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Abstract
In adjoint simple algebraic groups H of type D we show that for every semisimple element
s, its centralizer splits over its identity component, i.e. CH(s) = CH(s)◦ � Ǎ for some com-
plement Ǎ with strong stability properties. We derive several consequences about the action
of automorphisms on semisimple conjugacy classes. This helps to parametrize characters of
the finite groups Dl,sc(q) and 2Dl,sc(q) and describe the action of automorphisms on them.
It is also a contribution to the final proof of the McKay conjecture for the prime 3, see (B.
Späth: 2023).
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1 Introduction

One of the many outstanding ideas in Deligne–Lusztig theory was to point out the relevance
of a dual groupG∗ to the study of representations of a finite group of Lie type G = GF (see
for instance [4, Chapters 11 and 12]). In particular, the set Irr(G) of irreducible (complex)
characters is partitioned according to semisimple elements ofG∗ = G∗F up toG∗-conjugacy
(“rational series”) or G∗-conjugacy (“geometric series”). This explains how the study of
Irr(G), for instance as an Out(G)-set, may lead to purely group-theoretic questions about
G∗ and its semisimple classes.

Together with Lusztig’s Jordan decomposition of characters, rational series help to study
characters in terms of unipotent characters of centralizers of semisimple elements CG∗(s).
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It is a well known fact that the rational classes in a given geometric class are parametrized
via the component group A(s) := CG∗(s)/C◦

G∗(s) of the algebraic centralizer CG∗(s). The
various lifts in CG∗(s) of a fixed element of A(s) provide different rational structures on
the centralizer CG∗(s) and different finite groups whose unipotent characters are then in
correspondence with the characters of a given rational series. The results presented here are
applied in [11] to establish a Jordan decomposition compatible with automorphisms.

The study of Irr(GF ) is probably most difficult when G is a simply connected simple
group and its type is D. The difficulties come from the graph automorphism and a possibly
non-cyclic fundamental group. However the dual group G∗ in that type, denoted here as H,
has a couple of remarkable features with regard to semisimple classes and their centralizers.
In particular we single out, for s a semisimple element of H, a semidirect decomposition

CH(s) = C◦
H(s) � Ǎ,

where the complement Ǎ has a strong stability with regard to Frobenius endomorphisms
and graph automorphisms. In [11], the elements of Ǎ are crucial to parametrize the different
rational structures on CG∗(s) and the action of Out(GF ) on rational series of characters. This
then also contributes to the verification of McKay’s conjecture for the prime 3 in [11].

In type different from D our questions in representation theory have been solved by
simpler methods not requiring this study of adjoint groups. It could be interesting however
to prove results similar to Theorem A below in other types, at least classical. See [6, 3.2.1]
for a property a bit weaker than the semidirect product structure. Theorem A also shows
that Condition (*) introduced in [5, Definition 2] is satisfied for the groups CG∗(s) and all
semisimple elements s, whenever G is of type D, thus establishing the first (minor) part of
[5, Conjecture 7].

2 Notations andMain Theorems

Let H0 be a reductive group over the algebraically closed field F of positive characteristic
p. AssumeH0 is simple simply connected. Let B0 ≥ T0 some Borel subgroup and maximal
torus of H0. We denote by X(T0) ⊇ � ⊇ � the associated roots and basis of the root
system. Let xα : F → H0 be the unipotent 1-parameter subgroup associated with α ∈ �.
We set Fp : H0 → H0 defined by Fp(xα(t)) = xα(t p) for any α ∈ � and t ∈ F. Let � be
the group of algebraic automorphisms of H0 that satisfy xεδ(t) �→ xεδ′(t) for any t ∈ F,
ε ∈ {1,−1}, δ ∈ � and where δ �→ δ′ is an automorphism of the Dynkin diagram. Note
that � is cyclic of order 2 whenever H0 is of type Al (l ≥ 2), Dl (l ≥ 5) or E6, dihedral
of order 6 for type D4 and trivial for other types. Let E := 〈Fp〉� be the group of abstract
automorphisms of H0 generated by � and Fp .

Let H := H0/Z(H0) and
π : H0 → H

the quotient map. Then E clearly acts on H and we can form the semidirect product H � E .
Let s be a semisimple element of H. Then CH(s) is reductive but may not be connected.

