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Abstract
This work studies questions of existence, uniqueness, dependence on initial data, and reg-
ularity of solutions to the Cauchy problem for nonlocal evolution equations with data in
Sobolev spaces. The focus is on integrable Camassa–Holm type equations and in particu-
lar the Novikov equation and its dispersive modification. These equations apart from being
interesting on their own right, also they can serve as “toy” models for the Euler equations.
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1 Introduction and Results

In this work, we investigate questions of existence, uniqueness, dependence on initial data,
and regularity of solutions to the initial value problem of nonlocal evolution equations. Our
focus is on Camassa–Holm type equations with initial data in Sobolev spaces. We begin
with four integrable equations, which Vladimir Novikov [69] derived in a unified way by
examining the question of integrability for Camassa–Holm type equations of the form

(1 − ∂2x )ut = P(u, ux , uxx , uxxx , . . . ),

where P is a polynomial of u and its x-derivatives. Using as definition of integrability the
existence of an infinite hierarchy of (quasi-) local higher symmetries, he produced about
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20 integrable equations with quadratic nonlinearities that include the Camassa–Holm (CH)
equation (see [14])

∂t u + 1

2
∂x (u

2) + (1 − ∂2x )
−1∂x

[
u2 + 1

2
(∂xu)2

]
= 0

and the Degasperis–Procesi (DP) equation (see [24])

∂t u + u∂xu + (1 − ∂2x )
−1∂x

[
3

2
u2
]

= 0,

both written in their nonlocal evolutionary form. Also, he produced about 10 integrable
equations with cubic nonlinearities that include the following one

∂t u + 1

3
∂x (u

3) + (1 − ∂2x )
−1∂x

[
u3 + 3

2
u(∂xu)2

]
+ (1 − ∂2x )

−1
[
1

2
(∂xu)3

]
= 0,

which is called the Novikov equation (NE) and the Fokas–Olver–Rosenau–Qiao (FORQ)
equation

∂t u + 1

3
∂x (u

3) − 1

3
(∂xu)3 + (1 − ∂2x )

−1∂x

[
2

3
u3 + uu2x

]
+ (1 − ∂2x )

−1∂x

[
1

3
u3x

]
= 0,

whichwas derived earlier in [28, 70] and [72], andwhich is the only non-quasilinear integrable
CH type equation considered here.

The CH equation arose initially in the context of hereditary symmetries studied by
Fuchssteiner and Fokas [29]. However, it was written explicitly as a water wave equation by
Camassa and Holm [14], who derived it from the Euler equations of hydrodynamics using
asymptotic expansions. Also, they derived its peakon solutions. The existence of peakon
solutions is a common phenomenon of CH, DP, NE and FORQ. On the line, these are of the
form

CH, DP: u(x, t) = ce−|x−ct |, NE: u(x, t) = √
ce−|x−ct |,

FORQ: u(x, t) =
√
3c

2
e−|x−ct |.

(1.1)

In fact, the discovery of CH by Camassa and Holm in 1993 was partly driven by the desire
to find a water wave equation which has traveling wave solutions that “break” (see [76]).
Recall, that the celebrated Korteweg–de Vries (KdV) equation [10, 57]

∂t u + 6u∂xu + ∂3x u = 0,

which is a model of long water waves propagating in a channel, has only smooth solitons
like

u(x, t) = c

2
sech2

(√
c

2
(x − ct)

)
.

Also, CH, DP and NE have multipeakon solutions of the form

u(x, t) =
n∑
j=1

p j (t)e
−|x−q j (t)|,

which will be discussed further later since they play an important role in the well-posedness
theory of these equations. For more about peakon and multipeakon solutions of Camassa–
Holm type equations we refer the reader to [2, 4, 5, 20, 62] and the references therein.

Next, we provide a brief survey on the well-posedness results for these equations. We
begin by recalling the definition of well-posedness in Sobolev spaces on the line or the circle
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OnWell-Posedness of Nonlocal Evolution Equations 813

Hs = Hs (R or T) according to Hadamard, which is expressed by the following three
properties:

(i) For any initial data u(0) ∈ Hs there exists (a lifespan) T = Tu(0) > 0 and a solution
u ∈ C([0, T ]; Hs) to the CH (DP, NE or FORQ) Cauchy problem.

(ii) This solution u is unique in the Hadamard space C([0, T ]; Hs).
(iii) The data-to-solution map u(0) �→ u(t) is continuous from Hs into C([0, T ]; Hs).

The CH and DP equations Next result states that for s > 3/2 CH and DP are well-posed in
the Sobolev spaces Hs in the sense of Hadamard and the dependence of solutions on initial
data is sharp, that is, it is not better than continuous.

Theorem 1.1 (CHandDPwell-posedness)TheCauchy problem for theCHandDPequations
is well-posed in Hs for s > 3/2. More precisely, if s > 3/2 and u0 ∈ Hs then there exist
T > 0 and a unique solution u ∈ C([0, T ]; Hs) of the initial value problem for CH and DP,
which depends continuously on the initial data u0. Furthermore, we have the estimate

‖u(t)‖Hs ≤ 2‖u0‖Hs for t ≥ 1/(2cs‖u0‖Hs )
.= T , (1.2)

where cs > 0 is a constant depending on s.
(Nonuniform Dependence) Furthermore, the data-to-solution map for these equations is

not uniformly continuous from any bounded subset in Hs into C([0, T ]; Hs).

Well-posedness of CH on the circle was proved in [44] by writing it as an ODE in a
Banach spacewhere one can prove existence and uniqueness of solutions and their continuous
dependence on the initial data when these belong to a Sobolev space Hs(T) with s > 3/2.
This method follows Arnold’s approach [1] for the study of the Euler equations (see [25]).
On the real line, well-posedness of CH for s > 3/2 was proved by Li and Olver [63] using
a regularization technique like in Bona and Smith [7]. The well-posedness of CH was also
studied byDanchin [22],Misiolek [68] andRodriguez-Blanco [73] using various approaches.
Other works about CH can be found in [11, 12, 16–19, 23, 45, 47, 49, 50, 52, 66, 67], and
[3]. For the well-posedness of DP we refer to [77] and in [34]. At this point we note that the

peakon solutions u(t) defined in (1.1) belong in H
3
2

− −H
3
2 . Therefore, these solutions are not

covered by the (strong) localwell posedness resultsmentioned in this paper.However, they are
Lipchitz functions, i.e. they belong inW 1,∞. But, the translation operator is not continuous in
W 1,∞(R). So, for initial data X ≡ H1(R)∩W 1,∞(R) (containing the peakons) one can only
expect to get a unique local solution in u ∈ C([−T , T ]; H1(R))∩ L∞([−T , T ];W 1,∞(R)),
with the data-to-solution map continuous from X to C([−T , T ]; H1(R)). For CH on the
circle, this result was first established by de Lellis, Kappeler and Toplalov [23]. For CH on
the line, it was proved more recently by Linares, Ponce and Sideris in [64], where they also
extended the decay results obtained in [48] to the class of solutions containing peakons.

Nonuniform dependence for CH on R was proved in [39] by using the method of approx-
imate solutions together with the well-posedness estimate (1.2) derived there. The periodic
case was done in [40] using delicate commutator and multiplier estimates in addition to
approximate solutions. For the case of DP Theorem 1.1 was proved in [34]. It is interesting
that the approximate solutions used for both the CH and DP are the same. Next, we pro-
vide a brief description of the method of approximate solutions, which in the context of the
Benjamin–Ono equation was first used Koch and Tzvetkov [53]. We prove that there exist
two sequences of CH or DP solutions un(t) and vn(t) in C([0, T ]; Hs(R)) satisfying the
following three conditions:

(1) supn ‖un(t)‖Hs + supn ‖vn(t)‖Hs � 1,

123



814 A.A. Himonas, F. Yan

(2) limn→∞ ‖un(0) − vn(0)‖Hs = 0,
(3) lim infn ‖un(t) − vn(t)‖Hs � sin t , 0 ≤ t < T ≤ 1.

We do this in the periodic case. For both the CH and DP the approximate solutions

uω,n(x, t) = ωn−1 + n−s cos(nx − ωt) for ω = −1, 1,

where n ∈ Z
+, satisfy conditions (1)–(3) for nonuniform dependence but they are not

solutions. However, the error E = CH(uω,n) or E = DP(uω,n) is small in the Hs-norm.
Then, solving the Cauchy problem with initial data uω,n(x, 0) gives actual solutions, which
one proves that they satisfy the three conditions of nonuniform continuity.
Ill-posedness and norm inflation The following result shows that s = 3/2 is critical for the
well-posedness for CH and DP in Sobolev spaces.

Theorem 1.2 (Ill-posedness) For s < 3/2, the Cauchy problem for CH and DP is not well-
posed in Hs in the sense of Hadamard.

For DP this result has been proved in [37]. If 1/2 ≤ s < 3/2, then ill-posedness is due to
norm inflation. This means that there exist DP solutions who are initially arbitrarily small and
eventually arbitrarily large with respect to the Hs norm, in an arbitrarily short time. Since
DP solutions conserve a quantity equivalent to the L2-norm, there is no norm inflation in
H0 for these solutions. In this case, ill-posedness is caused by failure of uniqueness. For all
other s < 1/2, the situation is similar to H0. For the CH we have norm inflation and thus
failure of continuity for s ∈ (1, 3

2 ), and failure of uniqueness for s < 1 (see [13]). For DP
norm inflation is described by the following result in [37].

Proposition 1.1 (Norm Inflation) If s ∈ [ 12 , 3
2 ), then for any ε > 0 there is T > 0 such

that the DP Cauchy problem has a solution u ∈ C([0, T ); Hs) satisfying the following three
properties:

(1) Lifespan T < ε,
(2) ‖u0‖Hs < ε,
(3) limt→T− ‖u(t)‖Hs = ∞ (norm inflation).

The proof of Proposition 1.1 exploits the properties of appropriately constructed two-
peakon solutions, which are called peakon-antipeakon solutions. We shall describe our
approach for the case of the non-periodic DP equation. In this case we have that the peakon-
antipeakon traveling wave

u(x, t) = p(t)e−|x+q(t)| − p(t)e−|x−q(t)|

is a weak solution to the DP equation if the momentum p = p(t) and the position q = q(t)
are solutions to the following system of ordinary differential equations

q ′ = p(e−2q − 1) and p′ = 2p2e−2q . (1.3)

Furthermore, if for given ε > 0 we choose p0 and q0 so that p0 ≥ 1/ε and q0 < ln 2/8,
then there exist 0 < T < ε such that the ODE system (1.3) has a unique smooth solution
(q(t), p(t)) in the interval [0, T ) with p(t) increasing, q(t) decreasing, and

lim
t→T− p(t) = ∞ and lim

t→T− q(t) = 0.
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OnWell-Posedness of Nonlocal Evolution Equations 815

Using these properties of peakon-antipeakon solutions one can derive the following funda-
mental estimate on the Hs size of the solution u(t) for t ∈ [0, T )

‖u(t)‖Hs ≈
⎧⎨
⎩

p(t)q(t)3/2−s, 1/2 < s < 3/2,
p(t)q(t)

√
ln(1/q(t)), s = 1/2,

p(t)q(t), s < 1/2.

Then, using this estimate one proves Proposition 1.1.
Also,we describe the proof ofDP ill-posedness for 1/2 ≤ s < 3/2,where the continuity of

the data-to-solutionmap fails. Let un(t) be the peakon-antipeakonDP solution corresponding
to the choice of ε = 1/n and let u∞(t) = 0. Then, by property (2) in norm inflation result we
have ‖un(0)‖Hs < 1/n. So, un(0) converges to u∞(0) = 0 in Hs . Furthermore, by property
(1) the lifespan Tn of each solution un(t) satisfies the inequality Tn < 1/n, whereas the
lifespan T∞ of u∞(t) is equal to∞. Since, by property (3) in norm inflation result there is no
T > 0 such that the solutions un(t) can be extended to the interval [0, T ] for all sufficiently
large n we see that continuity condition (iii) of well-posedness fails.

Remark 1.1 Theorem 1.1 about the local well-posedness and nonuniform dependence for
CH and DP is also true for the b-family equation (which contains CH when b = 2 and DP
when b = 3)

(1 − ∂2x )ut = −(b + 1)uux + buxuxx + uuxxx

for s > 3/2 and all b ∈ R (see [21, 27, 30]). For s < 3/2, in [33] it is shown that the Cauchy
problem for the b-family of equations is ill-posed in Sobolev spaces Hs on both the torus
and the line when b > 1. For b ≤ 1 it remains an open question.

The Euler equations The CH equation apart from being interesting because of its integra-
bility properties and breaking traveling wave solutions, it can serve as a “toy” model for the
Euler equations. This is demonstrated by the following result in [46].

Theorem 1.3 The solution map u0 �→ u of the Cauchy problem for the Euler equations

∂t u + ∇uu + ∇ p = 0, div u = 0, u(0, x) = u0(x),

is not uniformly continuous from the unit ball in Hs(Tn, R
n) into the space C([0, T ];

Hs(Tn, R
n)) for any s ∈ R, in the periodic case. While, in the non-periodic case it is

not uniformly continuous from the unit ball in Hs(Rn, R
n) into C([0, T ]; Hs(Rn, R

n)) for
any s > 0.

