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Abstract
We classify all finite groups G that possess an element x ∈ G such that every irreducible
character of G takes a root of unity value at x.
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1 Introduction

Let G be a finite group. Following [5], an element x ∈ G is called a nonvanishing element
if χ(x) �= 0 for all irreducible complex characters χ of G. This concept has been widely
studied in recent years. In this paper, we consider nonvanishing elements of finite groups
which satisfy certain minimal condition as follows. Given a nonvanishing element x of a
finite group G, it is not hard to show that |CG(x)| ≥ k(G) and that the equality holds if
and only if |χ(x)| = 1 for all irreducible characters χ of G (see Lemma 2.3), where CG(x)

is the centralizer of x in G and k(G) is the number of conjugacy classes of G. Note that
if |χ(x)| = 1 for some character χ of G, then χ(x) is a root of unity (see, for example,
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Problem 3.2 in [4]). We will call an element x ∈ G a root of unity element if |χ(x)| = 1 for
all irreducible characters of G. The condition |CG(x)| = k(G) alone does not characterize
root of unity elements. For example, if G = A5, the alternating group of degree 5, and
x ∈ G is an element of order 5, then |CG(x)| = 5 = k(G) but x is not a root of unity
element. We note that root of unity elements are called totally unitary or TU-elements by
S. Ostrovskaya and E. M. Zhmud’ and they classify all finite metabelian groups with trivial
center that contain a root of unity element in [1, Chapter XXII].

Write Irr(G) for the set of irreducible complex characters of G and F(G) for the Fitting
subgroup of G, that is, the largest normal nilpotent subgroup of G. In our first result, we
prove the following.

Theorem A Let G be a finite group and let x ∈ G. If |χ(x)| = 1 for all irreducible
characters χ of G, then x ∈ F(G) and both F(G) and G/F(G) are abelian. In particular,
G is abelian or metabelian.

Thus if a finite group G has a root of unity element, then it is abelian or metabelian. In
particular, such a group is solvable. Theorem A confirms a conjecture proposed in [5] for
root of unity elements. This conjecture states that every nonvanishing element of a finite
solvable groups G must lie in F(G).

Our interest in root of unity elements stems from an observation that if χ ∈ Irr(G) and
g ∈ G such that |χ(g)| = 1, then the size of the conjugacy class gG containing g is always
divisible by χ(1) (see Lemma 2.1). Consequently, if x is a root of unity element of G, then
|xG| is divisible by χ(1) for all χ ∈ Irr(G). This is related to Conjecture C in [6] asserting
that if χ ∈ Irr(G) is a primitive character of a finite group G, then χ(1) divides |gG| for
some g ∈ G. Thus the observation above gives us a way to locate the required element
g ∈ G. However, not every primitive irreducible character admits a root of unity value. For
example, if G is the sporadic simple group O’N, then G has a primitive irreducible character
of degree 64790 which does not admit any root of unity value.

In the next result, we classify all finite groups with a root of unity element. Clearly, if G

is abelian, then every element of G is a root of unity element. Let q > 2 be a prime power.
We denote by Γq the unique doubly transitive Frobenius group with a cyclic complement of
order q − 1 and degree q. So Γq

∼= AGL1(Fq) = Fq �F
∗
q , where Fq is a finite field with q

elements.

Theorem B Let G be a finite group. Then G has a root of unity element x ∈ G if and only
if one of the following holds:

– G is abelian;
– F(G) = G′Z(G) is abelian, G′ ∩ Z(G) = 1; and G/Z(G) ∼= Γq1 × Γq2 × · · · × Γqm ,

where each qi > 2 is a prime power and m ≥ 1 is an integer.

For each i with 1 ≤ i ≤ m, write Γqi
= Vi � Ai , where Vi is the Frobenius kernel and

Ai is the Frobenius complement. Let U := ∏m
i=1(Vi − {1}) and let U = π−1(U) where

π : G → G/Z(G) is the natural homomorphism. Then every element of U is a root of unity
element of G/Z(G) by Lemma 3.17, Chapter XXII of [1] and from the proof of Theorem B,
every element of U is a root of unity element of G.