The component group AH(s) := CH(s)/C◦
H(s) is abelian and can be seen as a subgroup of

Z(H0) via the homomorphism

ωs : CH(s) → Z(H0) defined by g �→ [ġ, ṡ] for ġ ∈ π−1(g), ṡ ∈ π−1(s)

(see [2, 8.2]).
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On Semisimple Classes and Component Groups in Type D 437

In type D, we denote by
E = 〈Fp, γ 〉

the subgroup of E generated by Fp and some γ ∈ � of order 2 (essentially in the case of
type D4 a choice is made and the graph automorphism of order 3 is left out). Note that E
acts on both H0 and H. We constantly consider the semidirect product H � E = HE . For
σ ∈ HE \ H and h ∈ H we occasionally write σ(h) for σhσ−1 ∈ H. We also define the
submonoid

E+ := {Fi
p ◦ γ j | i ≥ 1, j ∈ {0, 1}}

whose elements can be considered as Frobenius endomorphisms F : H → H with fixed
points forming the finite group HF := {h ∈ H | F(h) = h}. For x ∈ HF (F ∈ E+) we
denote by [x]HF its conjugacy class in HF .

In the following theorems, H = Dl,ad(F) and H0 = Dl,sc(F) are groups of rank l ≥ 4
over an algebraically closed field F of characteristic p �= 2. The odd characteristic ensures
that Dl,ad(F) is actually the quotient H0/Z(H0) (see [5, 2.4.4]).

Theorem A Let F0 ∈ E+, s ∈ HF0 a semisimple element. Then there is a semidirect product
decomposition

CH(s) = C◦
H(s) � Ǎ

with F0( Ǎ) = Ǎ.
Moreover, if σ ′ ∈ E , F := Fk

0 for some k ≥ 1 and σ ′(s) ∈ [s]HF , then there exists

σ ∈ HFσ ′ ∩ CHE (s) such that σ( Ǎ) = Ǎ and [F0, σ ] ∈ Ǎ.

The considerations to prove the following are more classical, using only the simply con-
nected covering π : H0 → H.

Theorem B Let C be the H-conjugacy class of a semisimple element t ∈ H such that
|AH(t)| = 4. Let F0 ∈ E+ and assume F0(C) = γ (C) = C. Then π(HF0

0 )∩ C �= ∅ and there

exists s ∈ π(HF0
0 ) ∩ C such that γ (s) ∈ [s]HF0 .

Some more technical corollaries will be given in our last section.

3 Lifting of Component Groups and Automorphisms

We continue with the same notations about H, the adjoint group of type Dl (l ≥ 4) over
an algebraically closed field F of odd characteristic, its maximal torus T = π(T0) and the
abstract automorphism group E .

Proposition 3.1 There exists an E-stable subgroup W̌ ≤ H such that NH(T) = T � W̌ .

Proof The statement is probably known to experts familiar with adjoint groups (see [7,
Theorem1]).We recall an elementary construction of W̌ and emphasize the stability property.
For d ≥ 1 let Jd ∈ GLd(F) be the permutation matrix corresponding to the product of
transpositions (1, d)(2, d − 1) · · · ∈ Sd .

Let G := SO2l(F) = O2l(F) ∩ SL2l(F), where O2l(F) := {x ∈ GL2l(F) | t x J2l x = J2l}.
Then G is connected simple of type Dl (see for instance [4, 1.5.5]) with center {Id2l ,−Id2l}
and H = G/{Id2l ,−Id2l}. A maximal torus of G is the group T of diagonal matrices whose
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diagonal is (t1, . . . , tl , t
−1
l , . . . , t−1

1 ) with t1, . . . , tl ∈ F
×; a Borel subgroup B containing it

and consisting of upper diagonal matrices is also described in [4, 1.5.5]. Numbering the basis
in dimension 2l by (1, 2, . . . , l,−l,−l + 1, . . . ,−2,−1) the normalizer of T in GL2l(F)

is generated by T and the permutation matrices corresponding to (l,−l) and the various
involutions (i, j)(−i,− j) (1 ≤ i, j ≤ l). All those permutation matrices clearly belong
to O2l(F) and generate a subgroup V ≤ O2l(F) with V ∼= Z/2Z � Sl . The intersection
W := V ∩ SL2l(F) corresponds to elements of the wreath product whose number of non-
trivial coordinates in the base group is even, thus forming a Coxeter group of type Dl .