The proof of Theorem 1.3 is based on well-posedness theory (as it has been developed
by Ebin and Marsden [25], Kato and Ponce [54], Majda and Bertozzi [65]) and approximate
solutions. Furthermore, it suffices to prove it in two dimensions, since filling the rest of
the velocity components with zeros gives the proof in higher dimensions. Here, we shall
provide the proof in the periodic case. Motivated by CH, one would think that the following
approximate solutions

uω,n(t, x) = (
ωn−1 + n−s cos(nx2 − ωt), ωn−1 + n−s cos(nx1 − ωt)

)
is a natural choice. They are divergence free and in one-dimension they collapse to CH
approximate solutions. In fact, these are actual solutions! to the Euler equations. The cor-
responding to ω = ±1 sequences u+1,n(t, x) and u−1,n(t, x) satisfy the conditions for
nonuniform dependence of the periodic Euler equations in two dimensions. The proof in the
non-periodic case is technical since one needs to take care of the errors introduced by the
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816 A.A. Himonas, F. Yan

cut-offs that localize the approximate solutions. The localized approximate solutions are not
solutions. Bourgain and Li [9] improved this result in the non-periodic case and included the
case s = 0.
The NE and FORQ equations The well-posedness theory developed for the CH equations
with quadratic nonlinearities has been extended to the ones with cubic nonlinearities. Next
result summarizes this development for NE [35] and FORQ [41].

Theorem 1.4 (Well-posedness for NE and FORQ) If s > 3/2 in the case of NE and s > 5/2
in the case of FORQ, then for u0 ∈ Hs there exist T > 0 and a unique solution u ∈
C([0, T ]; Hs) of the initial value problem for NE or FORQ which depends continuously on
the initial data u0. Furthermore,

‖u(t)‖Hs ≤ 2‖u0‖Hs for t ≥ 1

4cs‖u0‖2Hs

.= T ,

where cs > 0 is a constant depending on s.
(Nonuniform dependence) Also, the data-to-solutionmap is not uniformly continuous from

any bounded subset in Hs into C([0, T ]; Hs).

The presence of the cubic nonlinearities in these equations makes the proofs more techni-
cal. At the idea level, an important difference fromDP and CH is that for NE the approximate
solutions used

uω,n = ωn−1/2 + n−s cos(nx − ωt) for ω = 0, 1,

(on the circle) are asymmetric. That is, one of them (ω = 0) has no low frequency. Also, the
low frequency term in the other is n−1/2 instead of n−1, which is the case for CH and DP.
Ill-posedness of the Novikov equation For the Novikov equation on both the line and the
circle, in [38] the first author, Holliman and Kenig constructed a 2-peakon solution with
an asymmetric antipeakon-peakon initial profile whose Hs-norm for s < 3/2 is arbitrarily
small. Immediately after the initial time, both the antipeakon and peakon move in the pos-
itive direction, and a collision occurs in arbitrarily small time. Moreover, at the collision
time the Hs-norm of the solution becomes arbitrarily large when 5/4 < s < 3/2, thus
resulting in norm inflation and ill-posedness. However, when s < 5/4, the solution at the
collision time coincides with a second solitary antipeakon solution. This scenario thus results
in nonuniqueness and ill-posedness. Finally, when s = 5/4 ill-posedness follows either from
a failure of convergence or a failure of uniqueness. Considering that the Novikov equation
is well-posed for s > 3/2 [35], these results put together establish 3/2 as the critical index
of well-posedness for this equation. This is summarized in the following result.

Theorem 1.5 The Cauchy problem for the Novikov equation on the line and the circle is
ill-posed in Sobolev spaces Hs for s < 3/2. More precisely, if 5/4 < s < 3/2 then the
data-to-solution map is not continuous while if s < 5/4 then solution is not unique. When
s = 5/4 then either continuity or uniqueness fails.

Remark 1.2 The case s = 3/2 has for CH and NE has been studied in [32] where it is shown
that the phenomenon of norm inflation occurs which implies ill-posedness when s = 3/2.
For FORQ and s < 3/2 it is shown in [36] that we have non-uniqueness of solution and thus
ill-posedness. The case 3/2 ≤ s ≤ 5/2 remains an open question.
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OnWell-Posedness of Nonlocal Evolution Equations 817

Modified Novikov equation Next, we consider the Cauchy problem on the line for the
modified by a third order dispersion Novikov equation denoted here by (mNE),

∂t u + κ∂3x u + 1

3
∂x (u

3) + (1 − ∂2x )
−1∂x

[
u3 + 3

2
u(∂xu)2

]

+(1 − ∂2x )
−1
[
1

2
(∂xu)3

]
= 0, (1.4a)

u(x, 0) = ϕ(x), t ∈ R, x ∈ R, (1.4b)

and study its well-posedness in the Sobolev spaces Hs(R). Here, κ > 0 is a parameter. Note
that, like in the case of NE, solutions u to this equation conserve their H1 norm. In fact, using
the local form of mNE, which results from multiplying mNE by (1 − ∂2x ),

∂t u − ∂t∂
2
x u + κ∂3x u − κ∂5x u + 4u2∂xu − 3u∂xu∂2x u − u2∂3x u = 0, (1.5)

and doing integration by part we get

d

dt

∫
[u2 + (∂xu)2]dx = 2

∫
u · [∂t u − ∂2x ∂t u

]
dx

(1.5)= 2
∫

u ·
[
−κ∂3x u + κ∂5x u − 4u2∂xu + 3u∂xu∂2x u + u2∂3x u

]
dx

= 2
∫ [

∂x
(
u3∂2x u

)− ∂x
(
u4
)]
dx = 0.

Next, to state our results for mNE Cauchy problem (1.4) precisely, we recall the definition
of Bourgain spaces used in the well-posedness theory of dispersive equations (see, for exam-
ple, [8, 15, 56]). For any s, b ∈ R, the Bourgain space Xs,b = Xs,b(R2) is the completion of
the Schwartz space S(R2) with respect to the norm

‖u‖s,b .= ‖u‖Xs,b
.=
(∫

R

∫
R

(1 + |ξ |)2s(1 + |τ − ξ3|)2b |̂u(ξ, τ )|2dξdτ

)1/2

,

where û denotes the space-time Fourier transform defined by

û(ξ, τ ) =
∫
R

∫
R

e−i(xξ+tτ)u(x, t)dxdt .

Also, for T > 0, Xs,b
T denotes the restricted Bourgain space defined by

Xs,b
T = {u : u(x, t) = v(x, t) on R × (−T , T ) with v ∈ Xs,b(R2)}. (1.6)

Finally, we recall that the norm in Xs,b
T is defined by

‖u‖Xs,b
T

= inf
v∈Xs,b

{‖v‖s,b : v(x, t) = u(x, t) on R × (−T , T )
}
. (1.7)

With the needed definitions in place, next we state our well-posedness result for mNE proved
here.

Theorem 1.6 (Local well-posedness) If s > 2
3 , then for any ϕ ∈ Hs(R) there exist a time

T0 = T0(‖ϕ‖Hs ) > 0 and a unique solution u of the Cauchy problem (1.4) on the time
interval [−T0, T0], such that u ∈ Xs,b

T0
∩ C([−T0, T0]; Hs(R)), with

T0 = c0

(1 + ‖ϕ‖2Hs )
2
β

, β
.= min

{
1

6
(s − 2

3
),
1

8

}
, (1.8)
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818 A.A. Himonas, F. Yan

for some constants c0 = cs,b > 0 depending only on s and b. Moreover, the local solution u
satisfies the following size estimate in Bourgain spaces

‖u‖Xs,b
T0

≤ C(s, b)‖ϕ‖Hs ,

for some b ∈ (1/2, 1). Also, we have the Hadamard space estimate

sup
|t |≤T0

‖u(t)‖Hs ≤ C0(s, b)‖ϕ‖Hs . (1.9)

Finally, the solution depends Lip-continuously on the data ϕ.

Considering that mNE solutions conserve their H1 norm, from Theorem 1.6 we get the
next result.

Theorem 1.7 (Global well-posedness) The mNE is globally well-posed in the Sobolev space
H1.

Theorems 1.6 and 1.7 are motivated by the corresponding results obtained in [13, 42, 43]
for the following dispersive modification of the CH equation, denoted by mCH,

∂t u + κ∂3x u + 1

2
∂x (u

2) + (1 − ∂2x )
−1∂x

[
u2 + 1

2
(∂xu)2

]
= 0,

which is analogous to theKdV regularization ut−6uux+ε2uxxx = 0 of the Burgers equation
ut − 6uux = 0, with κ = ε2, by Lax and Levermore [58–61]. Although the question of what
happens in mCH when the parameter κ goes to zero remains open, some numerical results
in the periodic case have been obtained in [31]. The above-mentioned work of Lax and
Levermore on the small dispersion limit of the Korteweg–de Vries equation provides a good
motivation for investigating the corresponding problem for both mCH andmNE. Concerning
the proof of well-posedness for mCH, we note that it is based on the KdV bilinear estimate
‖∂x ( f · g)‖Xs,b−1 ≤ cs‖ f ‖Xs,b‖g‖Xs,b in [56] that holds for s > −3/4 and some b ∈ ( 12 , 1),
with f and g replaced with ∂x f and ∂x g and therefore is valid for s > 1 − 3

4 = 1
4 . This

explains why mCH is well-posed for s > 1
4 . Now, considering that the mKdV is well-posed

for s ≥ 1
4 [55] and its trilinear estimates hold for s ≥ 1

4 [75], this idea transferred to the mNE
situation will give well-posedness for s ≥ 1+ 1

4 = 5
4 , which is worse than the well-posedness

for s > 2
3 obtained here. This seems to be an interesting phenomenon for mNE, which is

explained by the improved trilinear estimates for the nonlocal nonlinearities stated in the next
section. Concerning the mKdV, we mention that its well-posedness in Hs was proved first
by Kenig, Ponce and Vega [55] for s ≥ 1

4 with a different method without using its trilinear
estimate in Bourgain spaces (also, see [71]). Also, we mention that our proof of the mKdV
trilinear estimate provided here for s > 1

4 is different than the one of Tao in [75]. Concluding,
we mention that the sharpness of Theorem 1.6 is an interesting open question. Constructing
a counterexample to the nonlocal trilinear estimates (2.18) could provide useful information.

The rest of the paper is organized as follows. In Section 2 we state the three trilinear
estimates needed and use them to prove Theorem 1.6. In Section 3 we prove first the trilinear
estimate for the local nonlinearity ∂x (u3), and then we use it to prove the trilinear estimates
for nonlocal nonlinearities (1 − ∂2x )

−1∂x [u(∂xu)2] and (1 − ∂2x )
−1[(∂xu)3].

123



OnWell-Posedness of Nonlocal Evolution Equations 819

2 Well-posedness in Sobolev spaces—Proof of Theorem 1.6

In what follows we will assume the coefficient κ of the dispersion ∂3x u is equal to 1, that is
κ = 1. When κ > 0 and κ �= 1, then the constants appearing in some of the estimates depend
on k.

We begin the well-posedness proof by solving the initial value problem (ivp) for the linear
mNE

∂t u + ∂3x u = −w(x, t), (2.1)

u(x, 0) = ϕ(x), t ∈ R, x ∈ R, (2.2)

with forcing w the mNE nonlinearity w = wuuu , where

w = w f gh
.= 1

3
∂x ( f · g · h) + (1 − ∂2x )

−1∂x

[
f · g · h + 3

2
( f · gx · hx )

]

+ (1 − ∂2x )
−1
[
1

2
( fx · gx · hx )

]
.

(2.3)

With this definition, we have the following formula to be used later

wuuu − wvvv = 1

3
∂x [(u − v)(u2 + uv + v2)] + (1 − ∂2x )

−1∂x [(u − v)(u2 + uv + v2)]

+ 3

2
(1 − ∂2x )

−1∂x
[
(u − v)u2x + v(u − v)x (u + v)x

]

+ 1

2
(1 − ∂2x )

−1 [(u − v)x (u
2
x + uxvx + v2x )

]
.

(2.4)

We solve initial value problem (ivp) (2.1) by taking Fourier transform with respect to x ,
which for a test function φ(x) is defined by the familiar formula

φ̂(ξ) =
∫
R

e−iξ xφ(x)dx,

and solving the resulting DE ivp in the t variable. Thus, we obtain the Duhamel’s formula

u(x, t) = W (t)ϕ(x) −
∫ t

0
W (t − t ′)w(x, t ′) dt ′, (2.5)

where W (t)ϕ(x) denotes the solution to the homogeneous Cauchy problem for the linear
mNE with initial data ϕ, that is

W (t)ϕ(x)
.= 1

2π

∫ ∞

−∞
ei(ξ x+ξ3t)ϕ̂(ξ)dξ.

