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Abstract
We highlight the interest and the limitations of the L1-based Young measure technique for
studying convergence of numerical approximations for diffusion problems of the variable-
exponent p(x)- and p(u)- laplacian kind. CVFE (Control Volume Finite Element) and
DDFV (Discrete Duality Finite Volume) schemes are analyzed and tested. In the situation
where the variable exponent is log-Hölder continuous, convergence is proved along the
guidelines elaborated in [Andreianov et al. Nonlinear Anal. 72, 4649–4660, 2010 & Non-
linear Anal. 73, 2–24, 2010] while investigating the structural stability of weak solutions
for this class of PDEs. In general, the lack of density of the smooth functions in the energy
space, related to the Lavrentiev phenomenon for the associated variational problems, makes
it necessary to distinguish two notions of solutions, the narrow ones (the H-solutions) and
the broad ones (the W-solutions). Some situations where approximation methods “select”
the one or the other of these two solution notions are described and illustrated by numerical
tests.
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1 Introduction

The token “variable-exponent problems” refers to elliptic and parabolic PDEs featuring
Leray–Lions kind operators of the p-laplacian kind in which the exponent p may vary as a
function of the space-time variables and even as a function of the unknown solution. In the
general context of elliptic variable-exponent nonlinear diffusion problems

− div a(x, ∇u) = f in Ω, u|∂Ω = 0, (1)

in a bounded open domain Ω ⊂ R
d , d ≥ 1 (we will assume Ω polygonal to make straight-

forward the meshing issue), as the simplest and fundamental representative problem let us
consider the p(x)-laplacian case:

a(x, ∇u) = |∇u|p(x)−2∇u, p : Ω −→ (1, ∞), (2)

(in the sequel, we will also discuss the situations where p(·) in (2) is itself a function of
u(·) with a local or non-local dependence). To avoid non-essential technicalities we sup-
plemented the PDE in (1) with the homogeneous Dirichlet boundary condition, and for the
sake of simplicity the reader may think at this stage of f ∈ L∞(Ω) as a source term. Here
and in the sequel, we write p(·) or p(x) in order to stress the fact that the exponent p is
a variable exponent. Following the pioneering investigations of Zhikov [53] on minimiza-
tion of variable-exponent energy functionals over the adequate Sobolev-like spaces, and in
relation to applications to electrorheological and thermorheological fluids [14, 51, 52] and
to imaging [27], in the past twenty years there was a remarkable revival of interest to such
problems witnessed in particular by the monographs [15, 30]. The goal of the present work
is to discuss some aspects of numerical approximation and of numerical analysis of such
variable-exponent problems.

Numerical analysis for the p-laplacian and more general Leray–Lions problems is well
developed (see in particular [19, 20, 28] for the finite element analysis, [4, 9–11, 35] and
the references therein for different finite volume schemes, [13] for mimetic schemes, [3,
37] for gradient schemes (encompassing many of the previous ones), [32] for a recent
hybrid high-order strategy. The analysis highlights the importance of strongly consistent
gradient approximation and exploits in the essential way the Lp − Lp′

duality for proving
convergence of such gradient approximations via the Minty–Browder argument [25, 47, 48].

In the present contribution, we are concerned with a variety of discretization methods of
the finite volume kind. The gradient reconstruction strategies elaborated for the p-laplacian
remain the cornerstone for finite volume approximation of the variable-exponent problems,
however, specific issues arise. There are two reasons for which the numerical analysis of
the basic variable-exponent p(x)-laplacian problem (1), (2) is considerably more delicate
that for the case of a constant exponent p. First, a fully practical numerical method (as
opposed to the theoretical Galerkin method widely used for the sake of existence proofs)
makes it necessary to approximate the variable exponent map x 	→ p(x) by a sequence
(pn(·))n. While addressing the key issue of convergence of the (approximate) gradients
∇un to the gradient ∇u of the exact solution, the variable duality framework Lpn(·) −Lp′

n(·)
requires fine adaptations of the Minty–Browder trick, such as developed by Zhikov [56–58];
such technical adaptations will be avoided in the present contribution, following the idea of
[7, 8] of which the present paper is a follow-up. Second, there is an ambiguity in the choice
of the underlying variable-exponent Sobolev framework, witnessed through the celebrated
Zhikov counterexample ([53, 54], see also [2, 16], see Section 2). The lack of regularity of
p(·) may lead to particular sensitivity with respect to the choice of the discretization of p(·),
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see [41]. Moreover, it may result in the Lavrentiev phenomenon for the associated mini-
mization problem, and in the necessity to distinguish two solution notions for the PDE at
hand. The notion of H-solution (or narrow solution, in the sequel of this paper) appears
when the solution and the test functions are sought in the closure H, with respect to the
p(x)-energy norm, of smooth compactly supported functions. The notion of W-solution
(or broad solution, in the sequel of this paper) appears when the solution and the test
functions are sought in the energy space W (one has W = W 1,p(·) ∩ W

1,1
0 whenever the

W 1,p(·) Poincaré–Friedrichs inequality holds true). According to the choice of the numeri-
cal method, convergence to the narrow or to the broad solution can be witnessed; we refer
in particular to the recent work [17] in the variational setting and for finite element meth-
ods. We also refer to [24] for a priori error analysis of finite element approximations of
p(x)-laplace problems.

The difficulties related to approximation of p(·) and to the choice of the functional
framework are not specific to numerical approximations, they arise already in the study of
the structural stability of solutions (meaning stability with respect to perturbation of data
and coefficients of the problem, including the variable exponent coefficient p(·)). Such
study was conducted systematically in [7], where the framework of renormalized solutions
has been chosen in order to impose the simplest possible assumptions on the perturbation
of the data. As a sample result, consider a sequence (un)n of weak (narrow or broad, see [7]
and Section 2) solutions to the Dirichlet p(x)-laplacian problem with exponents pn(·) and
source data fn. Assuming that 1 < p− ≤ pn(·) ≤ p+ < ∞ and as n → ∞, pn(·) → p(·) in
measure on Ω , that ‖fn‖∞ ≤ const and fn ⇀ f weakly in L1(Ω), one finds the following
results ([7], see also [59]):

– If un is a narrow solution of the pn(x)-laplacian problem (we mean the n-labeled prob-
lem (1), (2)) with source fn and if for all n ∈ N one has pn(·) ≥ p(·) a.e. in the domain
Ω , then (un)n converges to the unique narrow solution of the p(x)-laplacian problem
with source f .

– If un is a broad solution of the pn(x)-laplacian problem with source fn and if for all
n ∈ N one has pn(·) ≤ p(·) a.e. in the domain Ω , then (un)n converges to the unique
broad solution of the p(x)-laplacian problem with source f .

– In the situation where p(·) verifies the log-Hölder regularity condition of Zhikov
and Fan ([39, 54, 55]; see Section 2 below for details), broad and narrow solutions
of (1), (2) coincide and any sequence of (broad or narrow) weak solutions un of the
pn(x)-laplacian problem converges, irrespective of the ordering of pn(·) and p(·), to
the unique weak solution of the limit problem.

In the present note, we combine the insight from these results and from the recent work [17]
with the standard finite volume discretization framework(s) for the PDEs of p-laplacian
kind. As the common guidelines of [17] and of our investigation, one can highlight the
following properties:

– In the case of log-Hölder regular exponent p(·), convergence of several standard finite
volume methods can be proved, with a wide choice of approximation strategies for p(·).

– Approximation of the narrow solution requires discretization of p(·) by pD =
maxD p(·), where D denotes the generic “diamond” of the mesh on which p(·) is
approximated; moreover, the method should be conforming in the sense that the discrete
solution can be assimilated to an element of W

1,∞
0 (Ω).

– Approximation of the broad solution requires discretization of p(·) by pD =
minD p(·); moreover, the method should be able to approximate in an ad hoc sense the
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elements of W \ H. While the latter property seems delicate to check theoretically (in
general, it is difficult to characterize W\H), it can be tested numerically, in the classical
setting of the Zhikov counterexample ([2, 16, 53, 54]).

However (see Section 5) in the finite volume context, (non)conformity may have less impact
on the result that the accurate choice of discretization of p.

For the sake of simplicity, we will state results for (1) only for the model p(x)-laplacian
case (2). However, the results we prove can be extended in a straightforward way to variable-
exponent problems more general that (2), following the guidelines of [7] where a wide
family of variable-exponent Leray–Lions elliptic operators for merely L1 data was consid-
ered. Furthermore, our numerical investigation is based on the notion of a weak solution,
which amounts to taking sufficient integrability assumptions on the source f so that to make
unnecessary the renormalized solutions setting of [7, 21]. This restriction is due to the fact
that finite volume approximation of renormalized solutions enforces the additional orthog-
onality restriction on the meshes and most importantly, it requires heavy technicalities, see
[43, 46]. In practice, we also test our discretization techniques, on orthogonal meshes, for
the case of a variable exponent thermistor problem of [56] with merely L1 source; this test
goes beyond our basic convergence analysis framework.

Furthermore, as in the sequel [8] of the work [7], we address the situations where the
variable exponent depends (locally or non-locally) on the solution u itself, i.e., p(x) =
σ(x, u(x)) for a sufficiently regular Carathéodory function σ . As in [8], we need the
assumption of log-Hölder continuity of σ(·, u(·)). In practice this requires the a priori
knowledge of the Hölder continuity of u and thus imposes the restriction d < p− =
min p(·), where d is the space dimension. We also prospect numerically the behavior of
more complex coupled problems where p(·) depends on u(·) in a non-local way (via the cou-
pling with another differential equation driven by u), and briefly discuss the extension of the
discretization techniques and of the convergence analysis to evolution problems governed
by variable-exponent operators.