In G = SO2l(F) we indeed get NG(T) = T � W . The elements of V are clearly fixed
by Fp which here is just the raising of matrix entries to the p-th power. On the other hand,
conjugation by the permutation matrix associated to (l,−l) induces the graph automorphism
ofG of order 2 associated toT andB, and swapping the fundamental reflections corresponding
to (l − 1, l)(−l + 1,−l) and (l − 1,−l)(−l + 1, l) (see [4, 4.3.6]). This too preserves W ,
since the permutation matrix associated to (l,−l) belongs to V . We get our Proposition by
taking for W̌ the image of W in H = G/{Id2l ,−Id2l}. ��
Remark 3.2 In type Bl the same statement is proved similarly in H = SO2l+1(F) seen as
O2l+1(F)/{Id2l+1,−Id2l+1} (see again [7]). In type Al−1 withH = GLl(F)/{λIdl | λ ∈ F

×},
the permutation matrices also provide a complement whose elements are fixed under Fp .
Note that in that type the non-trivial element of � sends our group of permutation matrices
to a distinct NH(T)-conjugate in odd characteristic. Note also that permutation matrices
have a somewhat cumbersome expression in terms of Chevalley generators. For instance the
permutation matrix for the transposition (1, 2) has a class mod Z(GLl(F)) corresponding
to nα1(1)hα1(−ω)hα2(−ω2) . . . hαl−1(−ωl−1) ∈ SLl(F) for some ω with ωl = −1 in the
notations of [9, 1.12.1], a similarly complex formula being necessary in type D.

In type Cl , or exceptional types �= G2 it is known that T has no complement in NH(T)

(see [1, 4.11]).
We now consider the centralizer of some x ∈ T, where T is as before a maximal torus of

an adjoint group that is maximally split for any Frobenius endomorphism belonging to E+.
Recall that for any x ∈ T the connected centralizer C◦

H(x) is a reductive group containing
T as maximal torus (see for instance [3, 3.5.4]).

Proposition 3.3 LetTand W̌ be as inProposition 3.1, noting that W̌ acts onThence naturally
on the set�of T-roots of H. Let x ∈ T,�x ⊆ X(T) the root systemof C◦

H(x)with respect toT
and choose�x a basis of�x . We set B̌ := CH(x)∩W̌�x = {w ∈ W̌ | wx = x, w(�x ) = �x }
and similarly B̌E := CHE (x) ∩ (W̌ � E)�x

. Then

(a) CH(x) = C◦
H(x) � B̌, CHE (x) = C◦

H(x) � B̌E ,

(b) B̌ � B̌E with abelian quotient.

Proof Note first that E stabilizes T and sends maximal tori of H to maximal tori since
σ(gT) = σ(g)T for any g ∈ H and σ ∈ E . So HE permutes the maximal tori of H. The
connected centralizer C := C◦

H(x) is the reductive group containing T with root system �x ,
so

NHE (C) = C.NHE (T,C) by conjugacy of maximal tori in C
= C.NW̌ E (C) by Proposition 3.1

= C � (W̌ E)�x by the regular action of NC(T)/T on the bases of �x .

On the other hand, C is obviously normal in CHE (x), so CHE (x) is the centralizer of x in
the above C� (W̌ E)�x . This gives the second claim of (a) with B̌E := CW̌ E (x)�x . The first
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On Semisimple Classes and Component Groups in Type D 439

is clear by taking the intersection with H, which also gives the first part of (b). The quotient
B̌E/B̌ is abelian, since it injects into E . ��

Remark 3.4 It could be interesting to classify those groups CHE (x)/C◦
H(x) or equivalently

B̌E .
Using the simply connected coveringH0 we can embedCHE (x)/C◦

H(x) intoZ×V×Z/2Z,
where V is the dihedral group of order 8. Let us explain briefly how this can be seen.

The simply connected covering H0
π−→ H has kernel Z(H0) of order 4 while the covering

H0 → SO2l(F) has a kernel {1, h0} of order 2 with Fp(h0) = γ (h0) = h0 (see [9, p. 70],
where h0 is called zc). The group H acts on H0 by conjugacy, with E also acting in a
compatible way, so we get an action of HE on H0 and therefore an action of CHE (s) on
π−1(s). Denote pr1 : CHE (s) → Sπ−1(s) the induced group morphism with values in a
permutation group on four elements. Note that the kernel of the action of CH(s) on π−1(s)
is C◦

H(s), since this is π
(
CH0(π

−1(s))
)
by connectedness of centralizers of semisimple

elements in H0 (see [3, 3.5.6]). Moreover since the action of CHE (s) on π−1(s) commutes
with translation by h0, the image of pr1 is included in the centralizer of a product of two
disjoint transpositions in the symmetric group on four elements. The latter is a dihedral group
V of order 8.