Now, to solve the mNE ivp locally, we introduce the usual time localizer, which is a cut-off
function

ψ ∈ C∞
0 (−1, 1), 0 ≤ ψ ≤ 1, and ψ(t) = 1 for |t | ≤ 1/2. (2.6)

Multiplying the right-hand side (2.5) by ψ(t) we obtain the following global form

u(x, t) = ψ(t)W (t)ϕ(x) − ψ(t)
∫ t

0
W (t − t ′)w(x, t ′) dt ′ .= Φu(x, t). (2.7)

Note that for |t | ≤ 1/2 global formulation (2.7) coincides with local formulation (2.5).
Thus, our strategy for proving existence of a local solution of our ivp is to show that the
map Φ defined in (2.7) has a fixed point in appropriate solution space, via a fixed point
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820 A.A. Himonas, F. Yan

argument. For this, we assume that the forcing w is globally defined and using the relation
ŵx (ξ, t ′) = 1

2π

∫∞
−∞ eiτ t

′
ŵ(ξ, τ )dτ we obtain the following decomposition of the map Φ,

like in [8],

Φu(x, t) = 1

2π
ψ(t)

∫ ∞

−∞
ei(ξ x+ξ3t)ϕ̂(ξ)dξ (2.8)

+ i

4π2 ψ(t)
∫
R

∫
R

ei(ξ x+τ t) 1 − ψ(τ − ξ3)

τ − ξ3
ŵ(ξ, τ )dτdξ (2.9)

− i

4π2 ψ(t)
∫
R

∫
R

ei(ξ x+ξ3t) 1 − ψ(τ − ξ3)

τ − ξ3
ŵ(ξ, τ )dτdξ (2.10)

+ i

4π2 ψ(t)
∫
R

∫
R

ei(ξ x+ξ3t) ψ(τ − ξ3)[ei(τ−ξ3)t − 1]
τ − ξ3

ŵ(ξ, τ )dτdξ. (2.11)

Next, using this convenient for estimation in Bourgain spaces form of the iteration map
Φ, we show that it is a contraction in an appropriate ball of the Bourgain Xs,b for s > 2

3 and
some b ∈ ( 12 , 1). For proving that the map Φ is onto we begin with the inequality

‖Φu‖Xs,b ≤ ‖ψ(t)W (t)ϕ(x)‖s,b +
∥∥∥∥ψ(t)

∫ t

0
W (t − t ′)w(x, t ′) dt ′)

∥∥∥∥
s,b

, w = wuuu,

(2.12)
where wuuu is given by formula (2.3), while to show that Φ is a contraction we begin with
inequality

‖Φu − Φv‖Xs,b ≤
∥∥∥∥ψ(t)

∫ t

0
W (t − t ′)w(x, t ′) dt ′)

∥∥∥∥
s,b

, w = wuuu − wvvv, (2.13)

where wuuu − wvvv is given by formula (2.4). From inequalities (2.12) and (2.13) we see
that we need the following linear estimates, whose proof follows from using the convenient
writing (2.8)–(2.11) of Φu, and the definition of Xs,b-norm.

Lemma 2.1 (Linear estimates) For any s ∈ R and b > 0 there is c1 = c1(ψ, s, b) such that

‖ψ(t)W (t)ϕ(x)‖s,b ≤ c1‖ϕ‖Hs . (2.14)

Also, for s ∈ R and 1/2 < b < 1 we have∥∥∥∥ψ(t)
∫ t

0
W (t − t ′)w(x, t ′) dt ′

∥∥∥∥
s,b

≤ c1‖w‖s,b−1. (2.15)

Now, taking into consideration the form of mNE nonlinearities (2.3) we see that the
following three trilinear estimates are the key ingredients for showing that our iteration map
is a contraction, thus proving Theorem 1.6.

Proposition 2.1 (mKdV trilinear estimate) If s > 1
4 , then there exist b and b′ with 1/2 <

b′ ≤ b < 1 such that the following trilinear estimate holds:

‖∂x ( f gh)‖Xs,b−1 ≤ c2‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ , (2.16)

where c2 = c2(s, b). In fact, b and b′ depend on s and can be chosen as follows:

1

2
< b′ ≤ b ≤ 1

2
+ β1, where β1 = β1(s)

.= min

{
1

6

(
s − 1

4

)
,
1

8

}
.
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Proposition 2.2 (First nonlocal trilinear estimate) If s > 1
2 , then there exist b and b′ with

1/2 < b′ ≤ b < 1 such that the following trilinear estimate holds:

‖(1 + ∂2x )
−1∂x [ f (∂x g)(∂xh)]‖Xs,b−1 ≤ c2‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ , (2.17)

where c2 = c2(s, b). Also, b and b′ depend on s and can be chosen as follows:

1

2
< b′ ≤ b ≤ 1

2
+ β2, where β2 = β2(s)

.= min

{
1

6

(
s − 1

2

)
,
1

8

}
.

Proposition 2.3 (Second nonlocal trilinear estimate) If s > 2
3 , then there exist b and b′ with

1/2 < b′ ≤ b < 1 such that the following trilinear estimates holds:

‖(1 + ∂2x )
−1[(∂x f )(∂x g)(∂xh)]‖Xs,b−1 ≤ c2‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ , (2.18)

where c2 = c2(s, b). Finally, b and b′ depend on s and can be chosen as follows:

1

2
< b′ ≤ b ≤ 1

2
+ β3, where β3 = β3(s)

.= min

{
1

6

(
s − 2

3

)
,
1

8

}
.

Remark 2.1 Note that β3 is the smallest of all parameters β j used in the three trilinear
estimates above. Therefore, all these estimates hold for

1

2
< b′ ≤ b ≤ 1

2
+ β, where β = β(s)

.= min

{
1

6

(
s − 2

3

)
,
1

8

}
,

and this is what we will use in the proof of our well-posedness Theorem 1.6.

As we have mentioned earlier, our proof of the mKdV trilinear estimate (2.16) is different
than the one given in [75]. Also, a good part of the proof of each one of the nonlocal trilinear
estimates (2.17) and (2.18) is reduced to the proof of estimate (2.16).

We shall prove the trilinear estimates in the next section. Here, we shall use them to
complete the proof of Theorem 1.6. For any size initial data ϕ ∈ Hs and lifespan T such that

0 < T < 1/2,

and to be determined later, we further localize integral equation (2.7) as follows

u(x, t) = ψ(t)W (t)ϕ − ψ(t)
∫ t

0
W (t − t ′)ψ2T (t ′)wuuu(x, t

′) dt ′

.= ΦT (u)(x, t) = ΦT ,ϕ(u)(x, t),

(2.19)

where ψT (t) = ψ(t/T ), with ψ being the standard localization function defined in (2.6).
If |t | < T , then we see that ΦT (u) = Φ(u) and the fixed point of the iteration map (2.19)
is the solution to the modified Novikov equation ivp (1.4). Next, we show that the iteration
map (2.19) is contraction on the ball

B(r) = {u ∈ Xs,b : ‖u‖Xs,b ≤ r},
if we choose the radius r and the lifespan T appropriately. For this we will need following
multiplier estimate in [74] (see Lemma 2.11).

Lemma 2.2 Let η(t) be a function in the Schwartz space S(R). If − 1
2 < γ ′ ≤ γ < 1

2 , then
for any 0 < T ≤ 1 we have

‖η(t/T )u‖Xs,γ ′ ≤ c3(η, γ, γ ′)T γ−γ ′ ‖u‖Xs,γ . (2.20)
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Also, we will use the trilinear estimates (2.16), (2.17), and (2.18), with the following
choice of b′ and b

b = 1

2
+ 1

2
β (in place of b′) and b1 = 1

2
+ β (in place of b), with β = β3,

in which they read as follows

‖∂x ( f gh)‖s,b1−1 ≤ c2‖ f ‖s,b‖g‖s,b‖h‖s,b, (2.21a)

‖(1 + ∂2x )
−1∂x [ f (∂x g)(∂xh)]‖s,b1−1 ≤ c2‖ f ‖s,b‖g‖s,b‖h‖s,b, (2.21b)

‖(1 + ∂2x )
−1[(∂x f )(∂x g)(∂xh)]‖s,b1−1 ≤ c2‖ f ‖s,b‖g‖s,b‖h‖s,b. (2.21c)

ΦT is onto: For u ∈ B(r), applying the linear estimates (2.14), (2.15) and the multiplier
estimate (2.20) with γ = b1 − 1, γ ′ = b − 1, we get

‖ΦT (u)‖s,b ≤ c1‖ϕ‖Hs + c1 ‖ψ2T (t)wuuu‖s,b−1

≤ c1‖ϕ‖Hs + c1c3T
1
2 β ‖wuuu‖s,b1−1 ,

(2.22)

since b1 − b = β
2 . Then, applying trilinear estimates (2.21) to the nonlinearity wuuu in (2.3),

we get

‖wuuu‖s,b1−1 =
∥∥∥∥13∂x (u

3) + (1 − ∂2x )
−1∂x

[
u3 + 3

2
u(∂xu)2

]
+ (1 − ∂2x )

−1
[
1

2
(∂xu)3

]∥∥∥∥
s,b−1

≤ 4c2‖u‖3s,b. (2.23)

Thus, combining (2.22) and (2.23) gives the onto estimate

‖ΦT (u)‖s,b ≤ c1‖ϕ‖Hs + 4c1c2c3T
1
2 β‖u‖3s,b. (2.24)

From (2.24) we see that for the map ΦT to be onto, it suffices to have c1‖ϕ‖Hs +
4c1c2c3T

1
2 β‖u‖3s,b ≤ r . And, since u ∈ B(r) it suffices for the lifespan T and the radius r

to satisfy the condition

c1‖ϕ‖Hs + 4c1c2c3T
1
2 βr3 ≤ r . (2.25)

ΦT is contraction For u, v ∈ B(r), applying the linear estimate (2.15) and the multiplier
estimate (2.20) with γ = b1 − 1, γ ′ = b − 1, we have

‖ΦT (u) − ΦT (v)‖s,b ≤ c1‖ψ2T (t)(wuuu − wvvv)‖s,b−1

≤ c1c3T
1
2 β‖wuuu − wvvv‖s,b1−1.

(2.26)

Next, applying trilinear estimates (2.21) to the nonlinearities wuuu − wvvv defined by
(2.4), we get

‖wuuu − wvvv‖s,b1−1 ≤ 4

3
c2‖u − v‖s,b

(‖u‖2s,b + ‖u‖s,b‖v‖s,b + ‖v‖2s,b
)

+3

2
c2‖u − v‖s,b

(‖u‖2s,b + ‖v‖s,b‖u + v‖s,b
)

+1

2
c2‖u − v‖s,b

(‖u‖2s,b + ‖u‖s,b‖v‖s,b + ‖v‖2s,b
)

≤ 4c2
(‖u‖2s,b + ‖u‖s,b‖v‖s,b + ‖v‖2s,b

) ‖u − v‖s,b,
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which combined with (2.26) gives the contraction estimate

‖ΦT (u) − ΦT (v)‖s,b ≤ 12c1c2c3r
2T

1
2 β‖u − v‖s,b.

Thus, in order to make the iteration map ΦT a contraction map, it suffices to have

12c1c2c3r
2T

1
2 β ≤ 1

2
. (2.27)

Combining conditions (2.25) with (2.27), we see that it suffices to have c1‖ϕ‖Hs + 1
6r ≤ r

or r ≥ 6
5c1‖ϕ‖Hs . So, we choose the radius to be

r
.= 2c1‖ϕ‖Hs . (2.28)

Then, from (2.27), it suffices to have T
1
2 β ≤ (24c1c2c3r2)−1 or T ≤ (24c1c2c3r2)−2/β ,

which follows from choosing T = 1
2

1

(1+24c1c2c3r2)
2
β

< 1
2 . Combining this choice of T

together with choice (2.28) for r gives

T = 1

2

1

(1 + 96c31c2c3‖ϕ‖2Hs )
2
β

≥ c0

(1 + ‖ϕ‖2Hs )
2
β

.= T0, (2.29)

for some c0 depending on c1, c2, c3 and β, that is c0 = c0(s, b). This is the estimate for the
lifespan (1.8) stated in Theorem 1.6.

Now, observe that the fixed-point u ∈ Xs,b(R2) of the iteration map (2.19) restricted to
|t | ≤ T0 satisfies the non-ψ integral equation (2.5), that is

u(x, t) = W (t)ϕ(x) −
∫ t

0
W (t − t ′)w(x, t ′) dt ′, |t | ≤ T0.

Therefore, we have a solution u for the modified Novikov equation ivp (1.4a) in the space
Xs,b
T0

defined by (1.6), and having norm ‖u‖Xs,b
T

defined by (1.7).

Solution Bound Since the solution u ∈ Xs,b
T0

is the restriction of the fixed-point v(x, t) =
ΦT0(v) (which in our discussion above we were calling u), we have

‖u‖Xs,b
T0

≤ ‖v‖s,b = ‖ΦT0(v)‖s,b ≤ 2c1‖ϕ‖Hs ,

where the last step follows from fact that v is a fixed-point in the ball B(2c1‖ϕ‖Hs ). Finally, in
order to prove estimate (1.9) we need the following basic result, which follows the definition
of ‖ · ‖Hs and the Cauchy–Schwarz inequality.

Lemma 2.3 Let b > 1
2 . The inclusion Xs,b(R2) ↪→ C(R, Hs(R)) is continuous, that is

sup
t∈R

‖u(t)‖Hs ≤ C(b)‖u‖Xs,b .

Now, the desired solution bound follows from Lemma 2.3 since

sup
|t |≤T0

‖u(t)‖Hs = sup
|t |≤T0

‖v(t)‖Hs ≤ sup
t∈R

‖v(t)‖Hs ≤ C‖v‖Xs,b ≤ 2c1C‖ϕ‖Hs .

Lip-continuous dependence on initial data For any ϕ0 ∈ Hs and R > 0 let us consider the
neighborhood

U = B(ϕ0, R)
.= {ϕ ∈ Hs : ‖ϕ − ϕ0‖Hs ≤ R}.