Our notation is standard and we follow [4] for the character theory of finite groups.
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2 Preliminaries

We collect some properties of root of unity elements in the next lemmas.

Lemma 2.1 Let G be a finite group and let g ∈ G. If χ ∈ Irr(G) and |χ(g)| = 1, then
χ(1) divides |gG|. In particular, if x ∈ G is a root of unity element, then χ(1) divides |xG|
for all χ ∈ Irr(G).

Proof Assume that χ ∈ Irr(G) and g ∈ G such that |χ(g)| = 1. Let K be the class sum of
the conjugacy class gG, that is, K = ∑

y∈gG y. Then

ωχ(K) = |gG|χ(g)

χ(1)

is an algebraic integer by [4, Theorem 3.7]. Since χ(g) is an algebraic integer,

|gG|
χ(1)

= ωχ(K)χ(g)

is a rational algebraic integer, so it is an integer and hence χ(1) divides |gG|.
If x ∈ G is a root of unity element, then for any χ ∈ Irr(G), we have |χ(x)| = 1 and

hence χ(1) divides |xG| as wanted.

Lemma 2.2 Let G be a finite group and let x ∈ G be a root of unity element. Then

(a) k(G) = |CG(x)|.
(b) G′ ≤ 〈xG〉.
(c) If N � G, then xN is a root of unity in G/N .
(d) If z ∈ Z(G), then xz is also a root of unity element.

Proof From the Second Orthogonality relation, we have

|CG(x)| =
∑

χ∈Irr(G)

|χ(x)|2 =
∑

χ∈Irr(G)

1 = k(G).

Let L = 〈xG〉. For any χ ∈ Irr(G/L), we see that x ∈ L ⊆ Ker(χ). Hence 1 = |χ(x)| =
χ(1) and thus all characters χ ∈ Irr(G/L) are linear which implies that G/L is abelian and
so G′ ≤ L. Since Irr(G/N) ⊆ Irr(G) whenever N �G, if x is a root of unity of G then xN

is a root of unity of G/N .
Finally, let z ∈ Z(G) and χ ∈ Irr(G). Then χZ(G) = χ(1)λ for some λ ∈ Irr(Z(G)).

We have χ(xz) = λ(z)χ(x) and thus if x is a root of unity element, then so is xz as
|λ(z)| = 1.

The next lemma follows from the proof of Lemma 3.17 in [1, Chapter XXII] and the
previous lemma. For completeness, we include the proof here.

Lemma 2.3 Let G be a finite group and let x ∈ G be a nonvanishing element of G. Then
|CG(x)| ≥ k(G); and the equality holds if and only if x is a root of unity element.

Proof We first claim that if x ∈ G is a nonvanishing element, then |CG(x)| ≥ k(G). Let
α = ∏

χ∈Irr(G) χ(x). Let n be the exponent of G and let Qn = Q(ξ), where ξ is a primitive
nth-root of unity. Let G be the Galois group of Qn over Q. Then G acts on Irr(G) and we
see that χσ ∈ Irr(G) if and only if χ ∈ Irr(G) for all σ ∈ G. Hence ασ = α for all σ ∈ G.
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It follows that α ∈ Q. Since α is an algebraic integer, we must have that α ∈ Z. As x is
nonvanishing, α �= 0 and so |α| ≥ 1.

By the inequality between arithmetic and geometric means, we have that

1 ≤ |α|2 =
∏

χ∈Irr(G)

|χ(x)|2 ≤
(∑

χ∈Irr(G) |χ(x)|2
k(G)

)k(G)

=
( |CG(x)|

k(G)

)k(G)

.