Letting pr2 : H� E → E be the projection on the second term of the semidirect product,
we get that the kernel of the map CHE (s) → V × E defined by c �→ (pr1(c), pr2(c)) is
C◦
H(s). Restricting this morphism to B̌E then makes it injective thanks to Proposition 3.3(a).
Our applications to centralizers of semisimple elements and semisimple conjugacy classes

will stem from the omnibus lemma below.

Lemma 3.5 Let F0 ∈ E+. Let s ∈ HF0 be a semisimple element and let x ∈ T be an H-
conjugate of s. Let CHE (x) = C◦

H(x)� B̌E the decomposition of Proposition 3.3. Then there
is an inner automorphism ι : HE → HE induced by an element of H such that

(a) ι(s) = x,
(b) ι(F0) ∈ B̌E and
(c) if F = Fi

0 for some i ≥ 1, τ ∈ E and h ∈ HF are such that τ(s) = sh, then

ι(hτ) ∈ C◦
H(x)CB̌E

(ι(F)).

Proof We denote x := sg for some g ∈ H and ι′ : HE −→ HE given by y �→ yg .
Note that ι′ preserves cosets He (e ∈ HE). We have ι′(F0) ∈ HF0 ∩ CHE (x) since s is
F0-invariant. Recalling B̌E the group associated to x from Proposition 3.3 and the decom-
position CHE (x) = C◦

H(x)B̌E we can write ι′(F0) as cb with c ∈ C◦
H(x) and b ∈ B̌E .

Lang’s theorem (see for instance [8, 4.1.2]) applied to C◦
H(x) and ι′(F0) allows us to write

c−1 = c′−1ι′(F0)c′ι′(F0)−1 in HE for some c′ ∈ C◦
H(x). Calling now ι : HE −→ HE the

isomorphism given by y �→ ygc
′
, we get

b = c−1ι′(F0) = c′−1ι′(F0)c′ = ι′(F0)c
′ = ι(F0)

and ι(s) = sgc
′ = xc

′ = x .
It remains to check (c). We have τ ∈ E and h ∈ HF such that hτ ∈ CHE (s). Then

ι(hτ) ∈ CHE (ι(s)) = CHE (x) = C◦
H(x) � B̌E by Proposition 3.3(a). So

ι(hτ) ∈ C◦
H(x)b′
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440 M. Cabanes and B. Späth

for some b′ ∈ B̌E . Note that hτ commutes with F and accordingly ι(hτ) commutes with
ι(F). Because of the semidirect product structure CHE (x) = C◦

H(x) � B̌E and since ι(F) =
ι(F0)i ∈ B̌E thanks to (b), we see that b′ commutes with ι(F) as well. This gives our point
(c). ��
Proof of TheoremA By Lemma 3.5, we have an inner automorphism ι of HE such that x :=
ι(s) ∈ T, and CHE (x) = C◦

H(x) � B̌E with ι(F0) ∈ B̌E . We define Ǎ := ι−1(B̌), recalling
B̌ = B̌E ∩H from Proposition 3.3. It is F0-stable because B̌E ∩H is stable under ι(F0) since
the latter belongs to B̌E .

We now consider some σ ′ ∈ E such that σ ′(s) ∈ [s]HF for some F = Fk
0 , k ≥ 1.

Let h ∈ HF such that σ ′(s) = sh . By Lemma 3.5(c) applied to τ := σ ′, we get some
b ∈ CB̌E

(ι(F)) such that ι(hτ) ∈ C◦
H(x)b. We show that σ := ι−1(b) satisfies our claims.