123



824 A.A. Himonas, F. Yan

Then, by the triangle inequality we have ‖ϕ‖Hs ≤ ‖ϕ − ϕ0‖Hs + ‖ϕ0‖Hs = ‖ϕ0‖Hs + R.
Using this and lifespan estimate (2.29) we see that

T ∗ .= 1

2

1

[1 + 96c31c2c3(‖ϕ0‖Hs + R)2] 2
β

(2.30)

is common lifespan of solutions to modified Novikov equation ivp (1.4) with initial data in
U . Now, for ϕk ∈ U , k = 1, 2, we denote the solution of the modified Novikov equation ivp
(1.4a) with the initial data ϕk by uk , that is uk satisfies

uk(x, t)
.= ψ(t)W (t)ϕk − ψ(t)

∫ t

0
W (t − t ′)ψ2T ∗(t ′)wukukuk dt

′, |t | < T ∗.

Moreover, we denote the fixed point of iteration map ΦT ∗,ϕk (vk) by vk , that is

vk(x, t)
.= ψ(t)W (t)ϕk − ψ(t)

∫ t

0
W (t − t ′)ψ2T ∗(t ′)wvkvkvk dt

′, t ∈ R.

Since vk is extensions of uk from R × [−T ∗, T ∗] to R × R, we have ‖u1 − u2‖Xs,b
T∗ ≤

‖v1−v2‖s,b. Thus, to prove theLip-continuousdependenceon initial data, i.e.‖u1−u2‖Xs,b
T∗ ≤

C‖ϕ1 − ϕ2‖Hs , where C is a constant depending on ϕk , it suffices to show that

‖v1 − v2‖s,b ≤ C‖ϕ1 − ϕ2‖Hs . (2.31)

Now, as before, we choose the balls

Bk = Bk(2c1‖ϕk‖Hs )
.=
{
v ∈ Xs,b : ‖v‖s,b ≤ 2c1‖ϕk‖Hs

}
, k = 1, 2. (2.32)

From the proof of existence, we know that vk ∈ Bk . So, applying the linear estimates (2.14),
(2.15) and the multiplier estimate (2.20) with γ = b1 − 1, γ ′ = b − 1, we get

‖v1 − v2‖s,b ≤ c1‖ϕ1 − ϕ2‖Hs + c1‖ψ2T ∗(t)(wv1v1v1 − wv2v2v2)‖s,b−1

≤ c1‖ϕ1 − ϕ2‖Hs + c1c3T
∗ 1
2 β‖wv1v1v1 − wv2v2v2‖s,b1−1.

Then, applying trilinear estimates (2.21a) to the nonlinearities wv1v1v1 − wv2v2v2 defined by
(2.4), we get

‖wv1v1v1 − wv2v2v2‖s,b1−1 ≤ 4

3
c2‖v1 − v2‖s,b

(‖v1‖2s,b + ‖v1‖s,b‖v2‖s,b + ‖v2‖2s,b
)

+ 3

2
c2‖v1 − v2‖s,b

(‖v1‖2s,b + ‖v1‖s,b‖v1 + v2‖s,b
)

+ 1

2
c2‖v1 − v2‖s,b

(‖v1‖2s,b + ‖v1‖s,b‖v2‖s,b + ‖v2‖2s,b
)

≤ 4c2
(‖v1‖2s,b + ‖v1‖s,b‖v2‖s,b + ‖v2‖2s,b

) ‖v1 − v2‖s,b,

(2.33)

which combined with definition (2.32) and estimate (2.33) implies that

‖v1 − v2‖s,b ≤ c1‖ϕ1 − ϕ2‖Hs + 48c31c2c3T
∗ 1
2 β · (‖ϕ0‖Hs + R)2‖v1 − v2‖s,b.

Combining this with the expression (2.30) for the common lifespan T ∗, we obtain

‖v1 − v2‖s,b ≤ c‖ϕ1 − ϕ2‖Hs + 48c31c2c3(‖ϕ0‖Hs + R)2

1 + 96c31c2c3(‖ϕ0‖Hs + R)2
‖v1 − v2‖s,b

≤ c‖ϕ1 − ϕ2‖Hs + 1

2
‖v1 − v2‖s,b,
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which is the desired estimate (2.31). Now, using Lemma 2.3, we can also get the estimate in
the space C(R; Hs), i.e.

sup
t∈R

‖v1(t) − v2(t)‖Hs ≤ ‖v1 − v2‖s,b ≤ 2c1C‖ϕ1 − ϕ2‖Hs .

Finally, concerning the proof of uniqueness of solution in the space Xs,b
T0

, it is similar to
one presented in [6]. This completes the proof of Theorem 1.6. ��

3 Proof of Trilinear Estimates in Bourgain Spaces

In this section, we prove the trilinear estimates (2.16), (2.17) and (2.18). For this, we need
the following calculus estimates [51, 56].

Lemma 3.1 If � > 1/2 and �′ > 1
2 then

∫
R

dx

(1 + |x − a|)2�(1 + |x − c|)2� � 1

(1 + |a − c|)2� , (3.1)
∫
R

dx

(1 + |x − a|)2(1−�)(1 + |x − c|)2�′ � 1

(1 + |a − c|)2(1−�)
. (3.2)

In addition, if 1
4 < �, �′ < 1

2 , then

∫
R

dx

(1 + |x − a|)2�(1 + |x − c|)2�′ � 1

(1 + |a − c|)2�+2�′−1
. (3.3)

3.1 Proof of mKdVTrilinear Estimate (2.16)

Westart with expressing trilinear estimate (2.16), i.e. ‖∂x ( f gh)‖Xs,b−1 ≤cs,b‖ f ‖Xs,b′ ‖g‖Xs,b′
‖h‖Xs,b′ , in its L2 form. Using the following notation

cu
.= |̂u(ξ, τ )|(1 + |ξ |)s(1 + |τ − ξ3|)b′

, (3.4)

we get ‖u‖Xs,b′ = ‖cu‖L2 . Next, we form the Xs,b−1-norm, that is

‖∂x ( f gh)‖2Xs,b−1

=
∫
R2

|ξ |2(1 + |ξ |)2s
(1 + |τ − ξ3|)2(1−b)

×
[∫

R4
f̂ (ξ1, τ1)ĝ(ξ2, τ2 )̂h(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

]2
dξdτ

≤
∫
R2

|ξ |2(1 + |ξ |)2s
(1 + |τ − ξ3|)2(1−b)

×
(∫

R4

∣∣ f̂ (ξ1, τ1)ĝ(ξ2, τ2 )̂h(ξ − ξ1 − ξ2, τ − τ1 − τ2)
∣∣ dξ2dτ2dξ1dτ1

)2

dξdτ

=
∫
R2

(∫
R2

∫
R2

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

)2

dξdτ,
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where Q is defined in (3.6) below. Thus, to prove trilinear estimate (2.16), it suffices to show
the L2 inequality

∥∥∥∥
∫
R4

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
2

L2
ξ,τ

� ‖c f ‖2L2
ξ,τ

‖cg‖2L2
ξ,τ

‖ch‖2L2
ξ,τ

,

(3.5)

where the multiplier Q = Q(ξ, τ, ξ1, τ1, ξ2, τ2) is defined by

Q
.= |ξ |(1 + |ξ |)s(1 + |ξ1|)−s(1 + |ξ2|)−s(1 + |ξ − ξ1 − ξ2|)−s

(1 + |τ − ξ3|)1−b(1 + |τ1 − ξ31 |)b′
(1 + |τ2 − ξ32 |)b′

(1 + |τ − τ1 − τ2 − (ξ − ξ1 − ξ2)3|)b′ .

(3.6)

In the multiplier Q we recognize the familiar Bourgain quantity

d3(ξ, ξ1, ξ2)
.= (τ − ξ3) − (τ1 − ξ31 ) − (τ2 − ξ32 ) − [τ − τ1 − τ2 − (ξ − ξ1 − ξ2)

3]
= −ξ3 + ξ31 + ξ32 + (ξ − ξ1 − ξ2)

3.
(3.7)

Below, we list two useful and elementary properties for this quantity.

Lemma 3.2 The Bourgain quantity d3(ξ, ξ1, ξ2) satisfies the following properties:

d3(ξ, ξ1, ξ2) = −3(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2), (3.8)
∂d3
∂ξ1

= 3ξ21 − 3(ξ − ξ1 − ξ2)
2 = 3(ξ − ξ2)(2ξ1 − ξ + ξ2)

= 6(ξ − ξ2)

[
ξ1 − 1

2
(ξ − ξ2)

]
. (3.9)

Now,we estimate the left-hand side of estimate (3.5) in away similar to the case of trilinear
estimates for the cubic nonlinear Schrödinger equation [26]. First applying the Cauchy–
Schwarz inequality in ξ1, ξ2, τ1, τ2, and then using Hölder’s inequality we get

∥∥∥∥
∫
R4

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
2

L2
ξ,τ

≤
∫
R2

(∫
R4

Q2dξ2dτ2dξ1dτ1

)

×
(∫

R4
c2f (ξ1, τ1)c

2
g(ξ2, τ2)c

2
h(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

)
dξdτ

=
∫
R2

(∫
R4

Q2dξ2dτ2dξ1dτ1

)(
c2f ∗ c2g ∗ c2h

)
(ξ, τ )dξdτ

≤
∥∥∥∥
∫
R4

Q2dξ2dτ2dξ1dτ1

∥∥∥∥
L∞

ξ,τ

∥∥∥c2f ∗ c2g ∗ c2h

∥∥∥
L1

ξ,τ

. (3.10)

Furthermore, applying Young’s convolution inequality ‖ f ∗ g‖L1(R) ≤ ‖ f ‖L1(R)‖g‖L1(R)

twice, we get

‖c2f ∗ c2g ∗ c2h‖L1
ξ,τ

≤ ‖c2f ∗ c2g‖L1
ξ,τ

· ‖c2h‖L1
ξ,τ

≤ ‖c2f ‖L1
ξ,τ

‖c2g‖L1
ξ,τ

‖c2h‖L1
ξ,τ

= ‖c f ‖2L2
ξ,τ

‖cg‖2L2
ξ,τ

‖ch‖2L2
ξ,τ

.
(3.11)
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Combining estimate (3.11) with (3.10), we get
∥∥∥∥
∫
R4

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
2

L2

� ‖Θ1‖L∞
ξ,τ

‖c f ‖2L2‖cg‖2L2‖ch‖2L2 .

Thus, to prove our trilinear estimate (3.5) it suffices to show that the quantity Θ1 defined
below is bounded, that is the following result holds.

Lemma 3.3 If s > 1
4 and 1

2 < b′ ≤ b < min{ 13 + 2
3 s,

3
4 }, then for all ξ and τ we have

Θ1(ξ, τ )
.= |ξ |2(1 + |ξ |)2s

(1 + |τ − ξ3|)2(1−b)

×
∫
R4

(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s dξ2dτ2dξ1dτ1

(1 + |τ1 − ξ31 |)2b′
(1 + |τ2 − ξ32 |)2b′

(1 + |τ − τ1 − τ2 − (ξ − ξ1 − ξ2)3|)2b′

� 1. (3.12)

Proof We begin the proof by taking advantage of the symmetry in convolution writing of
f̂ ∗ ĝ ∗ ĥ to assume the following order of |ξ1|, |ξ2| and |ξ − ξ1 − ξ2|

|ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2|. (3.13)

Then, in our L2 formulation of the trilinear estimate (3.5), we can replace the multiplier Q
with χAQ, where A is defined by

A
.= {(ξ, ξ1, ξ2) ∈ R

3 : |ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2|}.
This results in having χA as a factor of the integrand in the quantity Θ1 defined in (3.12)
above. Applying calculus estimate (3.1) in τ1 with a = τ − τ2 − (ξ − ξ1 − ξ2)

3, c = ξ31 and
� = b′, from (3.12) we get

Θ1(ξ, τ ) � |ξ |2(1 + |ξ |)2s
(1 + |τ − ξ3|)2(1−b)

×
∫
R3

χA(ξ, ξ1, ξ2)(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

(1 + |τ2 − ξ32 |)2b′
(1 + |τ − τ2 − (ξ − ξ1 − ξ2)3 − ξ31 |)2b′ dτ2dξ2dξ1.

Furthermore, applying calculus estimate (3.1) in τ2 with a = τ −(ξ −ξ1−ξ2)
3−ξ31 , c = ξ32 ,

� = b′ gives

Θ1(ξ, τ ) � |ξ |2(1 + |ξ |)2s
(1 + |τ − ξ3|)2(1−b)

(3.14)

×
∫
R2

χA(ξ, ξ1, ξ2)(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

(1 + |τ − ξ3 − d3(ξ, ξ1, ξ2)|)2b′ dξ2dξ1,

where d3(ξ, ξ1, ξ2) is the Bourgain quantity given by (3.7). Also, since for (ξ, ξ1, ξ2) ∈ A
we have the ordering relation |ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2|, we obtain the following useful
bound for |ξ |

|ξ | = |(ξ − ξ1 − ξ2) + ξ2 + ξ1| ≤ |ξ − ξ1 − ξ2| + |ξ2| + |ξ1| ≤ 3|ξ1|. (3.15)

Next, we consider the following two cases.

– Case 1: |ξ1| ≤ 100.
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– Case 2: |ξ1| > 100.