It follows that |CG(x)| ≥ k(G) as wanted.
Next, assume that x is a nonvanishing element of G and |CG(x)| = k(G). Then |α| = 1

from the inequality above. Hence

∏

χ∈Irr(G)

|χ(x)|2 =
(∑

χ∈Irr(G) |χ(x)|2
k(G)

)k(G)

= 1.

Therefore, |χ(x)| = 1 for all χ ∈ Irr(G). So x ∈ G is a root of unity element.
Conversely, if x is a root of unity, then clearly x is nonvanishing and |CG(x)| = k(G) by

Lemma 2.2(a).

A consequence of the previous lemma is that if x ∈ G and k(G) > |CG(x)| or equiva-
lently |xG| > |G|/k(G), the average of the conjugacy class size of G, then x is a vanishing
element of G, that is, χ(x) = 0 for some χ ∈ Irr(G). Also, if G has a root of unity element
x, then the commuting probability

cp(G) = |{(a, b) ∈ G × G : ab = ba}|
|G|2 = k(G)

|G|
is equal to 1/|xG|.

In the next two lemmas, we quote some results in Chapter XXII of [1].

Lemma 2.4 Let G be a finite group and suppose that x ∈ G is a root of unity element.

(a) If x ∈ F(G), then F(G) is abelian and G′ ≤ F(G). In particular, G is abelian or
metabelian.

(b) Conversely, if G is metabelian, then x ∈ F(G).

Proof This is Lemma 1.5 in [1, Chapter XXII].

The following is the main result of Chapter XXII in [1]. Recall that the socle of a finite
group G, denoted by Soc(G), is a product of all minimal normal subgroups of G.

Lemma 2.5 Let G be a finite metabelian group with trivial center. Then G has a root of
unity element if and only if G ∼= Γq1 × Γq2 × · · · × Γqm , where q1, q2, . . . , qm are prime
power > 2. Moreover, if x ∈ G is a root of unity, then F(G) = Soc(G) = G′ = 〈xG〉 and
CG(x) = F(G).

Proof The equivalent statements follow from Theorem 1.12 and Corollary 1.11 and the last
claim follows from Lemmas 3.8 and 3.14 in [1, Chapter XXII].

For a finite group G, recall that F(G), the Fitting subgroup of G, is the largest nilpotent
normal subgroup of G. The Fitting series of a finite group G is defined by F1(G) := F(G)

and for any integer i ≥ 1, Fi+1(G)/Fi (G) = F(G/Fi (G)). Similarly, the upper central
series of G is defined by Z1(G) := Z(G) and for i ≥ 1, we have Zi+1(G)/Zi (G) =
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Z(G/Zi (G)). The last term of the upper central series of G is called the hypercenter (or
hypercentral) of G and is denoted by Z∞(G).

The following results are well-known.

Lemma 2.6 Let G be a finite group and let N be a normal subgroup of G such that N ≤
Z(G).

(1) If G/N is nilpotent, then G is nilpotent.
(2) F(G/N) = F(G)/N .
(3) F(G/Zi (G)) = F(G)/Zi (G) for all i ≥ 1.

Proof The first two claims are well-known. The last claim follows from the second claim
and induction.

The next result is Corollary 2.3 in [8].

Lemma 2.7 Let G be a finite solvable group and assume that the Sylow 2-subgroups of
Fi+1(G)/Fi (G) are abelian for 1 ≤ i ≤ 9. Then every nonvanishing element of G lies in
F(G).

3 Solvability of Finite Groups with a Root of Unity Element

We first prove Theorem A for finite solvable groups.

Proposition 3.1 Let G be a finite solvable group and suppose that x ∈ G is a root of unity
element. Then G is abelian or G is metabelian, x ∈ F(G) and both F(G) and G/F(G) are
abelian.

Proof If G is abelian, then we are done. So assume that G is nonabelian. If G is metabelian,
then the conclusion follows from Lemma 2.4. Thus we only need to show that G is
metabelian. We will prove this by induction on |G|.