First σ centralizes s since b centralizes x . Also σ belongs to Hτ since ι and its inverse,
being conjugations, are the identity on HE/H and therefore Hσ = Hb = Hτ . Moreover
σ commutes with F since b commutes with ι(F), so σ ∈ (Hτ)F = HFτ . The group Ǎ is
σ -stable by the same argument used for F0, namely b ∈ B̌E and therefore ι−1(b) normalizes
Ǎ = ι−1(B̌). That b ∈ B̌E also implies that [ι(F0), b] ∈ B̌, since B̌E/B̌ is abelian by
Proposition 3.3(b). This in turn tells us that [F0, σ ] ∈ Ǎ, thus completing the proof of
Theorem A. ��

In the next section, Theorem A will be applied mostly with σ ′ being a graph automor-
phism. But here is a case reminiscent of Shintani descent with two commuting Frobenius
endomorphisms.

Corollary 3.6 Let F, F0 ∈ E+, let C be a semisimple conjugacy class of H and assume we
have s0 ∈ C ∩HF0 such that F(s0) ∈ [s0]HF0 . Applying Theorem A with (F0, s, σ ′, k) being
here (F0, s0, F, 1), we get a group Ǎ and some σ ∈ HE that we denote as Ǎ(s0) and F ′.
Then there exist s ∈ CF , F ′

0 ∈ HF F0 centralizing s, and a group Ǎ(s) such that

(i) CH(s) = C◦
H(s) � Ǎ(s);

(ii) Ǎ(s) is 〈F, F ′
0〉-stable; and there exists an inner isomorphism ιs0,s : HE → HE such

that

– ιs0,s(s0) = s and ιs0,s( Ǎ(s0)) = Ǎ(s);
– ιs0,s(F0) = F ′

0 and ιs0,s(F
′) = F.

Proof Let us recall how Theorem A is proved by application of Lemma 3.5. Choosing x ∈
T ∩ C, we have CH(x) = C◦

H(x) � B̌ from Proposition 3.3. Lemma 3.5 gives us an inner
automorphism ι : HE → HE with ι(s0) = x , ι(F0) := f0 ∈ B̌, and we define Ǎ(s0) :=
ι−1(B̌).

Having F(s0) ∈ [s0]HF0 implies that [hF, s0] = 1 for some h ∈ HF0 , so that ι(hF) ∈
C◦
H(x) f with f ∈ CB̌E

( f0) thanks to Lemma 3.5(c) for i = 1 and τ = F . Following the

proof of Theorem A, we define F ′ := ι−1( f ) ∈ CHF0 F (s0) and get F ′( Ǎ(s0)) = Ǎ(s0).
Recalling that ι is an inner automorphism and HE/H is abelian, we have H f = HF ′ =

HF and Lang’s theorem ensures the existence of some inner automorphism ι′ ofHE induced
by an element of H such that ι′( f ) = F . We define ιs0,s := ι′ι, F ′

0 := ιs0,s(F0) = ι′( f0),
s := ιs0,s(s0) = ι′(x). The latter belongs to CF , since ι and ι′ are induced by elements of
H and [F, s] = ιs0,s([ι−1( f ), s0]) = 1. We have ιs0,s(F

′) = ι′( f ) = F . We get CH(s) =
C◦
H(s) � Ǎ(s) for Ǎ(s) := ιs0,s( Ǎ(s0)) = ι′(B̌) as a consequence of the same property of
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On Semisimple Classes and Component Groups in Type D 441

Ǎ(s0) for s0. Moreover Ǎ(s) is 〈F, F ′
0〉-stable, since Ǎ(s0) has been seen to be F0-stable and

B̌ is f -stable since f ∈ B̌E . We also have F ′
0 ∈ HF0 while [F ′

0, F] = ι′([ f0, f ]) = 1 as
seen above. So F ′

0 ∈ HF F0 as claimed. We now have all our claims. ��

4 Proof of Theorem B and Some Corollaries

We prove Theorem B but also some more technical statements, that can be seen as strength-
enings of Theorem A, about semisimple classes of H and the action of elements of E+.
Recall γ ∈ E (see Section 2) the graph automorphism stabilizing our choice of a maximal
torus and Borel subgroup.

In the following F0 ∈ E+ and C is the H-conjugacy class of a semisimple element.

Corollary 4.1 Assume F0(C) = γ (C) = C and there is some s ∈ CF0 such that γ (s) ∈ [s]HF0 .
Then there is γ ′ ∈ HF0γ ∩ CHE (s) and a 〈F0, γ ′〉-invariant subgroup Ǎ with CH(s) =
C◦
H(s) � Ǎ.

Recall that π : H0 → H is a compositionH0 → SO2l(F) → H. The kernel of the second
map is {±Id2l} while the kernel of the first is {1, h0} where h0 ∈ Z(H0) is of order 2.