The outline of the paper is as follows. In Section 2 we gather the key information about
variable-exponent spaces, some sample finite volume methods, and Young measures, along
with the related notation. This section is by no means self-contained. Section 3 contains
the theoretical and numerical results for the “robust” situations where the equality W = H
is ensured. Both p(x)- and p(u)- laplacian problems are addressed following closely the
method of [7, 8] with the necessary adaptations to the discrete context. Section 4 is devoted
to the delicate situation of “Lavrentiev gap” W \H = ∅, mainly in the setting of the Zhikov
counterexample.

2 Preliminaries

The goal of this section is to provide, in a sketchy way, the conceptual framework and the
notation of the paper; details can be found in references.

2.1 Variable-exponent Spaces, Zhikov’s Counterexample

The solutions to problem (1), with the p(x)-laplacian nonlinearity (2) are sought within the
variable exponent Sobolev spaces H, W defined below.
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Definition 1 Let p : Ω −→ [1, +∞) be a measurable function.

1. The space Lp(x)(Ω) consists of all measurable functions u : Ω −→ R such that the
quantity

ρp(x)(f ) :=
∫

Ω

|f (x)|p(x) dx

called the modular is finite; on Lp(x) one considers the Luxemburg norm

‖u‖Lp(x) := inf
{
λ > 0

∣∣ ρp(x)(u/λ) ≤ 1
}

.

2. The space W 1,p(·)(Ω) consists of all functions u ∈ Lp(·)(Ω) such that the gradient ∇u

of u (taken in the sense of distributions) belongs to Lp(·)(Ω); this space is equipped
with the norm

‖u‖W 1,p(·) := ‖f ‖Lp(·) + ‖∇u‖(Lp(·))d .

3. H := W
1,p(·)
0 (Ω) is the closure of C∞

0 (Ω) in the norm of W 1,p(·)(Ω); we equip it with
the norm ‖f ‖ := ‖∇f ‖(Lp(·))d .

4. W is the space of all W
1,1
0 (Ω) functions such that in addition, ∇u ∈ (Lp(·))d (Ω),

equipped with the same norm as H.

When 1 < p− ≤ p(·) ≤ p+ < ∞, all the above spaces are separable reflexive Banach
spaces. Many important and subtle details can be found in the monograph [30], in the papers
[40] and [7] and in the references therein. We will need only a few basic properties as
follows:

Proposition 1 Let p : Ω −→ [1, ∞] be measurable.
1. The following form of the Hölder inequality holds true:

∀f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω),

∣∣∣∣
∫

Ω

f (x)g(x) dx

∣∣∣∣ ≤ 2‖f ‖Lp(·)‖g‖
Lp′(·) ,

where as usual, 1/p(·) + 1/p′(·) = 1.
2. There holds ρp(·)(f ) = 1 if and only if ‖f ‖Lp(·) = 1.

Furthermore, if 1 ≤ p− ≤ p(·) ≤ p+ < ∞, then

whenever ρp(·)(f ) ≤ 1, one has ‖f ‖p+
Lp(·) ≤ ρp(·)(f ) ≤ ‖f ‖p−

Lp(·) ;

whenever ρp(·)(f ) ≥ 1, one has ‖f ‖p−
Lp(·) ≤ ρp(·)(f ) ≤ ‖f ‖p+

Lp(·) .

3. If, in addition, p admits a uniformly continuous on Ω representative, then the W
1,p(·)
0

Poincaré–Friedrichs inequality for the norms holds:

∀f ∈ W
1,p(·)
0 (Ω), ‖f ‖Lp(·) ≤ ‖∇f ‖Lp(·);

in this case, W coincides with W
1,1
0 (Ω) ∩ W 1,p(·)(Ω).

A difficulty in the interpretation and analysis of the variable exponent problems of the
p(x)-laplacian kind lies in the fact that H can be a strict subspace of W. Therefore, there
can be at least two different ways to interpret the (1), (2) in the weak sense, according to the
choice of the underlying functional space. One can avoid the difficulty by ensuring that p(·)
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Fig. 1 The setup of the (rotated,
see [17]) Zhikov counterexample

satisfy the log-Hölder continuity property (3) put forward by Zhikov [54, 55] and Fan [39]
and deeply exploited in [30]; the same property ensures the optimal Sobolev embedding.

Proposition 2 (see [7, Corollary 2.6]) Assume that p(·) : Ω −→ [p−, p+] ⊂ (1,∞) has
a representative which can be extended into a function continuous up to the boundary ∂Ω

and satisfying the log-Hölder continuity assumption:

∃ L > 0, ∀ x, y ∈ Ω, x = y, −(log |x − y|) |p(x) − p(y)| ≤ L. (3)

Then the following properties hold true.

1. The space C∞
c (Ω) is dense in W. In particular, H andW can be identified.

2. W = H is continuously embedded intoLp∗(x)(Ω), where p∗(·) is a measurable (1, ∞]-
valued optimal Sobolev embedding exponent defined as usual by the formula p∗(x) =
dp(x)/(d − p(x)) if p(x) < d, p∗(x) = ∞ if p(x) > d, p∗(x) is any real value if
p(x) = d.

The absence of (3) does not necessary lead to a discrepancy between W and H, indeed,
other sufficient conditions for the equality W = H exist and the counterexamples to this
equality are quite scarce (see, however, [16] for recent results in this direction). Following
[53] (see also [2, 16] for variants of the example; the precise formulation we take involves a
rotation, like in [17]), in the square (−1, 1)2 of R2 consider the piecewise constant variable
exponent with a saddle-point at the origin:

p0(x) =
{

3/2 if |x1| < |x2|,
3 if |x1| > |x2|. (4)

For this choice of the domain and of the variable exponent, the above definitions lead to
W \ H = ∅, moreover, H is of co-dimension one in W (see [2, 17] and references therein).

More precisely, consider the function

u0(x) =

⎧⎪⎨
⎪⎩

1 if |x1| < x2,

−1 if |x1| < −x2,
x2

|x1| else,
(5)
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which is discontinuous at the origin (see Fig. 1). In his pioneering work [53], Zhikov showed
that the singularity of u0 cannot be approached by smooth functions in the W 1,p(x) norm.
Then, set ũ0(x1, x2) = (1 − x2

1 − x2
2 )+u0(x1, x2) to produce a function that has the same

singularity as u0 at the origin and assumes the zero Dirichlet data at the boundary of the
domain Ω = (−1, 1)2. In this situation, ũ0 ∈ W \ H and more precisely,

W = H ⊕ Span(ũ0), (6)

see [2] and the references therein.

2.2 CVFE and DDFV Approximations in 2D

The discrete framework we briefly describe is borrowed from the literature devoted to the
standard p-laplacian. We refer to [38] for the general background on finite volume methods,
to [36, 37] for a general and comparative view of the subject, to [1, 5, 26, 42] and the
references therein for CVFE schemes and to [10, 34] for the DDFV schemes.

Having in mind several finite volume schemes with accurate (strongly consistent) gradi-
ent reconstruction, i.e., the so-called MPFA schemes, diamond schemes, gradient schemes
etc.) let us fix a common notation which will permit to write the core of the convergence
proofs disregarding the specificities of each scheme. We denote by T the control volumes
of a mesh, by uT a generic discrete function (constant per mesh volume) on the interior
volumes of the mesh. We denote by size(T) the maximal diameter of mesh volumes. The
associated space of all discrete functions is denoted by R

T. When extended by values zero
at the boundary of the mesh, the discrete function is denoted by uT and the associated space
of all discrete functions vanishing on the mesh boundary is denoted by R

T
0 . The extension

to the boundary of the mesh is required to produce a discrete gradient of a discrete function.
For the sake of defining discrete vector-fields, another partition associated with the mesh

T is introduced; the cells of this partition are called diamonds. We denote by ∇DuT the
discrete gradient, provided by the method at hand, defined on the diamond mesh denoted
by D. Discrete gradients are particular instances of discrete fields, which are R

2-valued,
constant per diamond functions; the space of all discrete fields is denoted by (R2)D. Finite
volume methods naturally associate to a discrete field FD ∈ (R2)D its discrete divergence
divT[FD] ∈ R

T. Furthermore, two scalar products are defined: for discrete functions on

the mesh T, one uses
[[
uT, vT

]]
while for discrete fields on the diamond mesh D, one

uses
{{
FD,GD

}}
. For the sake of conciseness, we will limit our attention to schemes that

fulfill the following discrete duality property where we recall that vT ∈ R
T is extended to

vT ∈ R
T
0 by zero values at the boundary volumes:

∀ vT ∈ R
T, ∀ FD ∈ (R2)D,

[[
− divT[FD] , vT

]]
=

{{
FD , ∇DvT

}}
. (7)

The precise formulas for the notation in (7) are given below for two different discretization
strategies. Indeed, the two methods CVFE and DDFV that we describe in more detail below
(those are the methods used for the numerical tests) both possess the property (7). Fur-
ther methods successfully applied to discretization of the p-laplacian kind equations (with
a fixed p) possess a variant of this property (see in particular [9, 35]); within the very gen-
eral family of gradient schemes ([37]) an approximate version of the discrete duality (7) is
postulated axiomatically.
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Let us briefly specify the meshing, the precise meaning of the above notation, and the key
definitions of the operators ∇D, divT for the CVFE and the DDFV schemes. Note that the
general approach to convergence analysis followed in this paper applies to other schemes
in 2D or in 3D that enjoy the Discrete Duality property, such as the NDD (Nodal Discrete
Duality) scheme recently developed by the authors in [12].