Let N be a minimal normal subgroup of G. Let G = G/N and use the ‘bar’ notation.
By Lemma 2.2 (c), x̄ is a root of unity element in G and thus by induction, G is abelian or
metabelian. If G is abelian, then G is metabelian. So assume that G is metabelian (but G is
neither metabelian nor abelian). Then x̄ ∈ F(G) and both F(G) and G/F(G) are abelian by
Lemma 2.4. Furthermore, N is abelian since it is a minimal normal subgroup and G (and so
also N ) is solvable. Thus N ≤ F(G).

Therefore, G/F(G) is also metabelian. Again by Lemma 2.4 we have that F(G/F(G)) =
F2(G)/F1(G) and G/F2(G) are abelian. It follows that F3(G) = G and Fi+1(G)/Fi (G) is
abelian for all i ≥ 1. Now by Lemma 2.7, we have x ∈ F(G) as x is nonvanishing and so G

is metabelian. This contradiction completes the proof.

The following result follows from the proof of Theorem A in [7].

Lemma 3.2 Let G be a finite group. Assume that G has a unique minimal normal subgroup
N . If N is non-abelian and G/N is solvable, then every element in G − N is a vanishing
element.
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Let n ≥ 2 be an integer and let λ = (λ1, λ2, . . . , λr ) be a partition of n. For 1 ≤ i ≤ k

and 1 ≤ j ≤ λi , we denote by hλ
i,j the hook length of the node (i, j) of the Young diagram

of λ. Let λ and μ be partitions of n. We use the notation χλ
μ to denote the value of the

irreducible character of Sn labeled by λ evaluated at the conjugacy class with cycle type μ.

Lemma 3.3 Let n ≥ 6 be an integer and let x ∈ An. Then there exists a partition λ of n

which is not self-conjugate such that χλ(x) �= ±1.

Proof We will use the following fact which can follow easily from Murnaghan-Nakayama
formula. If m ≥ 1 is an integer and γ = (γ1, γ2, . . . , γr ), β = (β1, β2, . . . , βs) are partition
of m with h

γ

2,1 < β1 and γ1 − γ2 ≥ β1, then

χ
γ
β = χ

(γ1−β1,γ2,...,γr )

(β2,β3,...,β2)
.

Let α � n be the cycle partition of x ∈ An. Since n ≥ 6, from the proof of Lemma 1.6 in
[9] we may assume that all parts of α are distinct, except possibly for the part 1, which may
have multiplicity 2.

Write α = (α1, α2, . . . , αl) � n. We consider the following cases.
Case 1: l ≥ 2 and αl−1 = αl . In this case, we have αl−1 = αl = 1, l ≥ 3 (as n ≥ 6) and

αl−2 > 1.
Assume first that αl−2 > 2. Since n ≥ 6, the partition (n − 2, 1, 1) of n is not self-

conjugate and we have that

χ(n−2,1,1)
α = χ

(αl−2,1,1)
(αl−2,1,1)

= 0.

The first equality holds by the observation above and the latter equality holds since αl−2 > 2
so

h
(αl−2,1,1)
1,1 = αl−2 + 2 > αl−2,

h
(αl−2,1,1)
1,2 = αl−2 − 1 < αl−2,

h
(αl−2,1,1)
2,1 = 2 < αl−2.

Assume next that αl−2 = 2. Then l ≥ 4 and αl−3 ≥ 3. Then the partition (n − 2, 2) of n

is not self-conjugate and by the observation above, we have

χ(n−2,2)
α = χ

(2,2)
(2,1,1) = 0.

