ bR(t, ξ) ≤ bk(t, ξ) ≤ bN R(t, ξ) ≤ 1 for any t, ξ, k.

In other words, the weights 1/bN R , 1/bR , 1/bk are small when compared to the main
factors eλ(t)〈ξ〉1/2 and eλ(t)〈k,ξ〉1/2 in (3.9)–(3.10). However, their relative contributions are
important as they are used to distinguish between resonant and non-resonant times.

Assume that ω : [0, T ]×T×[0, 1] → R is as in Proposition 3.1 and define the functions
F , φ, V ′, V ′′, V̇ , B ′, B ′′,H as in (3.2)–(3.5). To construct useful energy functionals we need
to modify the functions V ′, B ′, B ′′ which are not “small”, so we define the new variables

B ′
0(v) := B ′(0, v) = (∂yb)(b

−1(v)), B ′′
0 (v) := B ′′(0, v) = (∂2y b)(b

−1(v)),

V ′∗ := V ′ − B ′
0, B ′∗ := B ′ − B ′

0, B ′′∗ := B ′′ − B ′′
0 .

Ourmain goal is to control the functions F andφ. For thisweneed to consider two auxiliary
functions F∗ and φ′. We define first the function φ′(t, z, v) : [0, T ]× T ×[b(0), b(1)] → R

as the unique solution to the equation

∂2z φ
′ + (B ′

0)
2(∂v − t∂z)

2φ′ + B ′′
0 (∂v − t∂z)φ

′ = F, φ′(t, z, b(0)) = φ′(t, z, b(1)) = 0,
(3.11)

on T × [b(0), b(1)]. Then we define the modified profile

F∗(t, z, v) := F(t, z, v) − B ′′
0 (v)

∫ t

0
∂zφ

′(τ, z, v) dτ, (3.12)

and the renormalized elliptic profiles

�(t, z, v) := (∂2z + (∂v − t∂z)
2) (�(v) φ(t, z, v)) ,

�∗(t, z, v) := (∂2z + (∂v − t∂z)
2)

(
�(v) (φ(t, z, v) − φ′(t, z, v))

)
,

where � : R → [0, 1] is a Gevrey class cut-off function, satisfying

∥
∥
∥e〈ξ〉3/4�̃(ξ)

∥
∥
∥
L∞ � 1,

supp� ⊆ [b(ϑ0/4), b(1 − ϑ0/4)] , � ≡ 1 in [b(ϑ0/3), b(1 − ϑ0/3)] .

Our bootstrap argument is based on controlling simultaneously energy functionals and
space-time integrals. We define these quantities in the Fourier space, since one of our main
concerns is to capture accurately the contributions of the resonances (t, k, ξ) ∈ [0, T ×Z×R

satisfying ξ − tk = 0. Let ȦY (t, ξ) := (∂t AY )(t, ξ) ≤ 0, Y ∈ {N R, R, k} and let f̃ denote
the Fourier transform of f , either on T × R or on R. We define

E f (t) :=
∑

k∈Z

∫

R

A2
k(t, ξ)

∣
∣ f̃ (t, k, ξ)

∣
∣2 dξ, f ∈ {F, F∗},

B f (t) :=
∫ t

1

∑

k∈Z

∫

R

| Ȧk(s, ξ)|Ak(s, ξ)
∣
∣ f̃ (s, k, ξ)

∣
∣2 dξds,
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EF−F∗ (t) :=
∑

k∈Z∗

∫

R

(1 + 〈k, ξ〉/〈t〉)A2
k(t, ξ)

∣
∣
∣ ˜(F − F∗)(t, k, ξ)

∣
∣
∣
2
dξ, (3.13)

BF−F∗ (t) :=
∫ t

1

∑

k∈Z∗

∫

R

(1+〈k, ξ〉/〈s〉)| Ȧk(s, ξ)|Ak(s, ξ)

∣
∣
∣ ˜(F−F∗)(s, k, ξ)

∣
∣
∣
2
dξds, (3.14)