We keep C a semisimple conjugacy class of H and F0 ∈ E+. We describe the situation
complementary to the one of Corollary 4.1, but while the latter is a direct consequence of
Theorem A, the following will require a bit more work.

Corollary 4.2 Assume that F0(C) = γ (C) = C but γ (x) /∈ [x]HF0 for every x ∈ CF0 .
Let F := F2k

0 for some k ≥ 1 and let s ∈ CF .

Then there exist F ′
0 ∈ CHF F0(s), γ

′ ∈ CHFγ (s) and an 〈F, F ′
0, γ

′〉-stable group Ǎ such
that

(i) CH(s) = C◦
H(s) � Ǎ;

(ii) ωs( Ǎ) = 〈h0〉 and |AH(s)| = | Ǎ| = 2;
(iii) [s0, F ′

0] ∈ Z(H0) \ 〈h0〉 for every s0 ∈ π−1(s) and

(iv) [F ′
0, γ

′] = ǎ, where ǎ is the generator of Ǎ.

Let C be a semisimple conjugacy class of H and F ′ ∈ HE+ (seen as an endomorphism
of H) such that F ′(C) = C. Thanks to Lang’s Theorem we have CF ′ �= ∅.

Taking s ∈ CF ′
and recalling that AH(s) is abelian, we can combine the parametrization

of HF ′
-conjugacy classes in CF ′

by AH(s)F ′ := AH(s)/[AH(s), F ′] (see [8, 4.3.6]) and the
injection AH(s) → Z(H0) induced by the map ωs from our introduction.

CF ′
/HF ′

-conj
∼←→ AH(s)F ′

AH(s) ↪→ Z(H0)

An easy calculation then yields that the resulting map

�F ′ : CF ′
/HF ′

-conj ↪→ Z(H0)F ′ is injective and defined by
[x]HF ′ �→ x−1

0 F ′(x0)[Z(H0), F ′] for any x0 ∈ π−1(x).

Note that, in contrast to the other two maps, �F ′ is independent of the choice of s in CF ′
.

Note also that if moreover F ′ ∈ E+ and denoting by EC the stabilizer of C in E , then �F ′
is EC-equivariant by its definition (since E commutes with F ′).
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442 M. Cabanes and B. Späth

Let us show Theorem B (see also the third paragraph of the proof of [12, 6.17] for related
considerations). We consider the above with F ′ = F0 ∈ E and s being denoted by t . We
are assuming that |AH(t)| = 4 = |Z(H0)|. The injection AH(t) ↪→ Z(H0) is then an 〈F0〉-
equivariant isomorphism and therefore �F0 is onto. So 1 = x−1

0 F0(x0)[Z(H0), F0] for some
x0 ∈ H0 with π(x0) ∈ CF0 . Rewriting this as x−1

0 F0(x0)z−1F0(z) = 1 for some z ∈ Z(H0),

we get x ′
0 := x0z ∈ HF0

0 and π(x ′
0) = π(x0) ∈ C. Note also that the equivariance and

injectivity of �F0 imply that [π(x0)]HF0 is γ -stable. This shows all claims of Theorem B.
We now prove the corollaries. If there is some s ∈ CF0 such that [s]HF0 is γ -stable then

Theorem A with k = 1 and σ ′ being here γ clearly gives the claims of Corollary 4.1.

Proof of Corollary 4.2 The action of E on Z(H0) is easy to deduce from the description of
Z(H0) (see [9, Table 1.12.6], [10, 2.9]). In particular CZ(H0)(γ ) = 〈h0〉, a subgroup of Z(H0)

of order 2.
By assumption, no HF0 -class contained in CF0 is γ -stable, so the HF0 -conjugacy classes

contained in C are mapped via �F0 to elements in Z(H0)F0 not fixed by γ . Then Z(H0)F0
can’t have order 1 or 2, so it implies the following

Lemma 4.3 Keeping the assumptions of Corollary 4.2, F0, and therefore also F, act trivially
on Z(H0).