Case 2: l ≥ 2 and αl−1 �= αl .
Assume first that l ≥ 3 or αl−1 �= αl + 1. Then

χ(n−αl,1αl )
α = χ

(αl−1,1αl )

(αl−1,αl )
= 0

as

h
(αl−1,1αl )

1,1 = αl−1 + αl > αl−1,

h
(αl−1,1αl )

1,2 = αl−1 − 1 < αl−1,

h
(αl−1,1αl )

2,1 = αl < αl−1,

and (n − αl, 1αl )′ = (αl + 1, 1n−αl−1) �= (n − αl, 1αl ) as

n − αl ≥ αl−2 + αl−1 ≥ 2αl + 3 > αl + 1

if l ≥ 3; and n − αl ≥ αl−1 > αl + 1 if αl−1 �= αl .
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Assume next that � = 2 and α1 = α2 + 1. Then n = 2α2 + 1. As n ≥ 6, we have α2 ≥ 3.
Again (n − 2, 2)′ �= (n − 2, 2).

If α2 = 3, then n = 7 and χ
(5,2)
(4,3) = 0. Assume that α2 ≥ 4. Then

χ(n−2,2)
α = χ

(n−2,2)
(α2+1,α2)

= χ
(α2−2,2)
(α2)

= 0

as h
(α2−2,2)
1,1 = α2 − 1 < α2.

Case 3: l = 1. Then α = (n). Since n ≥ 6, (n−2, 2) is not self-conjugate and χ
(n−2,2)
(n) =

0 as h
(n−2,2)
1,1 = n − 1 < n.

We are now ready to prove Theorem A.

Proof of Theorem A Let x ∈ G be a root of unity element. IfG is solvable, then the theorem
follows from Proposition 3.1. Thus it suffices to show that G is solvable. Suppose not and
let G be a counterexample to the theorem with |G| minimal. Then x ∈ G is a root of unity
but G is non-solvable. Let L = 〈xG〉. Then G′ ≤ L � G by Lemma 2.2 (b).

Let N be a minimal normal subgroup of G. By Lemma 2.2 (c), G/N has a root of unity
xN . Since |G/N | < |G|, G/N is solvable. As G is non-solvable, N is non-solvable. If
G has two distinct minimal normal subgroups, say N1 �= N2, then N1 ∩ N2 = 1 and
thus G embeds into G/N1 × G/N2, where the latter group is solvable by the argument
above. Therefore, G is solvable, which is a contradiction. It follows that G has a unique
minimal normal subgroup N , which is non-solvable and G/N is solvable. Hence N =
S1 × S2 · · · × Sk , where each Si

∼= S for some non-abelian simple group S. By Lemma 3.2,
x ∈ N as every element in G − N is a vanishing element. It follows from Lemma 2.2 (b)
that G′ = 〈xG〉 = N , and so G/N is abelian.

Write x = (x1, x2, . . . , xk) ∈ N , where xi ∈ Si for 1 ≤ i ≤ k. As G is nonabelian, x

is nontrivial and so o(x), the order of x, is divisible by some prime p ≥ 2. Clearly, o(xi)

is divisible by p for some i ≥ 1. Assume that S has an irreducible character θ of p-defect
zero. Then λ = θ × θ × · · · × θ ∈ Irr(N) has p-defect zero. Clearly, every G-conjugate
of λ also has p-defect zero and hence if χ ∈ Irr(G) lying over λ, then χN is a sum of G-
conjugates of λ so that χ(x) = 0 since every conjugate of λ vanishes at x as o(x) is divisible
by p. Therefore, we can assume that S has no p-defect zero character. By [3, Corollary 2],
one of the following cases holds.

(i) p = 2 and S is isomorphic to M12, M22, M24, J2, HS, Suz, Ru, Co1, Co3 or An for
some integer n ≥ 7; or

(ii) p = 3 and S is isomorphic to Suz, Co3 or An for some integer n ≥ 7.

We make the following observation. Assume that S has a rational-valued irreducible
character θ ∈ Irr(S) which is extendible to Aut(S). Then ϕ = θ × θ × · · · × θ ∈ Irr(N)

extends to χ ∈ Irr(G) and

1 = |χ(x)| = |ϕ(x)| =
k∏

i=1

|θ(xi)|.