Proof in Case 1. Since |ξ1| ≤ 100 by estimate (3.15) and relation (3.13) we see that all
of |ξ |, |ξ1| and |ξ2| are bounded. Furthermore, since b′ ≥ 0 and (1 − b) ≥ 0, we see that
the multiplier and the integrand in (3.14) are bounded. Therefore, Θ1(ξ, τ ) � 1, since the
integration is over a bounded set.
Proof in Case 2.We consider the following two subcases.

– Subcase 2.1: |ξ1| > 100 and |ξ2| ≤ 1
4 |ξ1|.

– Subcase 2.2: |ξ1| > 100 and |ξ2| > 1
4 |ξ1|.

Proof in Subcase 2.1. Since, by (3.15), |ξ | ≤ 3|ξ1| and also |ξ | = |ξ1 + ξ2 + (ξ − ξ1 − ξ2)| ≥
|ξ1|− |ξ2|− |ξ − ξ1 − ξ2| ≥ |ξ1|− 1

4 |ξ1|− 1
4 |ξ1| = 1

2 |ξ1|, we have |ξ | ≥ 1
2 |ξ1|, and therefore,

|ξ | � |ξ1|. (3.16)

Using estimate (3.16) we have (1+|ξ1|)−2s � (1+|ξ |)−2s . Also, using |ξ2| ≥ |ξ − ξ1 − ξ2|,
for s ≥ 0 we get (1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s � (1 + |ξ − ξ1 − ξ2|)−4s . Combining
these estimates with (3.14) gives

Θ1(ξ, τ ) � |ξ |2
(1 + |τ − ξ3|)2(1−b)

∫
R2

χA(ξ, ξ1, ξ2)(1 + |ξ − ξ1 − ξ2|)−4s

(1 + |τ − ξ3 − d3(ξ, ξ1, ξ2)|)2b′ dξ2dξ1. (3.17)

Now, making the change of variables ξ̃2 = ξ − ξ1 − ξ2 (or ξ2 = ξ − ξ1 − ξ̃2) and ξ̃1 = ξ1,
and using the relation d3(ξ, ξ1, ξ2) = −ξ3 + ξ31 + ξ32 + (ξ − ξ1 − ξ2)

3 = d3(ξ, ξ̃1, ξ̃2), from
(3.17) we get

Θ1(ξ, τ ) � |ξ |2
(1 + |τ − ξ3|)2(1−b)

∫
R2

χ Ã(ξ, ξ̃1, ξ̃2)(1 + |̃ξ2|)−4s

(1 + |τ − ξ3 − d3(ξ, ξ̃1, ξ̃2)|)2b′ d ξ̃2d ξ̃1, (3.18)

where the domain Ã is given by Ã
.= {(ξ, ξ̃1, ξ̃2) ∈ R

3 : |̃ξ1| ≥ |ξ − ξ̃1 − ξ̃2| ≥ |̃ξ2|}.
Furthermore, using Fubini’s theorem to switch the integration of d ξ̃2 and d ξ̃1, from (3.18)
we get

Θ1(ξ, τ ) � |ξ |2
(1 + |τ − ξ3|)2(1−b)

×
∫
R

(1 + |̃ξ2|)−4s
[∫

R

χ Ã(ξ, ξ̃1, ξ̃2)

(1 + |τ − ξ3 − d3(ξ, ξ̃1, ξ̃2)|)2b′ d ξ̃1

]
d ξ̃2.

(3.19)

For the d ξ̃1-integral in (3.19) our strategy is to make the change of variables μ = μ(̃ξ1) =
d3(ξ, ξ̃1, ξ̃2). For this change to be good, we need to split the ξ̃1-integral at the critical point
of μ(̃ξ1), which is p = (ξ − ξ̃2)/2, since μ′(̃ξ1) = ∂d3(ξ, ξ̃1, ξ̃2)/∂ξ̃1 = 6(ξ − ξ̃2)

[̃
ξ1 −

1
2 (ξ − ξ̃2)

]
(see property (3.9)). Thus, using ξ̃1 intervals I ξ̃1

1
.= ( − ∞, (ξ − ξ̃2)/2

)
and

I ξ̃1
2

.= (
(ξ − ξ̃2)/2,∞

)
, making the change of variables μ = μ(̃ξ1) = d3(ξ, ξ̃1, ξ̃2) on each

one of these two intervals and defining Iμ
k to be the range of μ when ξ̃1 ∈ I ξ̃1

k , from (3.19)
we get

Θ1 � J1 + J2, (3.20)

with

Jk
.= |ξ |2

(1 + |τ − ξ3|)2(1−b)

∫
R

(1 + |̃ξ2|)−4s

(∫
Iμ
k

dμ

(1 + |τ − ξ3 − μ|)2b′ |μ′|

)
d ξ̃2.
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Now, we need the following bound of |μ′| from below

|μ′| = 6|ξ − ξ̃2|
∣∣̃ξ1 − (ξ − ξ̃2)/2

∣∣ � |ξ |2, (3.21)

which follows from |ξ − ξ̃2| ≥ |̃ξ1| − |ξ − ξ̃1 − ξ̃2| ≥ |ξ1| − 1
4 |ξ1| = 3

4 |ξ1| � |ξ | and
|̃ξ1 − 1

2 (ξ − ξ̃2)| = | 12 ξ̃1 − 1
2 (ξ − ξ̃1 − ξ̃2)| ≥ 1

2 |̃ξ1| − 1
2 |ξ − ξ̃1 − ξ̃2| ≥ 1

2 |ξ1| − 1
8 |ξ1| =

3
8 |ξ1| � |ξ |, since ξ̃1 = ξ1 and |ξ − ξ̃1 − ξ̃2| = |ξ2| ≤ 1

4 |ξ1|. Next, combining estimate (3.21)
with (3.20) and integrating μ over R, we get

Jk � 1

(1 + |τ − ξ3|)2(1−b)

∫
R

d ξ̃2

(1 + |̃ξ2|)4s ·
∫
R

dμ

(1 + |τ − ξ3 − μ|)2b′ , k = 1, 2.

The multiplier 1
(1+|τ−ξ3|)2(1−b) is bounded if 2(1− b) ≥ 0 or b ≤ 1. Also, the first integral

is bounded if 4s > 1 or s > 1
4 , and the second integral is bounded if 2b′ > 1 or b′ > 1

2 .
Therefore, for Jk to be bounded it suffices to have 1

2 < b′ ≤ b ≤ 1 and s > 1
4 . This completes

the proof in Subcase 2.1.
Proof in Subcase 2.2. Since 1

2 < b′ ≤ b < 1 we have 0 < 2(1 − b) < 1 < 2b′, so
we can move (1 + |τ − ξ3|)2(1−b) inside the integral and replace 2b′ with 2(1 − b). Since
(1 + |τ − ξ3|)(1 + |τ − ξ3 − d3(ξ, ξ1, ξ2)|) ≥ |τ − ξ3| + |τ − ξ3 − d3(ξ, ξ1, ξ2)| and also
|τ − ξ3| + |τ − ξ3 − d3(ξ, ξ1, ξ2)| ≥ |τ − ξ3 − d3(ξ, ξ1, ξ2) − (τ − ξ3)| = |d3(ξ, ξ1, ξ2)|,
we have

(1 + |τ − ξ3|)2(1−b)(1 + |τ − ξ3 − d3(ξ, ξ1, ξ2)|)2b′ � |d3(ξ, ξ1, ξ2)|2(1−b). (3.22)

Using (3.22), from (3.14) we obtain

Θ1(ξ, τ ) � |ξ |2(1 + |ξ |)2s (3.23)

×
∫
R2

χA(ξ, ξ1, ξ2)(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

|d3(ξ, ξ1, ξ2)|2(1−b)
dξ2dξ1.

Recalling the factorization d3 = −3(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2), from (3.23) we obtain

Θ1(ξ, τ ) � |ξ |2(1 + |ξ |)2s (3.24)

×
∫
R2

χA(ξ, ξ1, ξ2)(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ2dξ1.

Next, we consider the following two possibilities about the size of |ξ − ξ1 − ξ2|.
– Subcase 2.2.1: |ξ1| > 100, |ξ2| > 1

4 |ξ1| and |ξ − ξ1 − ξ2| ≤ 1
16 |ξ1|.

– Subcase 2.2.2: |ξ1| > 100, |ξ2| > 1
4 |ξ1| and |ξ − ξ1 − ξ2| > 1

16 |ξ1|.
Proof in Subcase 2.2.1. In this situation we have |ξ − ξ1| = |ξ2 + (ξ − ξ1 − ξ2)| ≥ |ξ2|− |ξ −
ξ1 − ξ2| ≥ ( 14 − 1

16 )|ξ1| � |ξ1| and |ξ − ξ2| = |ξ1 + (ξ − ξ1 − ξ2)| ≥ |ξ1| − |ξ − ξ1 − ξ2| ≥
(1 − 1

16 )|ξ1| � |ξ1|. Thus,
|ξ − ξ1| � |ξ1| and |ξ − ξ2| � |ξ1|. (3.25)

Now, using estimates (3.25), (1 + |ξ1|)−2s � |ξ1|−2s and (1 + |ξ2|)−2s � |ξ1|−2s , putting
|ξ |2(1 + |ξ |)2s inside the integral, from (3.24) we obtain

Θ1(ξ, τ ) �
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

[∫
R

χA(ξ, ξ1, ξ2)(1 + |ξ − ξ1 − ξ2|)−2s

|ξ1 + ξ2|2(1−b)
dξ2

]
dξ1. (3.26)
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Furthermore, we split the ξ2-integral in (3.26) for |ξ1 + ξ2| ≤ 1 and for |ξ1 + ξ2| > 1 by
using the ξ2 intervals I ξ2

1 = (−1 − ξ1, 1 − ξ1) and I ξ2
2 = (−∞,−1 − ξ1) ∪ (1 − ξ1,∞).

Thus, from (3.26) we have
Θ1 � J1 + J2 (3.27)

with

Jk
.=
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

[∫
I
ξ2
k

χA(ξ, ξ1, ξ2)(1 + |ξ − ξ1 − ξ2|)−2s

|ξ1 + ξ2|2(1−b)
dξ2

]
dξ1.

Estimate for J1. Since ξ2 ∈ I ξ2
1 we have |ξ1 + ξ2| � 1, which implies that 1 + |ξ | �

1+ |ξ − (ξ1 + ξ2)|. This gives (1+ |ξ − ξ1 − ξ2|)−2s � (1+ |ξ |)−2s . Thus, from (3.27) we
obtain

J1 �
∫
R

|ξ |2
|ξ1|4−4b+4s

[∫
I
ξ2
1

χA(ξ, ξ1, ξ2)

|ξ1 + ξ2|2(1−b)
dξ2

]
dξ1. (3.28)

Now, making the change of variables μ = μ(ξ2) = ξ1 + ξ2 and using |μ| ≤ 1, from (3.28)
we obtain

J1 �
∫

|μ|≤1

1

|μ|2(1−b)
dμ ·

∫
R

|ξ |2
|ξ1|4−4b+4s dξ1. (3.29)

For the first integral in the above estimate, since 2(1 − b) < 1 or b > 1
2 , we have∫

|μ|≤1
1

|μ|2(1−b) dμ � (μ2b−1)
∣∣1
0 = 1. For the second integral in (3.29), using estimate (3.15),

i.e. |ξ | ≤ 3|ξ1|, we get
∫
R

|ξ |2
|ξ1|4−4b+4s dξ1 �

∫
R

1
|ξ1|2−4b+4s dξ1,which is bounded if 2−4b+4s >

1 or b < 1
4+s, since |ξ1| > 100. For b > 1

2 , it suffices to have
1
4+s > 1

2 or s > 1
4 . Combining

the above computations with (3.29), for J1 to be bounded, it suffices to have 1
2 < b < 1

4 + s
and s > 1

4 . This completes the proof of boundedness for J1.

Estimate for J2. Since ξ2 ∈ I ξ2
2 , we have |ξ1 + ξ2| > 1, which implies that |ξ1 + ξ2| �

(1 + |ξ1 + ξ2|) or |ξ1 + ξ2|2(1−b) � (1 + |ξ1 + ξ2|)2(1−b). Using this, from (3.27) we get

J2 �
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

[∫
I
ξ2
2

χA(ξ, ξ1, ξ2)

(1 + |ξ − ξ1 − ξ2|)2s(1 + |ξ1 + ξ2|)2(1−b)
dξ2

]
dξ1.

(3.30)
Now, for the ξ2-integral in (3.30), making the change of variables μ = μ(ξ2) = ξ1 + ξ2

and using |μ| ≤ |ξ1| + |ξ2| ≤ 2|ξ1|, we get

J2 �
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

[∫
|μ|≤2|ξ1|

1

(1 + |ξ − μ|)2s(1 + |μ|)2(1−b)
dμ

]
dξ1. (3.31)

Next, we consider the following two cases concerning s.

– Subcase 2.2.1.1: 1
4 < s < 1

2 .
– Subcase 2.2.1.2: s ≥ 1

2 .