Wealso get that the image of�F0 , being γ -stable, is indeed equal to thewholeZ(H0)\〈h0〉.
This is of order 2, so |AH(s)F0 | = |AH(s)| = 2 for any s ∈ CF0 by the diagram defining �F0
from ωs . The equality |AH(s)| = 2 of course holds for any s ∈ C. We have γωsγ = ωγ (s)

and the image of ωs depends only on the conjugacy class of s (by the same formula for inner
automorphisms), so γ (C) = C implies that ωs(AH(s)) is γ -stable of order 2 for any s ∈ C.
Then indeed ωs(AH(s)) = 〈h0〉, which amounts to part (ii) once the other parts are checked.

We prove the other statements (i), (iii) and (iv) in several steps, first for some s ∈ CF0 and
then for t ∈ CF via an application of Theorem A and Lemma 3.5.

For the following we fix some x ∈ C ∩ T and the groups B̌E ≤ HE and B̂ := B̌E ∩ H
with CHE (x) = C◦

H(x) � B̌E from Proposition 3.3.
Let us take s ∈ CF0 . Let s0 ∈ π−1(s) and h′ := s−1

0 F0(s0). Note that �F0([s]HF0 ) =
h′ ∈ Z(H0) \ 〈h0〉 by the above. This ensures [s0, F0] ∈ Z(H0) \ 〈h0〉 for every s0 ∈ π−1(s).
Defining F ′

0 := F0 in that case, we get part (iii) for that s.
We turn to the question of actually finding γ ′ in CHE (s)F and proving (i) and (iv). In

order to apply Theorem A with σ ′ = γ , we need to check that [s]HF is γ -stable.
Since F = F2k

0 and F0(s0) = s0h′ with h′ ∈ Z(H0), we have

�F ([s]HF ) = s−1
0 F2k

0 (s0) = s−1
0 F0(s0)F0(s

−1
0 F0(s0)) · · · F2k−1

0 (s−1
0 F0(s0)) = (h′)2k

thanks to Lemma 4.3. Squares in Z(H0) are E-fixed since they form a stable subgroup of
order 1 or 2. So �F ([s]HF ) is γ -fixed and by equivariance of �F , this implies that [s]HF is
γ -stable. Note that it is also F0-stable since F0(s) = s. On the other hand CF/HF -conj is of
cardinality |A(s)F | = |A(s)| = 2 as seen before and using Lemma 4.3 again. Since CF is
〈F0, γ 〉-stable and [s]HF is 〈F0, γ 〉-stable it implies the following

Lemma 4.4 Under the assumptions of Corollary 4.2 〈F0, γ 〉 acts trivially on CF/HF -conj.

We can now apply Theorem A to s with i = 2k, σ ′ = γ . Taking also F ′
0 = F0, this gives

us a σ that we call γ ′ and a decomposition CH(s) = C◦
H(s)� Ǎ(s) satisfying our part (i) and

[F0, γ ′] ∈ Ǎ(s).
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Let us check that [F0, γ ′] �= 1. Remembering that HE acts on H0, it suffices to show
that [γ ′, F0](s0) �= s0. Recall that F0(s0) = s0h′ for some h′ ∈ Z(H0) \ 〈h0〉 so that
γ ′(h′) = γ ′−1(h′) = γ (h′) = h0h′ since Z(H0) is a group of order 4 in which the centralizer
of γ is the subgroup of order 2 generated by h0. Let z ∈ Z(H0) such that γ ′(s0) = s0z. Note
that z exists since γ ′(s) = s. Using also Lemma 4.3 we get

[γ ′, F0](s0) = γ ′F0γ ′−1(s0h
′−1) = γ ′F0(s0γ ′−1(z−1)h0h

′−1) =
= γ ′(s0γ ′−1(z−1)h0) = s0h0 �= s0.

This implies our claim that [F0, γ ′] �= 1. (Another proof is possible with the three sub-
groups Lemma.) Since Ǎ(s) is a group of order 2 and [F0, γ ′] ∈ Ǎ(s), [F0, γ ′] generates
Ǎ(s). This gives (iv) in that case.

Let us recall however how Theorem A is deduced from Lemma 3.5 in our case (with σ ′
being γ ). We first get an inner automorphism of HE induced by an element of H, namely
ιs : HE → HE , such that ιs(s) = x , fs := ιs(F0) ∈ B̌E and then Ǎ(s) := ι−1

s (B̌) satisfies
CH(s) = C◦

H(s) � Ǎ(s). Finally we take some gs ∈ B̌E ∩ HFγ and define γ ′ := ι−1
s (gs).