2.2.1 CVFE Method

Given a confirming triangular primal mesh D in the sense of the finite elements, the princi-
ple of the CVFE method is to consider scalar unknowns uT on the dual mesh T (built on D)
while the gradient operator ∇D is defined on the triangles of D (see, e.g., [1, 5, 26, 42]). A
generic triangle is denoted by D.

The dual mesh T is centered on the vertices of the triangular mesh D. For each vertex
v, the associated unique control volume Kv or simply K is obtained by connecting the
barycenter of the elements, having in common v, to the centers of the edges sharing the
same vertex. We denote by EK the set containing the edges of K . The scalar product

[[·, ·]]
can be expressed as [[

uT, vT
]]

=
∑
K∈T

|K|uKvK,

where |K| stands for the measure of K . The discrete gradient is defined as in the finite
element literature (see, e.g. [50]), meaning that

∇DuT =
∑
K∈T

uK∇ϕK,

where (ϕK)K∈T is the basis of P1 shape functions on the triangular mesh T. The function
∇DuT is constant per element of D, therefore one can consider ∇DuT as belonging to the

space (RD)2 of discrete fields on Ω . The scalar product
{{

·, ·
}}

on (RD)2 is defined for

FD = (FD)D∈D, FD = (GD)D∈D merely by{{
FD,GD

}}
=

∑
D∈D

|D|FD · GD . (8)

Let FD belong to (R2)D, the discrete divergence of FD within K is defined by

divT[FD]|K = 1

|K|
∑

σ∈EK

|σ |FD · nσ ,

where |σ | is the length of the interface σ and nσ accounts for the outward unit normal to σ .
The discrete duality (7) for this CFVE method on triangles holds true, moreover, note

that it is possible to extend the method to primal mesh consisting of arbitrary polygons while
keeping the discrete duality ([5]), though issues with scheme coercivity may arise.

Finally, note that source terms f in CVFE setting are discretized by fT = (fK)K∈T
with either the mean-value choice (the L1 integrability of f is enough) or the center-value
choice (whenever f is continuous on K):

fK = 1

|K|
∫

K

f (x) dx (mean value) or fK = f (xK) (center value). (9)

The discretization of the source term is strongly consistent in the sense that if f ∈ Lp(Ω),
p < ∞, and (uT)T is a sequence of discrete functions weakly convergent in Lp′

(Ω) to a
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limit u as the discretization step size(T) of the mesh T goes to zero, then
[[
fT, uT

]]
→

∫
Ω

f (x)u(x) dx as size(T) → 0; (10)

moreover, the gradient discretization is strongly consistent in the sense that if φ ∈ C∞
c (Ω)

is discretized by φT = (φ(xK))K∈T, there holds

∇DφT → ∇φ a.e. on Ω and in (Lp(Ω))2, for all p < ∞ (11)

as size(T) → 0 (see, e.g., [50]); moreover, the per diamond gradient discretization is first-
order accurate (it is exact on functions affine in a neighborhood of a given diamond).

Finally, we point out that the discrete duality (7) ensures that for a family of meshes
with size(T) going to zero, weak L1 limits of discrete functions and the associated discrete
gradients are linked by the continuous gradient operator:

uT ⇀ u in L1(Ω) weakly

∇DuT ⇀ G in (L1(Ω))2 weakly

}
=⇒ u ∈ W

1,1
0 (Ω) and G = ∇u. (12)

The CVFE method can be seen as a lumped Finite Element method, indeed, only the dis-
cretization of the source term, based on the mass lumping idea, differs from the Finite
Element framework. In particular, while in CVFE context one associates to a discrete func-
tion uT the piecewise constant on Ω function uT(x) = ∑

K∈T uK11K , one can also exploit
the continuous, affine per diamond reconstruction.

2.2.2 DDFVMethod

The particularity of the DDFV discretization is the construction of the whole discrete gra-
dient on the diamond mesh D requiring two different partitions of Ω , namely the primal
mesh M and dual mesh M
 (if one considers only the inner volumes M
 of the dual mesh,
it does not cover the whole of Ω).

The primal mesh M is a set of control volumes K covering Ω . The volumes of the dual
mesh are defined on M around the vertices. Each dual cell of M
 corresponds to a vertex
of M, the boundary cells corresponding to the vertices of the primal mesh that lie on ∂Ω .
These dual cells are obtained by connecting the centers of primal cells of M sharing the
vertex in question. The diamond mesh is made from quadrilaterals (resp. triangles) built on
the internal (resp. external) edges of M.

Then, we denote T = M ∪ M
 (the boundary volumes of the primal mesh which are
degenerate flat portions of the boundary ∂Ω). The unknowns are attached only to the inner
volumes of each mesh, so that uT = (

uM, uM
∗)

. For the sake of the gradient discretiza-
tion and having in mind the homogeneous Dirichlet condition (extension to inhomogeneous
Dirichlet condition is described in [10]), the values of uT in the primal and dual boundary
volumes are set to zero. In the DDFV setting, the inner product

[[·, ·]] involves primal and
dual unknowns. It writes

[[
uT, vT

]]
= 1

2

∑
K∈M

|K|uKvK + 1

2

∑
K
∈M


|K
|uK
vK
 .

Consider a diamond cell D with diagonals (σ, σ 
) ∈ EK × EK
 . In fact, the interface σ =
K|L is shared by two primal volumes K and L. This notation also covers boundary edges
seen as degenerate volumes by convention. The dual edge σ = K
|L
 is shared by two dual
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cells K
, L
 corresponding to the end point of σ . The discrete gradient on the diamond D

is defined in the 2D basis (nKL,n

K
L
) by the formula

∇DuT|D = 1

2|D|
(|σ |(uL − uK)nKL + |σ
|(uL
 − uK
)n


K
L


)
,

where nKL (resp. n

K
L
 ) denotes the unit normal to σ (resp. σ
) pointing from K to L

(resp. from K
 to L
), and |σ |, |σ
| stand for the length of the respective edges. The func-
tion ∇DuT, constant per diamond, can be seen as an element of the space (RD)2 of discrete
fields. As in the CVFE context, the scalar product on (RD)2 is defined by (8). Also the diver-
gence operator is defined in the traditional way of finite volume schemes, but separately on
the primal and dual meshes as follows:

divT[FD]|K = 1

|K|
∑

σ∈EK

|σ |FD · nσ , divT[FD]|K
 = 1

|K
|
∑

σ
∈EK


|σ
|FD · n

σ
 .

The discrete duality (the formula (7)), which gave its name to the DDFV method, holds
true ([10]). Note that the DDFV method allows for two different 3D extensions; in the
present contribution we limit our attention to 2D tests, but the analytical proof works as well
for the 3D DDFV schemes of [29] and [4].

Finally, we stress that in the DDFV method, the identification of a discrete function
uT = (

uM, uM
∗)

to a piecewise constant function on Ω is done through the formula

uT(x) = 1

2

∑
K∈M

uK11K + 1

2

∑
K
∈M


uK∗11K
 . (13)

Source terms are discretized analogously (9) on the primal and on the dual mesh. Having in
mind the convention (13), the properties (10), (11) (along with the order one consistency of
the gradient reconstruction) and (12) hold true (see, e.g., [10]). Note that in presence of u-
dependent nonlinear terms, such as for the p(u)-laplacian considered in Section 3.2 below,
a penalization of uM − uM

∗
is needed for the convergence analysis (see [4, 6] for details).

2.3 YoungMeasures and Nonlinear weak-∗ Convergence

In the following theorem, limiting our attention to the case of a bounded domain Ω , we state
the well-known results taken from Ball [18], Pedregal [49] and (for the version stated below)
Hungerbühler [44] on the generation of Young measures for equi-integrable sequences of
L1(Ω) functions, and on the reduction of Young measures. These results are at the core of
our convergence analysis.

Here and in the sequel, the notation δ0 will be used for the standard Dirac measure
concentrated at the origin of R

d , while δc(·) := δ0(· − c). We underline the use of the
convergence in measure on Ω , for a sharp statement of the reduction result.

Theorem 3 Let Ω ⊂ R
N , N ∈ N, be a bounded domain.

(i) Let (vn)n be a sequence of Rd -valued functions on Ω , d ∈ N, such that (vn)n is equi-
integrable on Ω . Then there exists a subsequence (nk)k and a parametrized family
(νx)x∈Ω of probability measures on R

d , weakly measurable in x with respect to the
Lebesgue measure on Ω , such that for all continuous function F : Rd 	→ R

t , t ∈ N,
we have

lim
k→+∞

∫
Ω

F(vnk
(x)) dx =

∫
Ω

∫
Rd

F (λ) dνx(λ)dx (14)
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whenever the sequence
(
F(vn(·))

)
n
is equi-integrable on Ω . In particular,

v(x) :=
∫
Rd

λ dνx(λ)

is the weak limit of the sequence (vnk
)k in L1(Ω), as k → +∞. The family (νx)x is

called the Young measure generated by the subsequence (vnk
)k .

(ii) If (νx)x is the Young measure generated by a sequence (vn)n, then

νx = δv(x) for a.e. x ∈ Ω ⇐⇒ vn → v in measure as n → +∞.