Proof in Subcase 2.2.1.1.For the dμ-integral in (3.31), integrating it overR and using calculus
estimate (3.3) with 1

4 < � = s < 1
2 and 1

4 < �′ = 1 − b < 1
2 (or 1

2 < b < 3
4 ), a = ξ and

c = 0, we get∫
|μ|≤2|ξ1|

1

(1 + |ξ − μ|)2s(1 + |μ|)2(1−b)
dμ ≤

∫
R

1

(1 + |ξ − μ|)2s(1 + |μ|)2(1−b)
dμ

� 1

(1 + |ξ |)2s+1−2b .
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Combining the above estimate with (3.31), we obtain

J2 �
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

1

(1 + |ξ |)2s+1−2b dξ1 =
∫
R

|ξ |2(1 + |ξ |)2b−1

|ξ1|4−4b+4s dξ1. (3.32)

Again, using estimate (3.15), i.e. |ξ | ≤ 3|ξ1|, and 2b − 1 > 0 from (3.32) we get J2 �∫
R

1
|ξ1|3−6b+4s dξ1, which is bounded if 3− 6b+ 4s > 1 or b < 2

3 s + 1
3 . For b > 1

2 , it suffices

to have 2
3 s + 1

3 > 1
2 or 2

3 s > 1
6 , which implies that s > 1

4 . This completes the estimate for
J2 when 1

4 < s < 1
2 .

Proof in Subcase 2.2.1.2 (s ≥ 1
2 ).Usingμ-intervals Iμ

1 = {μ ∈ R : |μ| ≤ 2|ξ1| and |ξ−μ| ≤
1
2 |ξ |}, Iμ

2 = {μ ∈ R : |μ| ≤ 2|ξ1| and |ξ −μ| > 1
2 |ξ |}, we split J2 as J2 � J21 + J22, where

J2k
.=
∫
R

|ξ |2(1 + |ξ |)2s
|ξ1|4−4b+4s

[∫
Iμ
k

dμ

(1 + |ξ − μ|)2s(1 + |μ|)2(1−b)

]
dξ1, k = 1, 2. (3.33)

Estimate for J21. For μ ∈ Iμ
1 , we have

|μ| � |ξ |, (3.34)

which follows from |μ| = |ξ − (ξ − μ)| ≥ |ξ | − |ξ − μ| ≥ |ξ | − 1
2 |ξ | = 1

2 |ξ |, since
|ξ −μ| ≤ 1

2 |ξ |. Also, since 2(1−b) ≥ 0 or b ≤ 1, using estimate (3.34) we get 1
(1+|μ|)2(1−b) �

1
(1+|ξ |)2(1−b) , which combined with estimate (3.33) gives

J21 �
∫
R

|ξ |2(1 + |ξ |)2s−2(1−b)

|ξ1|4−4b+4s

[∫
Iμ
1

dμ

(1 + |ξ − μ|)2s
]
dξ1. (3.35)

For the dμ-integral in (3.35), we make the change of variables μ1 = ξ − μ. Using
estimate (3.15) and |μ| ≤ 2|ξ1|, we get |μ1| ≤ |ξ | + |μ| ≤ 5|ξ1|. Also, since 2s ≥ 1 we
obtain

∫
Iμ
1

dμ

(1+|ξ−μ|)2s �
∫
|μ1|�|ξ1|

dμ1
(1+|μ1|)2s � ln |ξ1|. Again, using estimate (3.15) we get

|ξ |2(1 + |ξ |)2s−2(1−b) � (1 + |ξ |)2s+2b � |ξ1|2s+2b. Combining the above computations

with (3.35), we obtain J21 �
∫
R

|ξ1|2s+2b

|ξ1|4−4b+4s · ln |ξ1|dξ1 = ∫
R

1
|ξ1|4−6b+2s · ln |ξ1|dξ1, which

is bounded if 4 − 6b + 2s > 1 or b < 1
2 + s

3 . For b > 1
2 , it suffices to have s > 0. This

completes the estimate for J21.
Estimate for J22. Since |ξ − μ| ≥ 1

2 |ξ |, for s ≥ 0 we have 1
(1+|ξ−μ|)2s � 1

(1+|ξ |)2s or
(1+|ξ |)2s

(1+|ξ−μ|)2s � 1. Putting (1 + |ξ |)2s inside the dμ integral, from (3.33) we get

J22 �
∫
R

|ξ |2
|ξ1|4−4b+4s

[∫
Iμ
2

dμ

(1 + |μ|)2(1−b)

]
dξ1. (3.36)

For the dμ-integral in the above estimate, since 2(1 − b) < 1 or b > 1
2 and |μ| ≤ 2|ξ1|

we have
∫
Iμ
2

dμ

(1+|μ|)2(1−b) � [(1+ μ)2b−1]∣∣2|ξ1|0 � |ξ1|2b−1. Again, using estimate (3.15) and
the above computation, from (3.36) we obtain

J22 �
∫
R

|ξ1|2
(1 + |ξ1|)4−4b+4s |ξ1|2b−1dξ1 =

∫
R

1

(1 + |ξ1|)3−6b+4s dξ1,

which is bounded if 3−6b+4s > 1 or b < 1
3 + 2

3 s. For b > 1
2 , it suffices to have

1
3 + 2

3 s > 1
2

or 2
3 s > 1

6 , which implies that s > 1
4 . This completes the proof of Subcase 2.2.1.
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Proof in Subcase 2.2.2. Since |ξ1| > 100, |ξ2| > 1
4 |ξ1| and |ξ − ξ1 − ξ2| > 1

16 |ξ1|, we have
the relations

|ξ − ξ1 − ξ2| � |ξ2| � |ξ1| > 100. (3.37)

Now, moving |ξ |2(1 + |ξ |)2s inside the integral in (3.24), we get

Θ1(ξ, τ )

�
∫
R2

χA(ξ, ξ1, ξ2)|ξ |2(1 + |ξ |)2s(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ2dξ1

and simplifying the numerator as follows, by using estimate (3.15), i.e. |ξ | ≤ 3|ξ1|, and
(3.37),

|ξ |2(1 + |ξ |)2s(1 + |ξ1|)−2s(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s � |ξ1|1−2s |ξ2|1−2s,

we are reduced to the inequality

Θ1(ξ, τ ) �
∫
R2

χA(ξ, ξ1, ξ2)|ξ1|1−2s |ξ2|1−2s

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ2dξ1. (3.38)

Next, we consider the following two possibilities.

– Subcase 2.2.2.1: |ξ1| > 100, |ξ2| > 1
4 |ξ1|, |ξ−ξ1−ξ2| > 1

16 |ξ1| and
(|ξ | ≤ 1

64 |ξ−ξ1−ξ2|
or |ξ | ≥ 65

64 |ξ1|
)
.

– Subcase 2.2.2.2: |ξ1| > 100, |ξ2| > 1
4 |ξ1|, |ξ − ξ1 − ξ2| > 1

16 |ξ1| and 1
64 |ξ − ξ1 − ξ2| <

|ξ | < 65
64 |ξ1|.

Proof in Subcase 2.2.2.1. For each factor of the denominator in (3.38) we have the following
estimate

|ξ − ξ1| ≥ ∣∣|ξ | − |ξ1|
∣∣ ≥ 1

64
|ξ1| � |ξ1| � |ξ2|, (3.39a)

|ξ − ξ2| ≥ ∣∣|ξ | − |ξ2|
∣∣ ≥ 1

64
|ξ2| � |ξ2| � |ξ1|, (3.39b)

|ξ1 + ξ2| = |ξ − (ξ − ξ1 − ξ2)| ≥ ∣∣|ξ | − |ξ − ξ1 − ξ2|
∣∣

≥ 1

64
|ξ − ξ1 − ξ2| � |ξ1| � |ξ2|. (3.39c)

This follows from estimate (3.37) and |ξ | ≤ 1
64 |ξ − ξ1 − ξ2| ≤ 1

64 |ξ2| ≤ 1
64 |ξ1| or |ξ | ≥

65
64 |ξ1| ≥ 65

64 |ξ2| ≥ 65
64 |ξ − ξ1 − ξ2|. Using estimates (3.39a)–(3.39c), we get |(ξ − ξ1)(ξ −

ξ2)(ξ1 + ξ2)| � |ξ1| 32 |ξ2| 32 . Using this and estimate (3.37), from (3.38) we obtain

Θ1(ξ, τ ) �
∫

|ξ2|�|ξ1|>100

|ξ1|1−2s |ξ2|1−2s

|ξ1|3(1−b)|ξ2|3(1−b)
dξ2dξ1

=
∫

|ξ1|�1

1

|ξ1|3(1−b)−1+2s
dξ1

∫
|ξ2|�1

1

|ξ2|3(1−b)−1+2s
dξ2,

which is bounded if 3(1 − b) − 1 + 2s > 1 or 3(1 − b) > 2 − 2s. It suffices to have
1− b > 2

3 − 2
3 s or b < 1

3 + 2
3 s. For b > 1

2 , it suffices to have
1
3 + 2

3 s > 1
2 or 2

3 s > 1
6 , which

implies s > 1
4 . This completes the proof in Subcase 2.2.2.1.

Proof in Subcase 2.2.2.2.Using estimate (3.37) and 1
64 |ξ − ξ1 − ξ2| < |ξ | < 65

64 |ξ1|, we have
|ξ | � |ξ − ξ1 − ξ2| � |ξ2| � |ξ1| > 100. (3.40)
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Using (3.40) we bound the numerator in (3.24) as follows |ξ1|1−2s |ξ2|1−2s � |ξ |2−4s . Taking
out |ξ |2−4s , from (3.38) we get

Θ1(ξ, τ ) � |ξ |2−4s
∫
R2

1

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ1dξ2. (3.41)

Now, it suffices to estimate (3.41) in the case we integrate over E1 (the other two cases are
similar)

E1 = {(ξ1, ξ2) ∈ R
2 : |ξ − ξ1| ≥ max{|ξ − ξ2|, |ξ1 + ξ2|}}. (3.42)

Using the assumption (3.42) and the triangle inequality we get

|ξ − ξ1| ≥ 1

3
[|ξ − ξ1| + |ξ − ξ2| + |ξ1 + ξ2|]

≥ 1

3
|(ξ − ξ1) + (ξ − ξ2) + (ξ1 + ξ2)| = 2

3
|ξ | � |ξ |.

(3.43)

Now, using estimate (3.43), from (3.41) we get

Θ1 � |ξ |2−4s
∫
E1

dξ1dξ2

|ξ |2(1−b)|(ξ − ξ2)(ξ1 + ξ2)|2(1−b)

= |ξ |2b−4s
∫
E1

dξ1dξ2

|(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
.

(3.44)

Furthermore, making the change of variables μ1 = ξ − ξ2, μ2 = ξ1 + ξ2 and using estimate
(3.40), we get |μ1| = |ξ − ξ2| ≤ |ξ | + |ξ2| � |ξ |, |μ2| = |ξ1 + ξ2| ≤ |ξ1| + |ξ2| � |ξ |. Thus,
from (3.44) we obtain

Θ1(ξ, τ ) � |ξ |2b−4s
∫

|μ1|�|ξ |
1

|μ1|2(1−b)
dμ1

∫
|μ2|�|ξ |

1

|μ2|2(1−b)
dμ2. (3.45)

For the first integral in the above estimate, since 2(1− b) < 1, we have
∫
|μ1|�|ξ |

1
|μ1|2(1−b)

dμ1 � (μ2b−1
1 )||ξ |

0 = |ξ |2b−1. Similarly, we have
∫
|μ2|�|ξ |

1
|μ2|2(1−b) dμ1 � |ξ |2b−1. Using

these computations, from (3.45) we get

Θ1(ξ, τ ) � |ξ |2b−4s · |ξ |2b−1 · |ξ |2b−1 = |ξ |6b−4s−2.

Using (3.40), we get |ξ | � 1. Thus, the above quantity is bounded if 6b − 4s − 2 ≤ 0 or
b ≤ 1

3 + 2
3 s. For b > 1

2 it suffices to have 1
3 + 2

3 s > 1
2 or 2

3 s > 1
6 , which gives s > 1/4.

This completes the proof of Lemma 3.3, and also the proof of the mKdV trilinear estimate
(2.16). ��

3.2 Proof of the First Nonlocal Trilinear Estimates (2.17)

We recall that this estimate reads as follows: ‖(1 + ∂2x )
−1∂x [(∂x f )(∂x g)h]‖Xs,b−1 ≤

cs,b‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ . Since (∂x f ) · (∂x g) · h is not symmetric, which can be seen
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clearly if we write it in its L2 form using convolution, we will symmetrize it by introducing
the following symmetric quantity

T ( f , g, h)
.= ‖(1 + ∂2x )

−1∂x [(∂x f )(∂x g)h]‖Xs,b−1 + ‖(1 + ∂2x )
−1∂x [(∂x g)(∂xh) f ]‖Xs,b−1

+ ‖(1 + ∂2x )
−1∂x [(∂xh)(∂x f )g]‖Xs,b−1

≤ cs,b‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ .

(3.46)

Then proving the trilinear estimate for T ( f , g, h) gives the desired nonlocal trilinear esti-
mates (2.17). Using a2+b2+c2 ≤ (|a|+|b|+|c|)2 ≤ 3(a2+b2+c2)we bound T ( f , g, h)

as follows

|T ( f , g, h)|2 �
∫
R2

|ξ |2(1 + |ξ |)2s
(1 + ξ2)2(1 + |τ − ξ3|)2(1−b)

×
[ ∫

R4
(|ξ1||ξ2| + |ξ2||ξ − ξ1 − ξ2| + |ξ − ξ1 − ξ2||ξ1|)

| f̂ (ξ1, τ1)ĝ(ξ2, τ2 )̂h(ξ − ξ1 − ξ2, τ − τ1 − τ2)|dξ2dτ2dξ1dτ1

]2
dξdτ.