Since θ is rational, θ(xi) is a non-zero integer and thus |θ(xi)| ≥ 1 for all i. The previous
equation now implies that |θ(xi)| = 1 for all i.

(a) Assume first that S is one of the sporadic simple groups in (i) but not in (ii). Then
x and hence x′

i s must be a 2-element. Using [2], we can find an irreducible rational-valued
character θ which is extendible to Aut(S) and does not take root of unity values on any
2-elements. So this case cannot occur.
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Similarly, if S is one of the sporadic simple groups in (ii), then x and hence x′
i s are {2, 3}-

elements. Again, by using [2], we can find an irreducible rational-valued character θ which
is extendible to Aut(S) and does not take root of unity values on any {2, 3}-elements.

(b) Assume that S ∼= An, where n ≥ 7 is an integer and that An has no block of p-defect
zero for p = 2, 3 or both.

By the observation above, if λ is a partition of n which is not self-conjugate, then χλ, the
irreducible character of Sn labeled by λ, remains irreducible upon reduction to An and thus
|χλ(xi)| = 1. Note that χλ is rational-valued. Now Lemma 3.3 provides a contradiction.

Therefore, G must be solvable as wanted. The proof is now complete.

4 Finite Metabelian Groups with a Root of Unity Element

In this section, we will characterize finite metabelian groups with a root of unity element.
Such a group with trivial center was classified by S. Ostrovskaya and E. M. Zhmud’. Recall
that if q > 2 is a prime power, then Γq is a doubly transitive Frobenius group with a cyclic
complement of order q −1 and degree q. Note that Γq has a root of unity element and every
root of unity element of Γq lies in F(Γq), which is an elementary abelian p-group, where q

is a power of a prime p. Moreover, if Γ = Γq1 × Γq2 × · · · × Γqm , where each qi > 2 are
prime powers, then Γ has a root of unity element and furthermore, all Sylow subgroups of
Γ are abelian.

Lemma 4.1 Let G be a finite group and let x ∈ G be a root of unity element. Let K =
Z∞(G) be the hypercenter of G. Assume that G is nonabelian. Then

(1) G/K ∼= Γq1 × Γq2 × · · · × Γqm , where each qi > 2 is a prime power and m ≥ 1 is an
integer. Moreover, F(G) = G′K is abelian, and CG/K(xK) = F(G/K) = F(G)/K .

(2) F(G) = CG(x) and k(G) = |F(G)| = |CG(x)|.
(3) If N = Zi (G) for some i ≥ 1 or N ≤ Z(G), then CG/N(xN) = F(G/N) = F(G)/N

and k(G/N) = |F(G) : N |.
Proof By Theorem A, x ∈ F := F(G), F is abelian and G′ ≤ F . Since K �G is nilpotent,
we have Z(G) ≤ K ≤ F . Now the center ofG/K is trivial by the definition ofK . Moreover
F(G/K) = F/K by Lemma 2.6 (3). Since G/K has a root of unity element xK , part (1)
follows from Lemma 2.5.

Since x ∈ F and F is abelian, we have K ≤ F ≤ CG(x). Let G = G/K . From part (1),
we have CG(x) = F(G) = F . Hence

F ≤ CG(x) ≤ CG(x) = F .

Thus F = CG(x) and hence F = CG(x). As k(G) = |CG(x)| by Lemma 2.2 (a), part (2)
follows.

Finally, let N = Zi (G) for some i ≥ 1 or N ≤ Z(G). Then G/N has a root of unity and
it is not nilpotent. By Lemma 2.6, F(G/N) = F/N . Now part (3) follows by applying part
(2) to G/N .

Following P. Hall, a finite solvable groupG is called anA-group if every Sylow subgroup
of G is abelian. The next lemma shows that any finite group with a root of unity element is
an A-group.