(iii) If (un)n generates a Dirac Young measure (δu(x))x on R
d1 , and (vn)n generates a

Young measure (νx)x on R
d2 , then the sequence

(
(un, vn)

)
n
generates the Young

measure
(
δu(x) ⊗ νx

)
x
on Rd1+d2 .

3 The Regular Exponent Case

In this section, we assume that p(·) fulfills (3) and consequently, Proposition 2 holds true.
In this case, the notion of solution for problem (1), (2) is fairly standard.

Definition 2 Assume p(·) fulfills (3) and f ∈ L(p∗)′(·)(Ω). A weak solution of the homo-
geneous Dirichlet p(x)-laplacian problem (1), (2) is a function u ∈ W = H that fulfills
−div a(x, ∇u) = f in the sense of distributions. Equivalently, this means

u ∈ W = H s.t. ∀φ ∈ W = H,

∫
Ω

a(x, ∇u(x)) · ∇φ(x) dx =
∫

Ω

f (x)φ(x) dx. (15)

We will strengthen the assumption of integrability on f to f ∈ L(p−)′ for the sake of pro-
viding the essential arguments assessing convergence of CVFE and DDFV approximations
of problem (1), (2).

3.1 Convergence of CVFE and DDFV Finite Volume Schemes for the p(x)-Laplacian

The central result of the paper is the following theorem, where we focus on the simple
setting to avoid the non-essential technicalities and put clearly the core arguments.

Theorem 4 On a bounded polygonal open domain Ω of R2, consider the nonlinear elliptic
Dirichlet problem (1) with the p(x)-laplacian nonlinearity (2) for a variable exponent p(·)
verifying the log-Hölder regularity assumption (3).

Consider a family (Tn)n of CVFE or DDFV meshes of Ω with the associated diamond
meshes (Dn)n of size going to zero as n → ∞. Assume that the discrete Poincaré–
Friedrichs inequality in Lq , q ∈ [1, ∞), with a uniform in n constant1, holds for the
family of meshes (Tn)n. Regarding the discretization pDn = (pD)D∈Dn

∈ R
Dn of the

variable exponent p(·) on the diamond mesh, we merely assume that for each D ∈ Dn,

1Proofs of discrete Poincaré inequality in the Finite Volume literature often require an assumption of regu-
larity of the family of meshes, cf. [38]; note however that in many situations including DDFV and CVFE
with homogeneous Dirichlet boundary condition, the technique of [11, Lemma 2.6(i)] permits to drop the
regularity assumptions of [38], cf. the discussion in [10, Sect. III.B].
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pD ∈ [p−, p+] is chosen so that
min
D

p(·) ≤ pD ≤ max
D

p(·). (16)

Assume f ∈ L(p−)′(Ω) and consider the mean-value discretization fTn ∈ R
Tn as

in (9) (if f is piecewise continuous, center-value discretization can be considered instead).
Consider the family of discrete problems written in the variational form:

find uTn ∈ R
Tn such that ∀φTn ∈ R

Tn{{
aDn (·,∇DnuTn) , ∇DnφTn

}}
=

[[
fTn , φTn

]]
, (17)

where on each diamond D ∈ D, the approximation of a(·, ξ) = |ξ |p(·)−2ξ is chosen to be

aD(·, ξ) = |ξ |pD−2ξ .

For all n ∈ N, the scheme admits a unique solution uTn that we assimilate to a piecewise
constant function on Ω . As n → ∞, there holds

uTn → u and ∇DnuTn → ∇u a.e. on Ω, (18)

moreover the associated energies converge:

∣∣∣∇DnuTn

∣∣∣p
Dn

→ |∇u|p(·) in L1(Ω), (19)

where u is the unique weak solution in the sense of Definition 2 of (1), (2).

It is not difficult to upgrade the a.e. convergence of the discrete solutions and their gradi-
ents to convergence in some fixed or variable exponent Lebesgue spaces, using (18), (19),
De La Vallée Poussin equi-integrability property with the Vitali theorem, and the embed-
dings stated in Proposition 2. However, unless we make the assumption pD = maxD p(·),
one cannot reach the Lp(·)(Ω) convergence of the gradients. In this direction, the sharpest
convergence result is (19) hereabove; it is also of interest for readers interested in the
approximation of the variational problem underlying (1), (2).

Furthermore, scheme (17) can be rewritten into the standard per-volume form by taking
vTn in (17) with one entry equal to 1 and all the others equal to zero.

In addition to the key properties of the CVFE and DDFV schemes pointed out in
Section 2.2, we will use further standard properties of the CVFE and DDFV schemes such
as the inequality [[

fT, uT
]]

≤ const‖f ‖
Lq′

(Ω)
‖∇DuT‖Lq(Ω) (20)

valid for any constant value q ∈ (1, ∞) due in particular to the discrete Poincaré–Friedrichs
inequality (see, e.g., [23] and the references therein). Note that we will not develop p(x)-
versions of this inequality, taking the simplifying assumption f ∈ L(p−)′(Ω).

Proof The proof is structured into several steps. For the sake of legibility we will drop the
subscript n and write size(T) → 0 in the place of n → ∞.

Step 1. Assuming that uT is a solution to (17), we take φT = uT as the test function and
find

ρpD(·)(∇DuT) =
∫

Ω

∣∣∣∇DuT(x)

∣∣∣p
D(x)

dx =
[[
fT, uT

]]
, (21)
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where we can apply (20) with the constant exponent q = p− to upper bound the right-hand
side (under the regularity assumptions on the family of meshes that guarantee a uniform con-
stant in the discrete Lq -Poincaré–Friedrichs inequality). This entails the uniform in size(T)

bound
ρpD(·)(∇DuT) ≤ const uniformly in size(T). (22)

Indeed, having in mind (16), for all x ∈ Ω there holds
∣∣∣∇DuT(x)

∣∣∣p− ≤ 1 +
∣∣∣∇DuT(x)

∣∣∣p
D(x)

.

Then (21) and (20) yield

‖∇DuT‖p−
Lp− ≤ |Ω| + ρpD(·)(∇DuT) ≤ const

(
1 + ‖f ‖

L
p′− (Ω)

‖∇DuT‖Lp−
)

.

Because p− > 1, this permits to bound ‖∇DuT‖Lp− and then, by using (21) and (20)
again, we reach to (22). By Proposition 1.2, the bound (22) further entails a uniform bound
on ‖∇DuT‖

LpD(·)(Ω)
.

For a fixed mesh T, this norm is equivalent to any standard norm of uT on the finite-
dimensional space R

T. The resulting a priori bound guarantees the existence of a solution
to (17), based either upon the Brouwer fixed-point theorem or upon the topological degree
argument (cf. [10, 35, 38, 47]).

In the sequel, we extract convergent subsequences from the family (Tn)n without label-
ing them (as a shortcut, we write “convergence, as size(T) → 0”). At the end of the proof,
as soon as the convergence (up to a subsequence) of discrete solutions to a weak solution of
the continuous problem is established, the standard result of uniqueness of a weak solution
to (1), (2) permits to assess that the whole sequence converges.

Step 2. We apply the discrete W
1,p−
0 compactness results proper to each scheme, e.g.,

for the DDFV scheme we use [10, Lemma 3.8]2. More precisely, the uniform bounds of
Step 1, the fact that pD ≥ p− (see (16)) and the Poincaré–Friedrichs inequality for q = p−
entail the strong convergence of uT in Lp−(Ω) to some limit that we denote u; furthermore,
they entail the weak convergence of ∇DuT in (Lp−(Ω))2 to some limit that we denote G,
whereas property (12) ensures that G = ∇u. We deduce in particular that u ∈ W

1,1
0 (Ω)

(and even in W
1,p−
0 (Ω)).

Step 3. The energy estimate (22) entails the boundedness of the family aD(·, ∇DuT)

in (L
p+

p+−1 (Ω))2, since |aD(·, ξ)|
pD

pD−1 = |ξ |pD and pD

pD−1 ≥ p+
p+−1 in view of (16). By the

De La Vallée Poussin equi-integrability property and the Dunford–Pettis characterization of
the weak convergence in L1 spaces, aD(·, ∇DuT) converges weakly in (L1(Ω))2 (up to a
subsequence), as size(T) → 0, to some limit we denote χ .

Step 4. Then the standard argument (see, e.g., the first step of the proof of [10, Theo-
rem 5.1]) permits to pass to the limit, as size(T) → 0, in the scheme (17). More precisely,
this is done taking as the discrete test function a straightforward discretization φT of a fixed

2As in [10, Theorem 5.1], for the DDFV context the proof of strong convergence of uT requires two steps:
until the identification of the limit, one only needs that uM, uM

∗
strongly converge the some limits uprimal

and udual respectively, and sets u := (uprimal +udual)/2; and at the very end of the proof, using the Poincaré
inequality (we can again stick to the constant exponent case q = p−) one finds that uprimal = udual = u.
For more involved PDE problems, e.g., those involving nonlinear reaction terms, one may need to penalize
the difference uM − uM

∗
in order to ensure that uprimal = udual = u at the limit (see [4, 6]).
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smooth test function φ. In this situation, ∇DnφT converges a.e. on Ω and strongly in all Lq

spaces towards ∇φ (the property (11)), while φT converges a.e. on Ω and strongly in all Lq

spaces towards φ (in the DDFV context, each of the two components φM, φM∗
converges

strongly to the same limit φ) in the sense (10). The weak convergence obtained in Step 3,
the expression (8) and (11) show that the left-hand side of (17) converges to the left-hand
side of the identity ∫

Ω

χ(x) · ∇φ(x) dx =
∫

Ω

f (x)φ(x) dx (23)

as size(T) → 0. At the same time, the right-hand side of (17) converges to the right-hand
side of (23) due to (10). Consequently, the relation (23) linking χ and u is valid for all test
function φ ∈ C∞

0 (Ω).
The remainder of the proof consists in showing that u ∈ W = H and χ = a(·, ∇u),

which is done based on the Young measure representation of ∇u and χ and the monotonicity
of a.