Furthermore, using notation (3.4) we see that estimate (3.46) follows from its L2 formulation
∥∥∥∥
∫
R4

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

� ‖c f ‖L2
ξ,τ

‖cg‖L2
ξ,τ

‖ch‖L2
ξ,τ

,

(3.47)

where the multiplier Q = Q(ξ, τ, ξ1, τ1, ξ2, τ2) is defined as follows

Q
.= |ξ |(1 + |ξ |)s (|ξ1||ξ2| + |ξ2||ξ − ξ1 − ξ2| + |ξ − ξ1 − ξ2||ξ1|)(1 + |ξ1|)−s (1 + |ξ2|)−s (1 + |ξ − ξ1 − ξ2|)−s

(1 + ξ2)(1 + |τ − ξ3|)1−b(1 + |τ1 − ξ31 |)b′
(1 + |τ2 − ξ32 |)b′

(1 + |τ − τ1 − τ2 − (ξ − ξ1 − ξ2)3|)b′ .

Thanks to our symmetric writing (3.46), we can assume the following order of |ξ1|, |ξ2| and
|ξ − ξ1 − ξ2| (similar to assumption (3.13))

|ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2|. (3.48)

Thusbyordering relation (3.48),weget |ξ1||ξ2|+|ξ2||ξ−ξ1−ξ2|+|ξ−ξ1−ξ2||ξ1| ≤ 3|ξ1||ξ2|,
which combined with (1 + ξ2)−1(1 + |ξ |)s � (1 + |ξ |)s−2, reduces Q as follows

Q � Q̃ (3.49)

.= χ|ξ1|≥|ξ2|≥|ξ−ξ1−ξ2||ξ |(1+|ξ |)s−2|ξ1ξ2|(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ − ξ3|)1−b(1+|τ1 − ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ .

Furthermore, for |ξ | ≥ 10−3|ξ1|, we have |ξ1ξ2| � (1+|ξ |)2 or (1+|ξ |)−2|ξ1ξ2| � 1, which
gives

Q̃ � χ|ξ1|≥|ξ2|≥|ξ−ξ1−ξ2||ξ |(1+|ξ |)s(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ ,

where the right-hand side of the above inequality is bounded by the multiplier defined in
(3.6). So, the L2 inequality (3.47) is reduced to the L2 inequality (3.5) for the mKdV trilinear
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estimate. Hence, we assume that |ξ | < 10−3|ξ1| and the multiplier Q̃ defined in (3.49)
becomes

Q1
.= χB(ξ, ξ1, ξ2) · |ξ |(1+|ξ |)s−2|ξ1ξ2|(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ ,

with the domain B given by

B
.= {(ξ, ξ1, ξ2) ∈ R

3 : |ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2| and |ξ | < 10−3|ξ1|}. (3.50)

Now, using duality, the left-hand side of L2 form (3.47) (with Q = Q1) is bounded as follows

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

(3.51)

� sup
‖d‖L2=1

∫
R2
d(ξ, τ )

[∫
R4
Q1c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ−ξ1−ξ2, τ −τ1−τ2)dξ2dτ2dξ1dτ1

]
dξdτ.

Furthermore, using Fubini’s Theorem in (3.51) to switch integrations dξ1dτ1 and dξdτ , we
get

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

(3.52)

� sup
‖d‖L2=1

∫
R2
c f (ξ1, τ1)

[∫
R4
Q1d(ξ, τ )cg(ξ2, τ2)ch(ξ−ξ1−ξ2, τ −τ1−τ2)dξ2dτ2dξdτ

]
dξ1dτ1.

In addition, using Cauchy–Schwarz inequality for the integral dξ1dτ1 in (3.52) we get

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

(3.53)

� sup
‖d‖L2=1

‖c f ‖L2

(∫
R2

∣∣∣∣
∫
R4
Q1d(ξ, τ )cg(ξ2, τ2)ch(ξ−ξ1−ξ2, τ −τ1−τ2)dξ2dτ2dξdτ

∣∣∣∣
2

dξ1dτ1

)1
2

.

Moreover, for thedξ2dτ2dξdτ integral in (3.53), applying theCauchy–Schwarz inequality
we get

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

� sup
‖d‖L2=1

‖c f ‖L2

(∫
R2

[∫
R4

Q2
1(ξ, ξ1, ξ2, τ, τ1, τ2)dξ2dτ2dξdτ

]

×
[∫

R4
d2(ξ, τ )c2g(ξ2, τ2)c

2
h(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξdτ

]
dξ1dτ1

)1/2

.

(3.54)

123



836 A.A. Himonas, F. Yan

In (3.54), taking the supremum of
∫
R4 Q2

1(ξ, ξ1, ξ2, τ, τ1, τ2)dξ2dτ2dξdτ over ξ1, τ1, we
get

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

� sup
‖d‖L2=1

‖c f ‖L2

∥∥∥∥
∫
R4

Q2
1(ξ, ξ1, ξ2, τ, τ1, τ2)dξ2dτ2dξdτ

∥∥∥∥
1
2

L∞
ξ1,τ1

(3.55)

×
(∫

R6
d2(ξ, τ )c2g(ξ2, τ2)c

2
h(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξdτdξ1dτ1

)1/2

.

Next, using the following estimate (which similar to (3.11))

∫
R6

d2(ξ, τ )c2g(ξ2, τ2)c
2
h(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξdτdξ1dτ1

� ‖d‖2L2‖cg‖2L2‖ch‖2L2 ,

from estimate (3.55) we arrive at

∥∥∥∥
∫
R4

Q1 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

� sup
‖d‖L2=1

‖c f ‖L2

∥∥∥∥
∫
R4

Q2
1(ξ, ξ1, ξ2, τ, τ1, τ2)dξ2dτ2dξdτ

∥∥∥∥
1
2

L∞
ξ1,τ1

‖d‖L2‖cg‖L2‖ch‖L2

� ‖Θ2‖
1
2
L∞

ξ1,τ1
‖c f ‖L2

ξ,τ
‖cg‖L2

ξ,τ
‖ch‖L2

ξ,τ
, (3.56)

where Θ2 is as in the following result, which provides its estimate.

Lemma 3.4 If s > 1
2 and 1

2 < b′ ≤ b ≤ min{ s3 + 1
3 , 1}, then for all ξ1 and τ1 we have

Θ2(ξ1, τ1)
.= (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′

×
∫
R4

χB(ξ, ξ1, ξ2) · |ξ |2(1+|ξ |)2s−4|ξ1ξ2|2(1+|ξ2|)−2s(1+|ξ−ξ1−ξ2|)−2sdτ2dξ2dτdξ

(1+|τ − ξ3|)2−2b(1 + |τ2 − ξ32 |)2b′
(1 + |τ − τ1 − τ2 − (ξ − ξ1 − ξ2)

3|)2b′

� 1. (3.57)

Proof For the dτ2-integral in (3.57), applying estimate (3.1) with a = τ −τ1−(ξ −ξ1−ξ2)
3,

c = ξ32 , � = b′, we get

Θ2 � (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′ (3.58)

×
∫
R3

χB · |ξ |2(1 + |ξ |)2s−4|ξ1ξ2|2(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2sdτdξ2dξ

(1 + |τ − ξ3|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1 − ξ2)3 − ξ32 |)2b′ .
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Furthermore, for the dτ -integral in (3.58), applying estimate (3.2) with c = τ1 + (ξ −
ξ1 − ξ2)

3 + ξ32 , a = ξ3, � = b, �′ = b′ we get

Θ2 � (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′ (3.59)

×
∫
R2

χB |ξ |2(1 + |ξ |)2s−4|ξ1ξ2|2(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2sdξ2dξ

(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b)
,

where d3(ξ, ξ1, ξ2) is the Bourgain quantity defined by (3.8). Next, we consider the following
cases.

– Case 1: |ξ1| ≤ 100.
– Case 2: |ξ1| > 100.

Proof in Case 1. Since |ξ | < 10−3|ξ1| and |ξ1| ≤ 100, by the ordering relation (3.48), all
of |ξ |, |ξ1| and |ξ2| are bounded. Furthermore, since b′ ≥ 0 and (1 − b) ≥ 0, we see that
the multiplier and the integrand in Θ2 are bounded. Therefore, Θ2(ξ1, τ1) � 1, since the
integration is over a bounded set.
Proof in Case 2. Here we have

|ξ2| � |ξ1|. (3.60)

By the ordering relation |ξ1| ≥ |ξ2| ≥ |ξ −ξ1−ξ2|, it suffices to show |ξ2| > 1
4 |ξ1|. In fact, if

|ξ2| ≤ 1
4 |ξ1|, then we would get |ξ | = |ξ1+ξ2+ (ξ −ξ1−ξ2)| ≥ |ξ1|−|ξ −ξ1−ξ2|−|ξ2| ≥

|ξ1| − 1
4 |ξ1| − 1

4 |ξ1| ≥ 1
2 |ξ1|, which is a contradiction to |ξ | < 10−3|ξ1|, a condition of

(ξ, ξ1, ξ2) ∈ B. Using (3.60) we get |ξ1ξ2|2 � |ξ1|4, and (1 + |ξ2|)−2s � |ξ1|−2s since
|ξ1| > 100. Also, we have (1 + |ξ1|)−2s � |ξ1|−2s . Combining this with (3.59) we get

Θ2(ξ1, τ1) � |ξ1|4−4s

(1 + |τ1 − ξ31 |)2b′

∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−2(1 + |ξ − ξ1 − ξ2|)−2s

(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b)
dξ2dξ.

(3.61)

Since 1
2 < b′ ≤ b < 1 we have 0 < 2(1− b) < 1 < 2b′, so we can move (1+ |τ1 − ξ31 |)2b′

inside the integral and replace 2b′ with 2(1 − b). Since (1 + |τ1 − ξ31 |)(1 + |τ1 − ξ31+
d3(ξ, ξ1, ξ2)|) ≥ |τ1 − ξ31 | + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)| and also |τ1 − ξ31 | + |τ1 − ξ31+
d3(ξ, ξ1, ξ2)| ≥ |τ1 − ξ31 + d3(ξ, ξ1, ξ2) − (τ1 − ξ31 )| = |d3(ξ, ξ1, ξ2)|, we have

(1 + |τ1 − ξ31 |)2b′
(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b) � |d3(ξ, ξ1, ξ2)|2(1−b),

which combined with (3.61) gives

Θ2(ξ1, τ1) � |ξ1|4−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−2(1 + |ξ − ξ1 − ξ2|)−2s

|d3(ξ, ξ1, ξ2)|2(1−b)
dξ2dξ.

Combining this with property (3.8), i.e. d3 = −3(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2), we get

Θ2(ξ1, τ1) � |ξ1|4−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−2(1 + |ξ − ξ1 − ξ2|)−2s

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ2dξ.

(3.62)
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Next, using (1+|ξ−ξ1−ξ2|)−2s � 1 and the inequalities |ξ−ξ1| � |ξ1| and |ξ−ξ2| � |ξ1|,
which follows from |ξ −ξ1| ≥ |ξ1|−|ξ | ≥ |ξ1|−10−3|ξ1| � |ξ1| and |ξ −ξ2| ≥ |ξ2|−|ξ | ≥
1
4 |ξ1| − 10−3|ξ1| � |ξ1|, from (3.62) we obtain

Θ2(ξ1, τ1) � |ξ1|4b−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−2

|ξ1 + ξ2|2(1−b)
dξ2dξ

= |ξ1|4b−4s
∫

|ξ |≤10−3|ξ1|
dξ

(1 + |ξ |)2−2s

∫
|ξ2|≤|ξ1|

dξ2

|ξ1 + ξ2|2(1−b)
.

(3.63)

Since s > 1
2 , we have 2 − 2s < 1, which implies the following bound for the first integral
∫

|ξ |≤10−3|ξ1|
dξ

(1 + |ξ |)2−2s � [
(1 + ξ)2s−1] ∣∣10−3|ξ1|

0 � |ξ1|2s−1. (3.64)

Concerning the second integral in (3.63), we make the change of variables μ = μ(ξ2) =
ξ1 + ξ2, and using the inequalities |μ| ≤ |ξ1| + |ξ2| ≤ 2|ξ1|, for 2(1 − b) < 1 or b > 1

2 , we
have ∫

|ξ2|≤|ξ1|
dξ2

|ξ1 + ξ2|2(1−b)
=
∫

|μ|≤2|ξ1|
dμ

|μ|2(1−b)
� (μ2b−1)

∣∣2|ξ1|
0 � |ξ1|2b−1. (3.65)

Combining estimates (3.64), (3.65) with (3.63), we obtain

Θ2(ξ1, τ1) � |ξ1|4b−4s |ξ1|2s−1|ξ1|2b−1 = |ξ1|6b−2s−2.

Since |ξ1| > 100, the above quantity is bounded if 6b − 2s − 2 ≤ 0 or b ≤ 1
3 s + 1

3 . For
b > 1

2 , it suffices to have
1
3 s+ 1

3 > 1
2 or

1
3 s > 1

6 , which implies that s > 1/2. This completes
the proof of Lemma 3.4. ��

3.3 Proof of the Second Nonlocal Trilinear Estimates (2.18)

Using notation (3.4), we see that to prove the estimate (2.18), i.e.