E�(t) :=
∑

k∈Z∗

∫

R

A2
k(t, ξ)

|k|2〈t〉2
|ξ |2 + |k|2〈t〉2

∣
∣�̃(t, k, ξ)

∣
∣2 dξ, � ∈ {�,�∗},

B�(t) :=
∫ t

1

∑

k∈Z∗

∫

R

| Ȧk(s, ξ)|Ak(s, ξ)
|k|2〈s〉2

|ξ |2 + |k|2〈s〉2
∣
∣�̃(s, k, ξ)

∣
∣2 dξds,

Eg(t) :=
∫

R

A2
R(t, ξ) |̃g(t, ξ)|2 dξ, g ∈ {V ′∗, B ′∗, B ′′∗ },

Bg(t) :=
∫ t

1

∫

R

| ȦR(s, ξ)|AR(s, ξ) |̃g(s, ξ)|2 dξds,

EH(t) := K2
∫

R

A2
N R(t, ξ) (〈t〉/〈ξ 〉)3/2 ∣

∣H̃(t, ξ)
∣
∣2 dξ,

BH(t) := K2
∫ t

1

∫

R

| ȦN R(s, ξ)|ANR(s, ξ) (〈s〉/〈ξ 〉)3/2 ∣
∣H̃(s, ξ)

∣
∣2 dξds,

for any t ∈ [0, T ], where Z
∗ := Z \ {0} and K ≥ 1 is a large constant that depends only on

δ.
Our main bootstrap proposition is the following:

Proposition 3.2 Assume T ≥ 1 andω ∈ C([0, T ] : G2δ0,1/2) is a sufficiently smooth solution
of the system (1.4) on the time interval [0, T ], with initial data ω0 satisfying (1.17). Assume
thatω(t) is supported inT×[ϑ0, 1−ϑ0] and that ‖〈ω〉(t)‖H10 � 1 for all t ∈ [0, T ]. Define
F, F∗, �, �∗ B ′∗, B ′′∗ , V ′∗,H as above. Assume that ε1 is sufficiently small (depending on δ),

∑

g∈{F, F∗, F−F∗, �, �∗, V ′∗, B′∗, B′′∗ ,H}
Eg(t) ≤ ε31 for any t ∈ [0, 1],

and
∑

g∈{F, F∗, F−F∗, �, �∗, V ′∗, B′∗, B′′∗ ,H}

[Eg(t) + Bg(t)
] ≤ ε21 for any t ∈ [1, T ].

Then for any t ∈ [1, T ] we have the improved bounds
∑

g∈{F, F∗, F−F∗, �, �∗, V ′∗, B′∗, B′′∗ ,H}

[Eg(t) + Bg(t)
] ≤ ε21/2. (3.15)

Moreover, we also have the stronger bounds for t ∈ [1, T ]
∑

g∈{F,�}

[Eg(t) + Bg(t)
]

�δ ε31 .

Proposition 3.2 is the main ingredient in the proof of Theorem 1.2. Our argument involves
proving simultaneous control of nine main quantities F , F∗, F − F∗, �, �∗, V ′∗, B ′∗, B ′′∗ ,H.
We summarize briefly the roles of these quantities:

(1) The main variables are the vorticity profile F and the renormalized elliptic profile �.
Our primary goal is to prove global bounds on these quantities.
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(2) The functions F∗ and�∗ are auxiliary variables, and we analyze them as an intermediate
step to controlling themain variables F and�. The function F∗ satisfies a better transport
equation than F , without any other linear terms, while the function �∗ satisfies a better
elliptic equation than �, again without linear terms in the right-hand side.

(3) A significant component of the proof is to control the function F − F∗, which allows us
to pass from the modified profile F∗ to the true profile F . This is based on the theory of
the linearized equation in Gevrey spaces, as developed in [23], and requires the spectral
assumption (B) on the shear flow. We remark that the bootstrap control on the variable
F − F∗ is slightly stronger than on the variables F and F∗ separately, which is needed
to compensate for the lack of symmetry in some of the transport terms.