Step 5. We start by applying Theorem 3 to express ∇u and χ via the same Young mea-
sure, the one generated by (a subsequence of) (∇DuT). Indeed, notice that the (log-Hölder)
continuity of p(·) and the choice (16) ensure the uniform on Ω convergence of pD(·) to
p(·), in particular Theorem 3(ii) tells us that the Young measure generated by the fam-
ily (pD) (remember we skip the labeling of meshes by n to lighten the notation) is δp(x).
By Theorem 3(i), ∇u = G being the weak L1 limit of the family of (L1(Ω))2 functions
(∇DuT(·)), it can be represented by the Young measure we denote dνx :

∇u(x) :=
∫
R2

ξ dνx(ξ). (24)

From these two claims it follows by Theorem 3(iii) that the Young measure representing
the family

(
pD(·), ∇DuT(·)) is δp(x) ⊗ νx . Now, we apply formula (14) of Theorem 3

for the latter family, with the choice F(π, ξ) = |ξ |π−2ξ . Note that the discrete flux

aD(·, ∇DuT(·)) writes as F(pD(·), ∇DuT(·)), and the (L
p+

p+−1 (Ω))2 estimate of Step 3
ensures the equi-integrability of F(pD(·), ∇DuT(·)) required in Theorem 3(i). This permits
to write

χ(x) :=
∫
R2

F(π, ξ) dδp(x)(π) ⊗ νx(ξ) =
∫
R2

|ξ |p(x)−2ξ dνx(ξ). (25)

Step 6. Next, we prove that u ∈ W; in view of the definition of W and the result of Step 2,
it remains to prove that ∇u ∈ (Lp(·)(Ω))2 due to the uniform bound (22). We employ a
simple semi-continuity argument, which we detail for the sake of completeness. Introduce,
for m > 0, the truncations

hm : R2 −→ R
2, hm(ξ) =

{
ξ, |ξ | ≤ m,

m
ξ
|ξ | , |ξ | > m.

(26)

Because hm(·) is bounded for every fixed m, we can apply Theorem 3(i),(iii) with the func-
tion Fm(π, ξ) = |hm(ξ)|π to the sequence

(
pD(·), ∇DuT(·)) (cf. Step 5). We find for all

m < ∞,
∫

Ω

∫
R2

Fm(π, ξ) dδp(x)(π) ⊗ νx(ξ) dx = lim
size(T)→0

∫
Ω

Fm

(
pD(x),∇DuT(x)

)
dx. (27)
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The right-hand side of (27) is upper bounded by
∫

Ω

F
(
pD(x),∇DuT(x)

)
dx =

∫
Ω

∣∣∣∇DuT(x)

∣∣∣p
D(x)

dx = ρpD(·)(∇DuT),

where we used the fact that Fm(·, ·) ≤ F(·, ·) pointwise since |hm(·)| ≤ | · |. Whence
by (22), the right-hand side of (27) is bounded uniformly with respect to m. To conclude,
observe that |hm(·)|p(x) → | · |p(x), as m → ∞, moreover, the convergence is monotone.
We then have ∫

Ω

∫
R2

|ξ |p(x) dνx(ξ) dx = lim
m→∞

∫
Ω

∫
R2

Fm(π, λ) dνx(ξ) dx

so that (ξ, x) 	→ |ξ |p(x) is integrable with respect to the measure dνx(ξ) dx. Finally, in view
of the representation (24) and due to the convexity of ξ 	→ |ξ |p(x), by the Jensen inequality
we deduce that ∇u belongs to Lp(·).

Moreover, in a very similar manner we find that χ ∈ Lp′(·) due to the representation (25),
the convexity of ξ 	→ |ξ |p′(x), and the Jensen inequality.

Step 7. The key assumption (3) on p(·) ensures that W = H and therefore, u ∈ H is an
admissible test function in the weak formulation. Indeed, u ∈ H can be approximated in the
norm of W 1,p(·)(Ω) by C∞

c (Ω) functions; in view of the Lp′(·)(Ω) integrability of χ and
the assumption f ∈ L(p−)′(Ω) ⊂ Lp′(·)(Ω), the density argument permits to extend the
validity of (23) to the choice φ = u.

At the same time, we can take the test function uT in the discrete weak formula-
tion (17). Having in mind property (10) (applied with the constant exponent (p−)′, due to
the assumption f ∈ L(p−)′(Ω)), this yields

∫
Ω

χ(x) · ∇u(x) dx =
∫

Ω

f (x)u(x) dx = lim
size(T)→0

[[
fT, uT

]]

= lim
size(T)→0

{{
aD(·, ∇DuT) , ∇DuT

}}

= lim
size(T)→0

∫
Ω

∣∣∣∇DuT(x)

∣∣∣p
D(x)

dx. (28)

We can rewrite the left-hand side of (28), using (24) and (25), as
∫

Ω

(∫
R2

ξ dνx(ξ)

)
·
(∫

R2
|ξ |p(x) dνx(ξ)

)
dx.

Step 8. The above inequality allows us to reduce the Young measure νx to the Dirac
measure δ∇u(x) and to identify χ(x) with a(x, ∇u(x)).

While one cannot apply Theorem 3 to represent this limit because the equi-integrability
property fails, a lower semi-continuity argument similar to the one detailed in Step 6 applies.
First, for every fixed m < ∞ we can lower bound the right-hand side of (28) by

lim
size(T)→0

∫
Ω

∣∣∣hm(∇DuT(x))

∣∣∣p
D(x)

dx =
∫
R2

|hm(ξ)|p(x)ξ dνx(ξ).

Then we let m → ∞ using the monotone convergence theorem, thus reaching to
∫

Ω

(∫
R2

ξ dνx(ξ)

)
·
(∫

R2
|ξ |p(x)−2ξ dνx(ξ)

)
dx ≥

∫
Ω

∫
R2

(ξ) ·
(
|ξ |p(x)−2ξ

)
dνx(ξ) dx.
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As in [7, 33, 45], elementary manipulations based on the fact that νx is a probability measure
on R

2 lead to

0 ≥
∫

Ω

∫
R2

∫
R2

(ξ − ζ ) ·
(
|ξ |p(x)−2ξ − |ζ |p(x)−2ζ

)
dνx(ξ)dνx(ζ )dx. (29)

The monotonicity of the map ξ 	→ |ξ |p(x)−2ξ entails that the integrand in (29) in
nonnegative; whence

(ξ − ζ ) ·
(
|ξ |p(x)−2ξ − |ζ |p(x)−2ζ

)
= 0

a.e. on R
2 × R

2 × Ω with respect to dνx(ξ)dνx(ζ )dx.

Since the above mentioned monotonicity is strict, this actually means that νx(ξ) ⊗ νx(ζ )-
a.e., ξ = ζ for a.e. x ∈ Ω . This forces νx to be a Dirac measure on R

2, whence by (24) we
have νx = δ∇u(x) and then by (25), χ(x) = |∇u(x)|p(x)−2∇u(x) = a(x, ∇u(x)) for a.e.
x ∈ Ω .

This concludes the proof of identification of χ . Inserting it into (23), we conclude that u

constructed in Step 1 is a solution of (1), (2) in the sense of Definition 2.
Step 9. It remains to prove the strong convergences claimed in (18) and in (19); they

are byproducts of the above proof. It follows from Step 1 that uT → u in L1(Ω) while it
follows from Step 8 and Theorem 3(ii) that ∇DuT → ∇u in measure, as size(T) → 0; thus
upon extraction of a further subsequence, (18) holds. Next, we revisit (28) by rewriting the
left-hand side of it using the representation of χ . We reach to∫

Ω

|∇u(x)|p(x)dx = lim
size(T)→0

∫
Ω

∣∣∣∇DuT(x)

∣∣∣p
D(x)

dx,

bearing in mind that |∇DuT(x)|pD(x) → |∇u(x)|p(x) due to (18) and to the obvious conver-
gence of discretizations pD. The claim (19) follows by the refinement of the Fatou lemma,
sometimes referred to as the Schaeffe’s lemma (cf. [35, Lemma 8.4]).

Remark 1 The particular form (2) of the variable-exponent nonlinearity a is strongly
exploited in the above proof. Adaptation of the proof to more general Leray–Lions kind non-
linearities, under the assumptions of [7], is not difficult but some of the arguments become
more technical. In this relation, note that in the context of Theorem 4, we have the uniform
convergence of pD to p(·) and therefore, in the context of Step 3 of the above proof, the
heavy cutting argument of [7, Claim 7] can be bypassed.