‖(1 + ∂2x )
−1[(∂x f )(∂x g)(∂xh)]‖Xs,b−1 ≤ cs,b‖ f ‖Xs,b′ ‖g‖Xs,b′ ‖h‖Xs,b′ ,

it suffices to prove the following L2 estimate∥∥∥∥
∫
R4

Q · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

ξ,τ

� ‖c f ‖L2
ξ,τ

‖cg‖L2
ξ,τ

‖ch‖L2
ξ,τ

,

(3.66)

where the multiplier Q = Q(ξ, τ, ξ1, τ1, ξ2, τ2) is defined by

Q
.= (1+ξ2)−1(1+|ξ |)s |ξ1||ξ2||ξ−ξ1−ξ2|(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ .

By symmetry in convolution writing of ∂̂x f ∗ ∂̂x g ∗ ∂̂xh, we can assume the following order
of |ξ1|, |ξ2| and |ξ − ξ1 − ξ2|

|ξ1| ≥ |ξ2| ≥ |ξ − ξ1 − ξ2|. (3.67)
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Therefore, the multiplier Q is reduced to χ|ξ1|≥|ξ2|≥|ξ−ξ1−ξ2|Q. Also, using (1 + ξ2)−1(1 +
|ξ |)s � (1 + |ξ |)s−2, Q becomes

Q � Q̃
.= χ|ξ1|≥|ξ2|≥|ξ−ξ1−ξ2|(1+|ξ |)s−2|ξ1ξ2(ξ−ξ1−ξ2)|(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ .

Furthermore, for |ξ | ≥ 10−3|ξ1|, we have |ξ1ξ2(ξ − ξ1 − ξ2)| � |ξ |(1 + |ξ |)2 or (1 +
|ξ |)−2|ξ1ξ2(ξ − ξ1 − ξ2)| � |ξ |, which implies that

Q̃ � χ|ξ1|≥|ξ2|≥|ξ−ξ1−ξ2||ξ |(1+|ξ |)s(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ − ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ ,

where the right-hand side of the above inequality is bounded by the multiplier defined in
(3.6). So, the L2 inequality (3.66) is reduced to the L2 inequality (3.5) for the local trilinear
estimate. Hence, we assume that |ξ | < 10−3|ξ1| and the multiplier Q̃ defined in (3.49)
becomes

Q2
.= χB(ξ, ξ1, ξ2) · (1+|ξ |)s−2|ξ1ξ2(ξ−ξ1−ξ2)|(1+|ξ1|)−s(1+|ξ2|)−s(1+|ξ−ξ1−ξ2|)−s

(1+|τ −ξ3|)1−b(1+|τ1−ξ31 |)b′
(1+|τ2−ξ32 |)b′

(1+|τ −τ1−τ2−(ξ−ξ1−ξ2)3|)b′ ,

where B is the domain defined by (3.50) incorporating the order relation and the condition
|ξ | < 10−3|ξ1|. Like in the proof for the first nonlocal trilinear estimate (see (3.56)), using
duality we bound the left-hand side in the L2 formulation (3.66) (with Q = Q2) as follows

∥∥∥∥
∫
R4

Q2 · c f (ξ1, τ1)cg(ξ2, τ2)ch(ξ − ξ1 − ξ2, τ − τ1 − τ2)dξ2dτ2dξ1dτ1

∥∥∥∥
L2

� ‖Θ3‖
1
2
L∞

ξ1,τ1
‖c f ‖L2‖cg‖L2‖ch‖L2 ,

where Θ3 is as in the following result, which provides its L∞ estimate.

Lemma 3.5 If s > 2
3 and

1
2 < b′ ≤ b < min{s− 1

6 ,
s
3 + 1

3 ,
5
6 }, then for all ξ1 and τ1 we have

Θ3(ξ1, τ1)
.= (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′

×
∫
R4

χB(ξ, ξ1, ξ2)(1+|ξ |)2s−4|ξ1ξ2(ξ−ξ1−ξ2)|2(1+|ξ2|)−2s(1+|ξ−ξ1−ξ2|)−2sdτ2dξ2dτdξ

(1 + |τ − ξ3|)2−2b(1 + |τ2 − ξ32 |)2b′
(1 + |τ − τ1 − τ2 − (ξ − ξ1 − ξ2)3|)2b′

� 1. (3.68)

Proof For the dτ2-integral in (3.68), applying estimate (3.1) with a = τ −τ1−(ξ −ξ1−ξ2)
3,

c = ξ32 , � = b′, we get

Θ3 � (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′

×
∫
R3

χB(ξ, ξ1, ξ2)(1 + |ξ |)2s−4|ξ1ξ2(ξ − ξ1 − ξ2)|2(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s dτdξ2dξ

(1 + |τ − ξ3|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1 − ξ2)3 − ξ32 |)2b′ .
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Furthermore, for the dτ -integral in the above estimate, applying estimate (3.2) with c =
τ1 + (ξ − ξ1 − ξ2)

3 + ξ32 , a = ξ3, � = b, �′ = b′, we get

Θ3 � (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′

×
∫
R2

χB(1 + |ξ |)2s−4|ξ1ξ2(ξ − ξ1 − ξ2)|2(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2sdξ2dξ

(1 + |τ1 + (ξ − ξ1 − ξ2)3 + ξ32 − ξ3|)2(1−b)

= (1 + |ξ1|)−2s

(1 + |τ1 − ξ31 |)2b′ (3.69)

×
∫
R2

χB(1 + |ξ |)2s−4|ξ1ξ2(ξ − ξ1 − ξ2)|2(1 + |ξ2|)−2s(1 + |ξ − ξ1 − ξ2|)−2s

(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b)
dξ2dξ,

where d3(ξ, ξ1, ξ2) is the Bourgain quantity defined by (3.7). Next, we consider the following
cases.

– Case 1: |ξ1| ≤ 100.
– Case 2: |ξ1| > 100.

Proof in Case 1. Since |ξ | < 10−3|ξ1| and |ξ1| ≤ 100, by the ordering relation (3.67), all
of |ξ |, |ξ1| and |ξ2| are bounded. Furthermore, since b′ ≥ 0 and (1 − b) ≥ 0, we see that
Θ3(ξ1, τ1) � 1.
Proof in Case 2. Here we have

|ξ2| � |ξ1|. (3.70)

By the ordering relation |ξ1| ≥ |ξ2| ≥ |ξ −ξ1−ξ2|, it suffices to show |ξ2| > 1
4 |ξ1|. In fact, if

|ξ2| ≤ 1
4 |ξ1|, then we would get |ξ | = |ξ1+ξ2+ (ξ −ξ1−ξ2)| ≥ |ξ1|−|ξ −ξ1−ξ2|−|ξ2| ≥

|ξ1| − 1
4 |ξ1| − 1

4 |ξ1| ≥ 1
2 |ξ1|, which is a contradiction to |ξ | < 10−3|ξ1|, a condition of

(ξ, ξ1, ξ2) ∈ B. Using (3.70) we get |ξ1ξ2|2 � |ξ1|4, and (1 + |ξ2|)−2s � |ξ1|−2s since
|ξ1| > 100. Also, we have (1 + |ξ1|)−2s � |ξ1|−2s . Combining this with |ξ − ξ1 − ξ2|2 �
(1 + |ξ − ξ1 − ξ2|)2, from (3.69) we get

Θ3(ξ1, τ1) � |ξ1|4−4s

(1 + |τ1 − ξ31 |)2b′

×
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−4(1 + |ξ − ξ1 − ξ2|)2−2s

(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b)
dξ2dξ.

(3.71)

Since 1
2 < b′ ≤ b < 1 we have 0 < 2(1− b) < 1 < 2b′, so we can move (1+ |τ1 − ξ31 |)2b′

inside the integral and replace 2b′ with 2(1 − b). Since (1 + |τ1 − ξ31 |)(1 + |τ1 − ξ31+
d3(ξ, ξ1, ξ2)|) ≥ |τ1 − ξ31 | + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)| and also |τ1 − ξ31 | + |τ1 − ξ31+
d3(ξ, ξ1, ξ2)| ≥ |τ1 − ξ31 + d3(ξ, ξ1, ξ2) − (τ1 − ξ31 )| = |d3(ξ, ξ1, ξ2)|, we have

(1 + |τ1 − ξ31 |)2b′
(1 + |τ1 − ξ31 + d3(ξ, ξ1, ξ2)|)2(1−b) � |d3(ξ, ξ1, ξ2)|2(1−b),

which combined with (3.71) gives

Θ3(ξ1, τ1) � |ξ1|4−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−4(1 + |ξ − ξ1 − ξ2|)2−2s

|d3(ξ, ξ1, ξ2)|2(1−b)
dξ2dξ.

Then, using the factorization d3 = −3(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2), we get

Θ3(ξ1, τ1) � |ξ1|4−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−4(1 + |ξ − ξ1 − ξ2|)2−2s

|(ξ − ξ1)(ξ − ξ2)(ξ1 + ξ2)|2(1−b)
dξ2dξ.

(3.72)
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Next, using the inequalities

|ξ − ξ1| � |ξ1| and |ξ − ξ2| � |ξ1|,
which follows from |ξ −ξ1| ≥ |ξ1|−|ξ | ≥ |ξ1|−10−3|ξ1| � |ξ1| and |ξ −ξ2| ≥ |ξ2|−|ξ | ≥
1
4 |ξ1| − 10−3|ξ1| � |ξ1|, from (3.72), we obtain

Θ3(ξ1, τ1) � |ξ1|4b−4s
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−4(1 + |ξ − ξ1 − ξ2|)2−2s

|ξ1 + ξ2|2(1−b)
dξ2dξ.

(3.73)
Now, we consider the following two subcases arising from the sign of (2 − 2s).

– Subcase 2.1: s ≤ 1.
– Subcase 2.2: s > 1.

Proof in Subcase 2.1. Then 2 − 2s ≥ 0, which combined with |ξ − ξ1 − ξ2| ≤ |ξ1| and
|ξ1| > 100 gives (1 + |ξ − ξ1 − ξ2|)2−2s � |ξ1|2−2s . From the last inequality and estimate
(3.73) we get

Θ3(ξ1, τ1) � |ξ1|4b−6s+2
∫
R2

χB(ξ, ξ1, ξ2) · (1 + |ξ |)2s−4

|ξ1 + ξ2|2(1−b)
dξ2dξ

= |ξ1|4b−6s+2
∫

|ξ |≤10−3|ξ1|
dξ

(1 + |ξ |)4−2s ·
∫

|ξ2|≤|ξ1|
dξ2

|ξ1 + ξ2|2(1−b)
.

(3.74)

Since 4 − 2s ≥ 2 the first integral is bounded. For the second integral, making the change
of variables μ = μ(ξ2) = ξ1 + ξ2 and using the inequalities |μ| ≤ |ξ1| + |ξ2| ≤ 2|ξ1|, for
2(1− b) < 1 or b > 1

2 , we have
∫
|ξ2|≤|ξ1|

dξ2
|ξ1+ξ2|2(1−b) = ∫

|μ|≤2|ξ1|
dμ

|μ|2(1−b) � (μ2b−1)
∣∣2|ξ1|
0 �

|ξ1|2b−1. Using the above computations, from (3.74) we get

Θ3(ξ1, τ1) � |ξ1|4b−6s+2|ξ1|2b−1 = |ξ1|6b−6s+1.

Since |ξ1| > 100, the above quantity is bounded if 6b− 6s + 1 ≤ 0 or b ≤ s − 1
6 . For b > 1

2 ,
it suffices to have s − 1

6 > 1
2 or s > 2/3. This completes the proof in Subcase 2.1.

Proof in Subcase 2.2. Then 2 − 2s < 0, which implies that (1 + |ξ − ξ1 − ξ2|)2−2s � 1.
Therefore,

Θ3(ξ1, τ1) � |ξ1|4b−4s
∫

|ξ |≤10−3|ξ1|
dξ

(1 + |ξ |)4−2s ·
∫

|ξ2|≤|ξ1|
dξ2

|ξ1 + ξ2|2(1−b)
. (3.75)

For the first integral, we have

∫
|ξ |≤10−3|ξ1|

dξ

(1 + |ξ |)4−2s �

⎧⎨
⎩
1, s < 3

2 ,

ln |ξ1|, s = 3
2 ,|ξ1|2s−3, s > 3
2 .

For the second integral in (3.75), making the change of variables μ = μ(ξ2) = ξ1 + ξ2
and using the inequalities |μ| ≤ |ξ1| + |ξ2| ≤ 2|ξ1|, for 2(1 − b) < 1 or b > 1

2 , we

get
∫
|ξ2|≤|ξ1|

dξ2
|ξ1+ξ2|2(1−b) = ∫

|μ|≤2|ξ1|
dμ

|μ|2(1−b) � (μ2b−1)
∣∣2|ξ1|
0 � |ξ1|2b−1. Finally, using the

above computations, from (3.75) we get

Θ3(ξ1, τ1) �

⎧⎨
⎩

|ξ1|6b−4s−1, s < 3
2 ,|ξ1|6b−7 ln |ξ1|, s = 3
2 ,|ξ1|6b−2s−4, s > 3
2 ,
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which is bounded if b ≤ 5
6 , since s > 1. This completes the proof for Lemma 3.5, and also

the proof of our last trilinear estimate. ��
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