(4) The functions V ′∗, B ′∗, and B ′′∗ are present due to the change of variables y → v, and
appear in many of the nonlinear terms in the equations. To close the entire argument it is
important to control these functions as well, as part of a combined bootstrap argument,
in a way that is consistent with the control on the main functions F and �.

(5) Finally, the functionH, which decays in time, captures the convergence of the system as
t → ∞. This function decays at a rate of 〈t〉−3/4, in a weaker topology, which shows that
the function ∂v V̇ decays fast at an integrable rate of 〈t〉−7/4, again in a weaker topology.

3.2.1 TheWeights Ak , ANR , and AR

To make the bootstrap argument work the weights Ak , ANR , and AR in Proposition 3.2 have
to be defined very carefully. These weights are required to satisfy several strong properties,
and can only be used if the initial data is in Gevrey spaces.

These weights have been defined and analyzed in [17–19] (as refinements of the weights
introduced in [7], with an additional smoothing procedure to make them compatible with
commutator estimates). We will not provide the precise definitions here; instead, we will
state and explain three critical properties that these weights need to satisfy.

(1) Assume first that F and φ satisfy the simplified closed system

∂t F − ∂vP�=0φ ∂z F = 0, ∂2z φ + (∂v − t∂z)
2φ = F,

for (z, v, t) ∈ T × R × [0,∞). Compared to the original equation (3.6), we assume
that b′′ ≡ 0 (the Couette flow) and keep only one nonlinear term, the “reaction term”
∂vP �=0φ · ∂z F . We would like to control, uniformly in time, an energy functional of the
form

E(t) :=
∑

k∈Z

∫

R

A2
k(t, ξ)

∣
∣F̃(t, k, ξ)

∣
∣2 dξ, (3.16)

as well as a similar energy functional for the function φ, for a suitable weight Ak(t, ξ)

which decreases in t . The main observation is that

˜∂vP�=0φ(t, k, ξ) = − iξ

k2
F̃(t, k, ξ)

1 + |t − ξ/k|2 1k �=0. (3.17)

When |ξ | � k2, the factor ξ/k2 in (3.17) indicates a loss of one full derivative in v,
which occurs in the resonant region {(t, k, ξ) : |t − ξ/k| � |ξ |/k2, k2 + 1 � |ξ |}.
This is a major obstruction to proving stability, which cannot be removed by standard
symmetrization techniques.
The key idea is to use imbalanced weights Ak(t, ξ) to absorb this derivative loss, taking
advantage of the favorable structure of the nonlinearity that does not allow for contri-
butions to the resonant region to come from bilinear interactions of small frequencies
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and frequencies in the resonant region (due to the factor ∂z F in the reaction term). More
precisely, the weights Ak are constructed to satisfy the property

A�(t, η)

Ak(t, ξ)
≈

∣
∣
∣
η

�2

∣
∣
∣

1

1 + |t − η/�| ,

when k �= �, � �= 0, ξ = η + O(1), k = � + O(1), and 1 + |t − η/�| � |η|/�2.
(2) The weights Ak(t, ξ) have to decrease in time, in the quantitative form,

−∂t Ak(t, ξ)

Ak(t, ξ)
≈ 1

〈t − ξ/k〉 ,

if k ∈ Z\{0}, k2 � |ξ |, |t − ξ/k| � |ξ |/k2, which is needed in order to be able to
control some of the nonlinear terms using the Cauchy–Kowalevski terms coming from
time differentiation of the energy functional E in (3.16). This leads to loss of regularity
of the profile F during the evolution, which is the price to pay to prove nonlinear decay
of the stream function φ.