3.2 Adaptation to the p(u)-Laplacian

The result of Theorem 4 admits a simple extension to the situation where the nonlinearity a

in (1) and the variable exponent p(·) are allowed to depend on the solution u. For the sake
of simplicity, here we only consider the p(u)-laplacian situation with (2) replaced by

a(x, u,∇u) = |∇u|σ(x,u(x))−2∇u, σ : Ω × R −→ (1,∞)

With a slight abuse of notation, we refer to the associated Dirichlet problem as “prob-
lem (1), (2) with p(·) = σ(·, u(·))”. In [8], it was shown that the stability technique of [7]
readily extends to this case under a set of assumptions ensuring the log-Hölder regularity of
the resulting exponent p(·). To this end, we are led to assume

σ extends to a Hölder continuous function on Ω × R, (30)

σ takes values in [p−, p+] with p− > d, (31)
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where we recall that d is the space dimension. The associated well-posedness theory is
constructed in [8]. Note that for the uniqueness, additional assumptions are required on σ . If
we assume only (30), (31), then the following analogue of Theorem 4 holds up to extraction
of a subsequence (and without extraction of a subsequence, under additional assumptions
of [8] ensuring the uniqueness for the p(u)-laplacian problem at hand).

Theorem 5 In the context of the assumptions of Theorem 4, consider the problem (1), (2)
with p(·) = σ(·, u(·)) with σ satisfying (30), (31). For the DDFV case, consider in the place
of (17) the penalized scheme of [4, 6] using the constant exponent q = p− in the definition
of the penalization operator.

Regarding the discretization pDn = (pD)D∈Dn
∈ R

Dn of the variable exponent p(·) =
σ(·, u(·) on the diamond mesh, we assume that for each D ∈ Dn, pD ∈ [p−, p+] is chosen
so that

min
K∈V(D)

σ (xK, uK) ≤ pD ≤ max
K∈V(D)

σ (xK, uK), (32)

where V(D) denotes the set of all control volumes K ∈ Tn (both primal and dual ones, in
the DDFV setting) which centers are vertices of the diamond D ∈ Dn.

Then, up to extraction of a subsequence, the conclusion of Theorem 4 on convergence to
a limit u—solution of (1), (2) with p(·) = σ(·, u(·))— hold true.

Proof This is a straightforward adaptation of the proof of Theorem 4.
We focus on the fact that pD converges to the limit σ(·, u(·)) where u is the strong

limit of uT in Lp−(Ω). At this point, the penalization of [6], see also [4], is needed in
the DDFV framework in order to ensure that uM − uM

∗
converges to zero strongly in

Lp−(Ω). The estimate of Step 1 ensures that whatever be the choice of KD ∈ V(D) for each
D ∈ D, the discrete functions

∑
D∈D uKD

11D converge to the same limit u, as size(T) →
0. Then the uniform continuity of σ (which is a consequence of (30)) ensures that under
the assumption (32), we do have the strong a.e. convergence pD → σ(·, u(·)) =: p(·).
This allows us applying Theorem 3(iii) in the context of Steps 5, 6 and 8 of the proof of
Theorem 4.

The other key argument is the property W = H underlying Step 7; it is readily deduced
from (30) and from the restriction (31) ensuring that u is Hölder continuous on Ω due to
the Gagliardo–Sobolev embedding.

The other steps of the proof are unchanged in the CVFE context. To handle the
introduction—in the DDFV context—of penalization within the scheme (17), note that it
corresponds to the addition of a discrete term corresponding to −size(T)�p−u in the left-
hand side of (17). This term permits to replace (28) with the inequality “≥” (which is
typical of the monotonicity arguments of the Minty–Browder kind and compatible with our
Young-measure-based argument), moreover this penalization term vanishes from the weak
formulation as size(T) → 0 due to the straightforward a priori estimate obtained as in
[4, 6]. The same a priori estimate is exploited for the proof of existence of a discrete
solution. We refer to [4] for details on these issues.

3.3 Extensions to p[u]-Laplacian and Evolution Problems

Without giving precise statements and entering the detailed analysis, let us point out that
in a very similar way, one could deal with problems where p(·) depends on u nonlocally,
typically p(·) = σ(·, v(·)) where v(·) satisfies a PDE with u(·)-dependent coefficients.
Such coupled problems naturally appear in applications, see e.g. [14, 56]. We token this vast
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family of problems as p[u]-laplacian variable exponent problems. A sample situation was
treated in detail in [8]; the key assumption, for the adaptation of the convergence technique
we pursue here, is the (log-)Hölder regularity of the resulting exponent p(·).

It is also possible to exploit the analysis technique of Theorem 4 in the context of
evolution problems of p(x), p(u) or p[u]-laplacian kind, under the general form ut −
div a(t, x, ∇u) = 0 with (t, x)-dependent variable exponent p(·) which may depend on
u(·) in a local or in a non-local way. This requires adaptation to the functional framework
established for the evolution problem, see, e.g. [15, 22, 31], and in particular the chain rule
/ integration-by-parts argument, known as the Mignot–Bamberger or Alt–Luckhaus lemma,
is required in Step 7 of the proof (cf. [22]).

We do not pursue here any of these lines in our analysis, but we provide below a
numerical test corresponding to a particular instance of p[u]-laplacian stationary problem
borrowed from [56].

3.4 Numerical Experiments

This subsection is devoted to exhibiting the behavior of the CVFE scheme with respect to
various nonlinearities spanned by smooth formulas of the exponent in the p(·)-Laplacian
problem. In this case, the H-solution and the W-solution (see Definition 3) are identical.

The domain of computation is fixed to Ω = (−1, 1)2. It is discretized using a regular
family of triangulations. Each triangular mesh, indexed by � where 1 ≤ � ≤ 6, is obtained
by decomposing the squares of the Cartesian mesh, made from 21+� × 21+� cells, into
triangles along their diagonals. Figure 2 illustrates the first two elements of the primal mesh.
The proposed finite volume scheme yields a nonlinear algebraic system solved thanks to the
Newton–Raphson’s algorithm. Its tolerance is fixed to ε = 10−8. The stopping criterion is
applied on the relative error of the successive iterates in the sense of ‖ · ‖∞-norm.

In all the numerical examples below, the exact solution is unknown. Then, we are led to
consider a reference solution on a very refined mesh of level � = 7 in order to assess the
accuracy of the finite volume scheme. Quantifying the errors requires the introduction of
the following approximate modular

�p(·)(uref − uh) =
∫

Ω

|uref − uh|p̃h(x,uh)dx,

Fig. 2 The first and the second triangulations of Ω
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where p̃h is a piecewise constant approximation of p(·) on the triangulation of Ω . Precisely,
let S1, S2, S3 denote the vertices of the triangle D, the expression of p̃h is given by

p̃h(x, uh) = p(xS1 , u1) + p(xS2 , u2) + p(xS3 , u3)

3
, ∀x ∈ D, ∀D ∈ Th;

note that it satisfies (16). The number �p(·) entails no information on the accuracy, nor on
the convergence speed, but it enables the computation of Luxemburg’s norm written as

‖uref − uh‖p(·) = inf

{
λ > 0, �p(·)

(
uref − uh

λ

)
≤ 1

}
.

The function g : λ → �p(·)
(
(uref − uh)/λ

) − 1 being decreasing, a dichotomy routine
is implemented to compute ‖uref − uh‖p(·). Before that, we need to determine an interval,
whose extremities are λ0, λ1, for which g(λ0)g(λ1) < 0. For this purpose, it suffices to
choose a value of λ0, retain its sign and deduce the other one by dividing (resp. multiplying)
its by 1/2 (resp. by 2) until the opposite sign is reached.

A similar approach is adopted to calculate the errors of the gradients. In the tables of the
sequel, the notations Rho u, Err u, Rho gu, Err gu refer respectively to the quantities

�p(·)(uref − uh), ‖uref − uh‖p(·), �p(·)
(
∇ref

h uref − ∇huh

)
,

∥∥∥∇ref
h uref − ∇huh

∥∥∥
p(·) .

3.4.1 Test 1

The goal of this first experiment is to validate the scheme and to test its accuracy in the case
where the variable exponent p(·) is only depending on space, in a smooth way. We then
consider for x = (x1, x2) ∈ R

2

p(x) = 5

2
+ cos(x1) cos(x2).

We take a constant right-hand side as f (x) = 10. A homogeneous Dirichlet boundary con-
dition is prescribed. The numerical convergence results are shown in Table 1. A second
order accuracy is obtained for the solution and an accuracy of order around 3/2 for the gra-
dients, in the Luxemburg norm. This is expected because of the data smoothness. Figure 3
illustrates the 2D view of the numerical solution on the third mesh.

Table 1 Numerical convergence for Test 1

h Rho u Err u rate Rho gu Err gu rate

0.354E+00 0.130E-01 0.129E+00 - 0.960E-01 0.317E+00 -

0.177E+00 0.152E-02 0.396E-01 1.699 0.176E-01 0.396E-01 1.384

0.884E-01 0.123E-03 0.104E-01 1.926 0.190E-02 0.104E-01 1.692

0.442E-01 0.906E-05 0.261E-02 1.996 0.174E-03 0.261E-02 1.598

0.221E-01 0.626E-06 0.625E-03 2.064 0.144E-04 0.625E-03 1.481

0.110E-01 0.322E-07 0.125E-03 2.322 0.876E-06 0.125E-03 1.678
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Fig. 3 Test 1: numerical solution on the third mesh

3.4.2 Test 2

In this second example, we are interested in the case where the exponent function depends
nonlinearly on the solution itself such as

p(x) = σ(x, u(x)) = 5

2
+ arctan(u(x)).