Before turning to the general case of some t ∈ CF , let us apply now ιs to F0 and γ ′.
From what has been said about [F0, γ ′] we see that [ fs, gs] = b̌, the generator of B̌. Since
|B̌| = |AH(s)| = 2 and hence B̌ ≤ Z(B̌E ) this implies

[ f , g] = b̌ for every f ∈ B̌E ∩ HF0 (= B̌ fs) and g ∈ B̌E ∩ Hγ (= B̌gs). (1)

This is a general property since such an s always exists.
Let us now look at the general case where t ∈ CF \ CF0 . Using again Lemma 3.5 but this

time with i = 1 (so that the F0 of that lemma is our F), we get a conjugation ιt : HE → HE
such that ιt (t) = x and some other properties.

We define Ǎ(t) := ι−1
t (B̌) which then satisfies CH(t) = C◦

H(t) � Ǎ(t). Let f := fs =
ιs(F0) ∈ B̌E ∩ HF0 (see above), and take any g ∈ B̌E ∩ Hγ . Let F ′

0 := ι−1
t ( f ) and

γ ′
t := ι−1

t (g). By this construction Ǎ(t) is 〈F ′
0, γ

′
t 〉-stable and F ′

0(t) = γ ′
t (t) = t .

In the next step we show that F centralizes inHE both γ ′
t and F ′

0. In applying Lemma 3.5,
we can take τ ∈ {F0, γ } and h ∈ HF such that τ(s) = sh thanks to Lemma 4.4. Lemma 3.5(c)
tells us that ιt (hτ) = c f ′ with c ∈ H, f ′ ∈ B̌E , and [ f ′, ιt (F)] = 1. Since ιt (hτ) ∈ Hτ , this
shows that ιt (F) fixes an element of the set with two elements B̌E ∩ Hτ . On the other hand
ιt (F) ∈ B̌E by Lemma 3.5(b), so it stabilizes B̌E ∩ Hτ (remember again that cosets mod H
are stabilized by inner automorphisms of HE) hence fixes any of its two elements. Taking
the image by ι−1

t , we get that F centralizes both ι−1
t (B̌E ∩ HF0) and ι−1

t (B̌E ∩ Hγ ), hence
both F ′

0 and γ ′
t . So we get that F ′

0 ∈ CHF F0(s) and γ ′
t ∈ CHFγ (s). This ensures part (i) in

that case.
Letting t0 ∈ π−1(t), x0 ∈ π−1(x), we have [t0, F ′

0] = ι−1
t ([x0, f ]) = ι−1

t ιs([s0, F0]) =
[s0, F0], since ιs and ιt are conjugations by elements ofH hence act trivially on Z(H0). Then
[t0, F ′

0] = [s0, F0] ∈ Z(H0) \ 〈h0〉 as seen before. We then get (iii) for t .
Let now ǎ be the generator of Ǎ(t) and hence ǎ = ι−1

t (b̌). By (1), [ f , g] = b̌ and hence
[F ′

0, γ
′
t ] = ι−1

t ([ f , g]) = ι−1
t (b̌) = ǎ. This ensures part (iv) with γ ′ := γ ′

t . ��
Remark 4.5 Both cases covered by our Corollaries are non empty. It is clear for the first. In
order to check the relevance of the second corollary we use the notations of [10, Not. 2.3] to
describe elements of the maximal torus T0 of H0. Let q be a power of p with q ≡ 1 mod 4.
Let Fq be the corresponding power of Fp . Let ζ,� ∈ F

× with ζ q
2−1 = � 2 = −1. Recall

that hl(�) := he1(�) . . . hel (�) is an element of Z(H0) \ 〈h0〉, not fixed by γ . Let l = 4,
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s0 = he2(�)he3(ζ )he4(ζ
q�) ∈ T0. One has γ (s0) = s0. It is not difficult to see that with

the equation ζ q
2
� q� = ζ one gets that Fq(s0) and s0h4(�) are NH0(T0)-conjugate, so

we can write Fq(s0) = sn0h4(�) for some n ∈ NH0(T0). Then �nFq ([s]HnFq ) = h4(�) for
s := π(s0).

By Lang’s Theorem we can take ι : HE → HE an inner automorphism induced by an
element of H such that ι(nFq) = Fq . Then s′ := ι(s) ∈ HFq and �Fq ([s′]HFq ) = h4(�)

which is not γ -stable. Then [s′]HFq is not γ -stable while s and s′ are in the same H-class.
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