(3) Finally, to prove commutator estimates in the context of our problem, we need to
know that the weights vary sufficiently slowly in ξ , ideally something like |Ak(t, ξ) −
Ak(t, η)| � 〈k, ξ 〉−1/2[Ak(t, ξ)+ Ak(t, η)] if 〈ξ −η〉 � 1. This is not possible, however,
in the framework of imbalanced weights as defined above. Our solution to this problem is
to allow the weights to depend on another parameter δ � 1, and prove weaker estimates
of the form

|Ak(t, ξ) − Ak(t, η)| �
[

C(δ)

〈k, ξ 〉1/2 + √
δ

]

max{Ak(t, ξ), Ak(t, η)} (3.18)

if 〈ξ − η〉 � 1 � min{〈k, ξ 〉, 〈k, η〉}. Such bounds are still suitable to control the
commutators, due to the gain of

√
δ for large frequencies.

3.3 The Auxiliary Nonlinear Profile

In the case of general shear flows, an essential new difficulty that is not present in the Couette
case, is the additional linear term B ′′(t, v)∂zφ in (3.6). This extra linear term cannot be treated
as a perturbation if b′′ is not assumed to be small. On the linearized level, one can understand
the evolution by using spectral analysis, especially the regularity analysis of generalized
eigenfunctions corresponding to the continuous spectrum. However, it is still a challenge
to combine the linear spectral analysis with the more sophisticated Fourier analysis tools
needed for controlling the nonlinearity. We deal with this basic issue in two steps: first we
define an auxiliary nonlinear profile F∗(t) given by

F∗(t, z, v) = F(t, z, v) −
∫ t

0
B ′′(0, v)∂zφ

′(s, z, v) ds. (3.19)

Thus F∗ takes into account the linear effect accumulated up to time t and can be bounded
perturbatively, using weighted energy estimates. The function φ′ (not to be confused with the
derivative of φ) is a small but crucial modification of φ, obtained by freezing the coefficients
of the elliptic equation defining stream functions at time t = 0, in order to keep these
coefficients very smooth. See (3.12) for the precise definition.

On a heuristic level, we expect that the full evolution of F consists of two contributions:
the main, linear evolution that changes the size of the profile most significantly, and a small
but rough (compared with the linear evolution) nonlinear correction. We can view (3.19)
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as a bounded linear transformation in both space and time from F to F∗ which takes into
account the bulk linear evolution. Remarkably, the transformation (3.19) can be chosen
independently of the nonlinear evolution, once the nonlinear change of coordinates is fixed,
and can be studied using just linear analysis. The key point is that this transformation can be
inverted to get bounds on the full profile F from bounds on F∗, see Section 3.4 below for an
outline of this construction.

The modified profile F∗ now evolves in a perturbative fashion, and can be bounded using
the method in [17]. However, this construction leads to loss of symmetry in the transport
terms V ′∂vP�=0φ ∂z F and (V̇ + V ′∂zφ) ∂vF , since the main perturbative variable is now
F∗. This loss of symmetry causes a derivative loss, so we need to prove stronger bounds on
F − F∗ than on the variables F, F∗, as described in (3.13)–(3.14).

3.4 Control of the Full Profile

We still need to recover the bounds on F and the improved bounds on F − F∗. Since the
bounds on F∗ are already proved, it suffices to prove the improved bounds (3.15) for F−F∗.

This is a critical step where we need to use our main spectral assumption and the precise
estimates on the linearized flow. To link F − F∗ with the linearized flow, we define an
auxiliary function φ∗ : [0, T ] × T × [0, 1] → R (heuristically a stream function associated
with F∗), as a solution of the elliptic equation

∂2z φ
∗ + (B ′

0)
2(∂v − t∂z)

2φ∗ + B ′′
0 (∂v − t∂z)φ

∗ = F∗, φ∗(t, z, b(0)) = φ∗(t, z, b(1)) = 0

(compare with the definition (3.11)). Now setting h := F − F∗, ψ := φ′ −φ∗, the functions
h and ψ satisfy the inhomogeneous linear system with trivial initial data

∂t h − B ′′
0 (v)∂zϕ = H , h(0, z, v) = 0,

B ′
0(v)2(∂v − t∂z)

2ψ + B ′′
0 (v)(∂v − t∂z)ψ + ∂2z ψ = h(t, z, v),

(3.20)

where (t, z, v) ∈ [0,∞) × T × [b(0), b(1)]. The functions B ′
0(v) = B ′(0, v) and B ′′

0 (v) =
B ′′(0, v) are time-independent, very smooth, and can be expressed in terms of the original
shear flow b. The source term H is given by H = B ′′

0 (v)∂zφ
∗.