We also consider the following right-hand side defined by

f (x) = 100
2x1 + x2

x2
1 + 3x2

2 + 1
.

The Dirichlet boundary conditions are non-homogeneous (note that the extension of the con-
vergence analysis of Theorem 4 to the inhomogenous Dirichlet conditions can be obtained
as in [10], at least when the boundary condition is the trace of a W 1,p+(Ω) function) and
they are prescribed by the function

u(x) = (x1 − 0.5)2 + (x2 − 0.5)2, ∀x = (x1, x2) ∈ ∂Ω .

The results on the convergence rates are displayed in Table 2. A small loss of convergence
is recorded on the first two meshes, while the second order accuracy is recovered as the mesh
is refined. However, only a linear rate is noticed for the gradients. Thus the dependency of
the variable exponent on the solution impacts the accuracy. Figure 4 indicates how the shape

Table 2 Numerical convergence for Test 2

h Rho u Err u rate Rho gu Err gu rate

0.354E+00 0.684E-03 0.120E+00 - 0.441E-01 0.412E+00 -

0.177E+00 0.263E-04 0.491E-01 1.286 0.171E-01 0.491E-01 0.353

0.884E-01 0.460E-06 0.154E-01 1.676 0.757E-03 0.154E-01 1.275

0.442E-01 0.244E-08 0.362E-02 2.086 0.718E-04 0.362E-02 0.931

0.221E-01 0.332E-10 0.100E-02 1.852 0.854E-05 0.100E-02 0.833

0.110E-01 0.262E-12 0.255E-03 1.977 0.830E-06 0.255E-03 0.950

232 B. Andreianov, E.H. Quenjel



Fig. 4 Test 2: numerical solution on the third mesh

of the obtained solution looks on the third triangular mesh. We plot in Fig. 5 the behavior
of the approximate solution to the above problem.

3.4.3 Test 3

We here look at the situation where the exponent solves an elliptic equation. The right-hand
side of the latter is given under the form of Joule heating term with a variable exponent. This
system, taken from [56], is a generalization of the well-known steady thermistor problem.
It reads { −div

(|∇u|σ(θ)−2∇u
) = f, u|∂Ω = 0,

−�θ = α|∇u|σ(θ), θ|∂Ω = 0, α > 0,

where we take

σ(θ) = 5

2
+ 2

π
arctan(θ), f (x) = 4

(
(1 − x1)(x1 + 1) + (1 − x2)(x2 + 1)

)
, α = 0.5.

The errors and their convergence rates are shown in Table 3 for u. Similar outcomes
are obtained as in the first example. Table 4 gives the errors together with the orders with
respect to θ . The results are computed in the sense of the L2 norm for the solution and its
gradient. In both cases, a quadratic convergence is reached. This is standard and is due to
the fact that the mesh is structured.

Fig. 5 Test 3: (left) behavior of u (right) and θ (left) on the third mesh
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Table 3 Numerical convergence for Test 3 with respect to u

h Rho u Err u rate Rho gu Err gu rate

0.354E+00 0.253E-04 0.188E-01 - 0.160E-02 0.911E-01 -

0.177E+00 0.836E-06 0.531E-02 1.826 0.168E-03 0.531E-02 1.198

0.884E-01 0.236E-07 0.139E-02 1.930 0.131E-04 0.139E-02 1.366

0.442E-01 0.637E-09 0.356E-03 1.970 0.915E-06 0.356E-03 1.420

0.221E-01 0.152E-10 0.849E-04 2.067 0.561E-07 0.849E-04 1.479

0.110E-01 0.227E-12 0.181E-04 2.228 0.198E-08 0.181E-04 1.774

Although we do not pursue this line in this paper, note that the scheme readily extends
to evolution problem with the CVFE strategy developed for a different version of the gen-
eralized thermistor problem in [42]; both numerical tests and convergence analysis in the
evolution framework are left for future work.

4 The Lavrentiev Phenomenon: Approximation of Broad and Narrow
Solutions

The proof of Theorem 4 requires, at Step 7, that the limit u ∈ W be taken as a test function in
the equation (23); while the standard approach of consistency of the Finite Volume scheme
with the weak formulation ensures that any φ ∈ C∞

c (Ω) (and then, by density, φ ∈ H) is an
admissible test function. In this context, the log-Hölder regularity assumption (3) on p(·) is
imposed in order to ensure that W = H while in general, one may have H � W; e.g. for (4)
the inclusion is indeed strict. Therefore in general, one should distinguish two notions of
weak solution generalizing Definition 2. In the remaining part of this section, we drop the
log-Hölder assumption on the variable exponent p(·).

Definition 3 (cf. [7]) Assume p(·) is measurable and f ∈ L(p∗)′(·)(Ω). A narrow weak
solution of the homogeneous Dirichlet p(x)-laplacian problem (1), (2) is a function u that
fulfills the analogue of (15) with u, φ ∈ H. A broad weak solution of the same problem is a
function u that fulfills the analogue of (15) with u, φ ∈ W.

A common terminology in the literature devoted to the Lavrentiev phenomenon is to call
the above solution notions “H-solution” and “W-solution”, respectively.

Table 4 Numerical convergence for Test 3 with respect to θ

h ErrL2 θ rate ErrL2 gθ rate

0.354E+00 0.341E-01 - 0.138E+00 -

0.177E+00 0.122E-01 1.479 0.568E-01 1.285

0.884E-01 0.325E-02 1.912 0.158E-01 1.841

0.442E-01 0.813E-03 2.000 0.402E-02 1.977

0.221E-01 0.194E-03 2.068 0.964E-03 2.061

0.110E-01 0.388E-04 2.322 0.193E-03 2.320
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Note that for each of these notions of solution uniqueness is straightforward, while
existence can be inferred using the stability technique highlighted in this paper (see
[7, Theorem 3.11]; our assumption f ∈ L(p∗)′(·)(Ω) ensures that the renormalized broad
(respectively, renormalized narrow) solution constructed in [7] is also a narrow weak (resp.,
broad weak) solution). In general, the two solutions may differ, which is known, in the vari-
ational interpretation of our PDE problem, as the Lavrentiev phenomenon. In [7, 59], it is
demonstrated, moreover, that for problems including (1), (2)

– a sequence of narrow solutions with pn(·) → p(·), pn ≥ p a.e. in Ω , converges to a
narrow solution;

– a sequence of broad solutions with pn(·) → p(·), pn ≤ p a.e. in Ω , converges to a
broad solution.

In the context of numerical approximations, we have two alternative ways to proceed, for
proving convergence to one or the other type of weak solution:

– either ensure that the limit u of uT belongs to the narrow space H while the proof
in Step 6 gives us only the weaker property u ∈ W (in this case, the scheme would
approximate the narrow weak solution);

– or ensure that the limit equation (23) holds with test functions φ ∈ W while the standard
approximation properties of the CVFE and DDFV schemes only yield it with smooth
test functions φ and, by density, for φ ∈ H (in this case, the scheme would approximate
the broad weak solution).

Heading towards convergence analysis, we borrow from [7] (and from Zhikov [59]) the
assumption pDn ≥ p(·) for reaching the narrow solution, and the assumption pDn ≤ p(·)
for reaching the broad solution of our problem. Moreover, we get insight from the analysis,
in [17], of convergence of conforming and non-conforming Finite Element methods for
p(x)-laplacian variational problems exhibiting the Lavrentiev phenomenon.

4.1 Ensuring Convergence to the Narrow Solution

Proposition 6 In the setting of Theorem 4, regarding the discretization pDn =
(pD)D∈Dn

∈ R
Dn of the variable exponent p(·) on the diamond mesh, instead of (16)

assume that
pD = ess sup

D

p(·). (33)

In addition, assume that the scheme possesses the following property:

there exists a sequence ũTn of W 1,∞
0 (Ω) functions such that

‖∇DnuTn − ∇ũTn‖
LpDn (·) → 0 as n → ∞. (34)

Then the conclusion of Theorem 4 can be replaced by the conclusion of convergence to the
narrow weak solution of the problem.

Informally speaking, one can consider (34) as a conformity assumption on the scheme,
since the discrete solution can be replaced—up to a negligible error in the appropriate
norm—by a continuous function on Ω .

Remark 2 We stress that the assumption (34) is trivially verified for the CVFE scheme,
by taking ũT := ∑

K∈T uKϕK , where (ϕK)K∈T is the basis of P1 shape functions on the
triangular mesh T (the CVFE scheme can be seen as a mass-lumped conforming Finite
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Element scheme). Indeed, the CVFE construction simply means ∇DnuTn := ∇ũTn . On
the contrary, the assumption (34) is not a natural assumption for the DDFV scheme (which
is witnessed, in particular, by the possible discrepancy between uMn and uM

∗
n which led

us to introduce a penalization into the scheme). More generally, the requirement (34) is
related to the energy estimate (22) and its fulfillment may depend on the choice of the mesh.
E.g., in the situation of piecewise constant variable exponent p(·) (that includes the Zhikov
counterexample (4)) one could consider piecewise application of the lifting construction of
[11]—developed for constant p—to produce the continuous interpolates ũTn of uTn . Here,
we do not pursue the verification of (34) beyond the trivial CVFE case.