Proposition 4.2 If a finite group G has a root of unity element, then G is an A-group.
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Proof Let G be a finite group with a root of unity element x ∈ G. Clearly, if G is abelian,
then G is an A-group. So, we can assume that G is nonabelian and hence by Theorem A,
x ∈ F := F(G) and both F and G/F are abelian so G is solvable. We prove by induction
on |G| that all Sylow subgroups of G are abelian.

Notice first that if 1 < N�G, then G/N has a root of unity element xN and so by induc-
tion, every Sylow subgroup of G/N is abelian. Now let N be a minimal normal subgroup
of G. Since G is solvable, N is an elementary abelian p-group for some prime p. If Q is a
Sylow r-subgroup of G for some prime r �= p, then QN/N ∼= Q/Q ∩ N ∼= Q is abelian.
Thus it remains to show that every Sylow p-subgroup of G is abelian. Let P ∈ Sylp(G).
Then N � P and P/N is abelian as P/N ∈ Sylp(G/N). Hence P ′ ≤ N . Now if G has
another minimal normal subgroup, say M �= N , then P ′ ≤ N ∩ M = 1 and hence P is
abelian as wanted if M is also a p-group. If instead M is not a p-group then we can con-
clude as in the r �= p case that P is abelian. Therefore, we may assume that N is the unique
minimal normal subgroup of G.

Since F is abelian and N ≤ F is the unique minimal normal subgroup of G, F must be a
p-group and so F = Op(G). Since P/F is a Sylow p-subgroup of an abelian group G/F ,
we deduce that P/F � G/F which implies that P � G. Hence P ≤ Op(G) = F and thus
P = F is abelian. Therefore, G is an A-group as wanted.

Corollary 4.3 Let G be a finite group and let x ∈ G be a root of unity. Then Z(G) =
Z∞(G), that is, G/Z(G) has a trivial center, and G′ ∩ Z(G) = 1.

Proof By Proposition 4.2, G is a finite solvable A-group. The result now follows from (3.8)
and Theorem 4.1 in [10].

Proof of Theorem B Let G be a finite group, let Z := Z(G) and F := F(G). Suppose
first that x ∈ G is a root of unity element. If G is abelian, then we are done. Assume that
G is non-abelian. By Theorem A, x ∈ F , F and G/F are abelian and G is metabelian.
By Corollary 4.3, Z∞(G) = Z(G), G/Z has trivial center and G′ ∩ Z(G) = 1. Now, the
conclusion follows from Lemma 4.1 (1).

For the converse, assume that G is nonabelian. So F = G′Z is abelian, G′ ∩ Z = 1 and
G/Z ∼= ∏m

i=1 Γqi
for some integer m ≥ 1 and prime powers qi > 2. In particular, G is a

metabelian group. Write G = G/Z and use the ‘bar’ notation. By Lemma 2.5, G has a root
of unity element x for some x ∈ G. Note that the hypothesis above implies that F = G′×Z.

We claim that x is also a root of unity element ofG, that is, |χ(x)| = 1 for all χ ∈ Irr(G).
As |χ(x)| = |χ(x)| = 1 for every χ ∈ Irr(G/Z), it suffices to show that if 1 �= λ ∈ Irr(Z)

and χ ∈ Irr(G) lying over λ, then |χ(x)| = 1.
Let 1 �= λ ∈ Irr(Z). Since F = Z × G′, θ = λ × 1G′ ∈ Irr(F ) is an extension of λ and

G′ ≤ Ker(θ). So θ can be considered an irreducible character of F/G′ and thus θ extends
to φ ∈ Irr(G/G′). Thus λ extends to φ ∈ Irr(G). By Gallagher’s theorem, every χ ∈ Irr(G)

lying above λ has the form φμ for some irreducible character μ ∈ Irr(G). Since φ is linear,
we have |φ(x)| = 1. We also have |μ(x)| = |μ(x)| = 1 as μ ∈ Irr(G) and x is a root of
unity in G. Therefore

|χ(x)| = |φ(x)μ(x)| = |φ(x)| · |μ(x)| = 1,

hence x is a root of unity element of G.
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