The function φ∗ is determined by the auxiliary profile F∗. Since we have already proved
quadratic bounds on the profile F∗, we can use elliptic estimates to prove quadratic bounds
on φ∗, and then on the source term H .

Therefore,we can think of (3.20) as a linear inhomogeneous systemwith trivial initial data,
and attempt to adapt the linear theory to our situation. Decomposing inmodes, conjugating by
e−ikvt , and using Duhamel’s formula, we can further reduce to the study of the homogeneous
initial-value problem

∂t gk + ikvgk − ikB ′′
0ϕk = 0, gk(0, v) = Xk(v)e−ikav,

(B ′
0)

2∂2v ϕk + B ′′
0 (v)∂vϕk − k2ϕk = gk, ϕk(b(0)) = ϕk(b(1)) = 0

(3.21)

for (t, v) ∈ [0,∞) × [b(0), b(1)], where k ∈ Z \ {0} and a ∈ R.

3.4.1 Analysis of the Linearized Flow

The equation (3.21) was analyzed, at least when a = 0, in [36] and [23]. We follow the
approach in [23]. The main idea is to use the spectral representation formula and reduce the
analysis of the linearized flow to the analysis of generalized eigenfunctions corresponding
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to the continuous spectrum. More precisely, using general spectral theory, we can express
the stream function as an oscillatory integral of the spectral density function (which depends
both on the physical and the spectral variables), as in the formula (2.2). An important new
feature in the analysis of the linearized equation here is that we have to consider initial
data with an oscillatory factor, see (3.21), and the norms we use to measure the spectral
density function are adapted to the oscillatory factor. It is well known that the generalized
eigenfunctions contain singularities. To obtain precise characterization of these singularities,
we make suitable re-normalizations and estimate the resulting functions in Gevrey spaces.

As a result, given data Xk smooth and satisfying supp Xk ⊆ [b(ϑ0), b(1− ϑ0)] we find a
representation formula

g̃k(t, ξ) = X̃k(ξ + kt + ka) + ik
∫ t

0

∫

R

B̃ ′′
0 (ζ )Π̃ ′

k(ξ + kt − ζ − kτ, ξ + kt − ζ, a) dζ dτ

for the solution gk of the linear evolution equation (3.21), whereΠ ′
k(ξ, η, a) can be expressed

in terms of the generalized eigenfunctions. These eigenfunctions cannot be calculated explic-
itly, but can be estimated very precisely in the Fourier space,

∥
∥
∥(|k| + |ξ |)Wk(η + ka)Π̃ ′

k(ξ, η, a)

∥
∥
∥
L2

ξ,η

�δ

∥
∥Wk(η)X̃k(η)

∥
∥
L2

η

for any a ∈ R, using the limiting absorption principle Lemma 2.1, provided that the weights
Wk satisfy smoothness properties of the type

|Wk(ξ) − Wk(η)| � e2δ0〈ξ−η〉1/2Wk(η)

[
C(δ)

〈k, η〉1/8 + √
δ

]

for any ξ, η ∈ R. (3.22)

The inequality (3.22) holds for standard weights, like polynomial weights Wk(ξ) = (1+
|ξ |2)N/2, which correspond to Sobolev spaces, or exponential weights Wk(ξ) = eλ〈ξ〉s ,
s < 1/2, which correspond toGevrey spaces.More importantly, it also holds for our carefully
designed weights Ak(t, ξ), as we have already discussed in (3.18). This allows us to adapt
and incorporate the linear theory, and close the argument.
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