Proof The proof of Proposition 6 differs from the one of Theorem 4 mainly at the point
where u should be inserted as an admissible test function in (23), in the place of a smooth
test function. To ensure this is possible, we first observe that due to (33), one has pD ≥
p(·) and therefore, from the energy estimate (22), G = ∇u is also the limit, in the weak
(Lp(·)(Ω))2 topology, of (a subsequence of) ∇DuTn . Then, because of pD ≥ p(·), (34)
implies that ∇u is also the weak limit of (a subsequence of) ∇ũTn , which are W

1,∞
0 (Ω)

functions and can be approximated, in turn, by H functions in the norm of H. The resulting
approximation, with gradients weakly convergent in (Lp(·)(Ω))2, is enough to ensure that
u can be taken as a test function in the left-hand side of (23); note that the assumption f ∈
L(p−)′(Ω) permits to pass to the limit in the right-hand side of (23). Starting from this point,
as in Theorem 4 we find that u fulfills the distributional formulation of problem (1), (2),
moreover, the convergences (18), (19) hold.

To state that u is a narrow weak solution of the problem, it remains to assert that u ∈
H. To this end, we upgrade the above claim of weak (Lp(·)(Ω))2 convergence of ∇ũTn

towards ∇u to the strong convergence. Observe that (19) implies the equi-integrability of

the L1 functions
∣∣∇DnuTn

∣∣pDn

, and because pD ≥ p(·) this also means that the functions∣∣∇DnuTn
∣∣p(·) are equi-integrable. Recalling that ∇u ∈ (Lp(·)(Ω))2, we find that

∣∣∇u −
∇DnuTn

∣∣p(·) are equi-integrable as well, moreover, due to (18) these functions converge a.e.

to zero. By the Vitali theorem, we conclude that ρp(·)
(∇u − ∇DnuTn

) → 0 as n → ∞. By

Proposition 1.2, it follows that the norm ‖ · ‖Lp(·) of the difference ∇u − ∇DnuTn vanishes
as well at the limit. We conclude using the triangle inequality for ‖ · ‖Lp(·) . Indeed, recall

that (34) and the fact that pD ≥ p(·) imply that the difference ∇DnuTn −∇ũTn is vanishing,
as n → ∞, in the sense of the Lp(·) norm. Whence the required claim follows.

4.2 Prospecting Convergence to the Broad Solution

Proposition 7 In the setting of Theorem 4, regarding the discretization pDn =
(pD)D∈Dn

∈ R
Dn of the variable exponent p(·) on the diamond mesh, instead of (16)

assume that
pD = ess inf

D
p(·). (35)

In addition, assume that the discrete framework at hand possesses the strong approximation
property of the space W, namely, beyond (11), for all φ ∈ W there exist φTn ∈ R

Tn such
that

‖φTn − φ‖Lp(·) → 0 and ‖∇DnφTn − ∇φ‖Lp(·) → 0 as n → ∞. (36)
Then the conclusion of Theorem 4 can be replaced by the conclusion of convergence to the
broad weak solution of the problem.
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Remark 3 The above proposition is a conditional result, indeed at the present stage, we are
not able to verify the assumption (36) theoretically. However, in the context of the Zhikov
counterexample (4), it is known that H is of codimension 1 in W; and the density of smooth
functions in H ensures (36) for φ ∈ H. Therefore in practice, in order to conclude that the
scheme with the choice (35) approximates the broad solution, it is enough to observe that
it is able to approximate ũ0 verifying (6). The below numerical examples show that this is
feasible, in particular, for the DDFV scheme which is non-conforming - contrarily to the
CVFE scheme, - and thus it may indeed possess the strong approximation property for the
wider space W.

Proof The proof of Proposition 6 differs from the one of Theorem 4 only at the point where
discrete test functions are taken into the scheme in order to derive (23). To ensure that it
is possible to use discrete functions approximating any element of W, we first observe that
due to (33), one has pD ≤ p(·). Given a test function φ ∈ W, we use (36) to produce a
sequence of discrete test functions to be inserted into the scheme (17). The Lp(·) conver-
gences required in (36) permit to pass to the limit in the resulting identities, having in mind
the energy bound (22) and the inequality pD ≤ p(·); at the limit, we infer (23).

4.3 Numerical Experiments on Zhikov’s Counterexample

The aim of this paragraph is to numerically capture the two different solutions, namely the
W-solution and the H-solution, in the case where p(·) is discontinuous. For this purpose, we
focus on the counterexample of Zhikov recalled in Section 2. We take the nonlinearity (2)
with p(·) as given in (4), and consider u0 defined in (5). Referring to Fig. 1, u0 is equal to
1 (respectively to −1) on the upper (resp., on the lower) white triangle and x2/|x1| on the
hatched zone in Fig. 1.

We keep the same set up as previously when using the CVFE solver. A similar resolution
process is extended to the context of the DDFV scheme on the same meshes. Figures 6
and 7 show the distribution of the discretized variable exponent pD around the origin, in
the context of the CVFE method and the DDFV method respectively. Recall that p(·) is
piecewise constant on the diamonds (triangles, in the CVFE context; quadrangles, in the
DDFV one).

In what follows, we compare and illustrate the obtained results using both methods with
two different examples.

Fig. 6 Magnification on the shape of the power function p(·) around the origin using p = pmin (left) and
p = pmax (right) in the framework of the CVFE method
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Fig. 7 Magnification on the shape of the power function p(·) around the origin using p = pmin (left) and
p = pmax (right) in the framework of the DDFV method

4.3.1 Test 4a

Consider the p(x)-Laplacian problem without forcing term but supplemented with non-
homogeneous Dirichlet boundary conditions borrowed from [17]:

{ −div
(|∇u|p(x)−2∇u

) = 0,

u|∂Ω = αu0, where α > 1 is large enough.

The parameter α is set to 10. Figure 8 plots the obtained approximate solution using two
constant piecewise discretizations of ph per triangles. For each triangle D, the first (resp.
second) one consists in taking the minimum (resp. maximum) of the values of p at the
vertices of D. As a consequence, both solutions are completely different. Indeed, the one
corresponding to pmax(·) is entirely continuous, including the area surrounding the origin.
This can be qualified as the narrow (or the H-) solution. The other one corresponding to
pmin(·) is singular at 0 and resembles to u0. It can be then qualified as the broad (or the W-)
solution.

In addition to the CVFE method which is conforming, we make use of the non-
conforming DDFV strategy. Quite analogous outcomes are noticed, see Fig. 9. In this case,
the max and min of the discrete exponent are performed on the diamond cells.

To sum up, in this test we observe that the choice (33) (resp., (35)) for discretization
of p(·) permits to approximate the narrow (resp., the broad) solution, irrespective of the
conformity of the underlying scheme.

Fig. 8 Numerical solution by the CVFE method with pmin(·) (left) and pmax(·) (right) over each triangle
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Fig. 9 Numerical solution by the DDFV method with pmin(·) (left) and pmax(·) (right) over each diamond

4.3.2 Test 4b

In this last test-case, we consider the setting (1), (2), (4) with a specific numerical procedure
for computation of the source term. The originality of this example is to impose the function

u(x) =
(

1 − x2
1 − x2

2

)+
u0(x),

as the broad (W-) solution that is evaluated at the vertices of the mesh, see Fig. 10. In
other words, we compute the discrete left-hand side of (1) using the CVFE scheme, where
according to the above results on approximation of broad solutions, the discretized variable
exponent is defined as pmin(·). The resulting per volume values are set to define the discrete
source term in the right-hand side (RHS). Note that by this choice, the resulting scheme
approximates the broad solution u by construction.

Now, keeping the same mesh, we take this discrete RHS in the CVFE algorithm with
pmax(·) discretization of the variable exponent. As Fig. 11 shows, the obtained numerical
solution is different from the imposed one. It is clearly regular around x = 0 and there-
fore, we assimilate it to the narrow (H-) solution. This highlights the importance of the
conformity assumption (34) for the approximation of the narrow solution.

Fig. 10 Discretized continuous solution ue(xK) with pmin(·) over each triangle
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Fig. 11 Numerical solution by the CVFE method with pmax(·) over each triangle. The right-hand side is
computed using the CVFE scheme

We repeat a similar experience by computing this time the RHS using the DDFV scheme
with pmin(·)-discretization. We inject this term in the DDFV algorithms with pmax(·)-
approximation of p(·). In light of Fig. 12, the found solution is in great accordance with the
imposed one, meaning that only the W-solution is detected.

Through this example we observe that, on the one hand, the non-conforming nature of the
DDFV scheme may preclude it from approximating the narrow solution; while on the other
hand, the DDFV scheme seems to possess the approximation property (36) of the space W,
at least in the setting of the Zhikov counterexample.

Fig. 12 Numerical solution by the DDFV method with pmax(·) over each diamond. The right-hand side is
computed using the DDFV scheme
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5 Conclusions

We pointed out that the technique of [7], based upon the Young-measure description of
the weak L1 convergence, is suitable for assessing convergence of consistent numerical
schemes for the p(x)-laplacian kind problem, at least in the standard case with log-Hölder
regular exponent; the strategy of the proof easily extends to p(u)- and p[u]-laplacian
problems.

In the more general situation involving a Lavrentiev gap W \ H = ∅, we describe
the specific strategies for separate approximation of the H- and the W- solutions, and
illustrate them numerically. Our results and experiments demonstrate that the choice of
pD = maxD p (respectively of pD = minD p) is particularly important for the selection of
the H-solution (resp., of the W-solution) and that the conformity (resp., the non-conformity)
of the underlying approximation is another important criterion for successful approximation
of these dissimilar solutions. These conclusions corroborate, in the Finite Volume setting,
the conclusions of the recent work [17] for the Finite Element setting.
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