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Abstract
In this work we study convergence properties of sparse polynomial approximations for a
class of affine parametric saddle point problems, including the Stokes equations for vis-
cous incompressible flow, mixed formulation of diffusion equations for groundwater flow,
time-harmonic Maxwell equations for electromagnetics, etc. Due to the lack of knowledge
or intrinsic randomness, the (viscosity, diffusivity, permeability, permittivity, etc.) coeffi-
cients of such problems are uncertain and can often be represented or approximated by
high- or countably infinite-dimensional random parameters equipped with suitable prob-
ability distributions, and the coefficients affinely depend on a series of either globally or
locally supported basis functions, e.g., Karhunen–Loève expansion, piecewise polynomi-
als, or adaptive wavelet approximations. We consider sparse polynomial approximations of
the parametric solutions, in particular sparse Taylor approximations, and study their con-
vergence properties for these parametric problems. Under suitable sparsity assumptions on
the parametrization of the random coefficients, we show the algebraic convergence rates
O(N−r ) for the sparse polynomial approximations of the parametric solutions based on the
results for affine parametric elliptic PDEs (Cohen, A. et al.: Anal. Appl. 9, 11–47, 2011),
(Bachmayr, M., et al.: ESAIM Math. Model. Numer. Anal. 51, 321–339, 2017), (Cohen,
A., DeVore, R.: Acta Numer. 24, 1–159, 2015), (Chkifa, A., et al.: J. Math. Pures Appl.
103, 400–428, 2015), (Chkifa, A., et al.: ESAIM Math. Model. Numer. Anal. 47, 253–280,
2013), (Cohen, A., Migliorati, G.: Contemp. Comput. Math., 233–282, 2018), with the rate
r depending only on a sparsity parameter in the parametrization, not on the number of active
parameter dimensions or the number of polynomial terms N . We note that parametric sad-
dle point problems were considered in (Cohen, A., DeVore, R.: Acta Numer. 24, 1–159,
2015, Section 2.2) with the anticipation that the same results on the approximation of the
solution map obtained for elliptic PDEs can be extended to more general saddle point prob-
lems. In this paper, we consider a general formulation of saddle point problems, different
from that presented in (Cohen, A., DeVore, R.: Acta Numer. 24, 1–159, 2015, Section 2.2),
and obtain convergence rates for the two variables, e.g., velocity and pressure in Stokes
equations, which are different for the case of locally supported basis functions.
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1 Introduction

Computational simulations based on mathematical models are increasing used for decision
making (design, control, allocation of resources, determination of policy, etc.). For such
cases, it is critical to account for uncertainties in the inputs, and thus output predictions of
these models. One fundamental approach to characterize these uncertainties is by proba-
bilistic modeling, where the uncertain input can be represented by a finite number of random
variables or by random fields that can be represented by a large or even infinite number of
random variables. We refer to these random variables as parameters and equip them with
suitable probability measures. With these parameters as uncertain inputs, we often need to
conduct statistical analysis of the model outputs, such as sensitivity analysis with respect to
the parameters, computation of statistical moments via integration of outputs in the param-
eter space, and risk analysis that predicts the failure probability of the system under the
uncertainty. To perform these statistical analyses, various numerical approximation meth-
ods have been developed largely in the last few decades, such as Monte Carlo and quasi
Monte Carlo methods, generalized polynomial chaos, stochastic collocation and Galerkin
methods, and model and parameter reduction methods.

The Monte Carlo method has been widely employed in practice because of sev-
eral advantages, such as very simple and embarrassingly parallel implementation and
dimension-independent convergence. However, it has a slow convergence rate of O(N−1/2),
where N is the number of samples, requiring a large number of simulations to achieve
sufficient accuracy. New methods such as (high-order) quasi Monte Carlo [29, 36] and
multi-level/multi-index Monte Carlo [22, 32] have been proposed to achieve faster con-
vergence and reduced computational cost. Sparse polynomial approximations such as
stochastic Galerkin and collocation methods based on (generalized) polynomial chaos and
sparse grids have been developed that improve the convergence to a great extent for prob-
lems depending smoothly on the parameters; see, e.g., [1, 2, 31, 40, 49, 50]. Practical
algorithms to construct such sparse polynomial approximations, such as adaptive [13, 30],
least-squares [20, 39], and compressive sensing [27, 43] constructions, have also been
actively developed. Another class of methods known as model reduction, including reduced
basis methods, achieve quasi optimal convergence (in terms of Kolmogorov widths [7])
and considerable computational reduction for many-query simulations [5, 7, 9, 10, 15]
by exploring the intrinsic structure of the solution manifolds. More recently, deep neural
networks has been applied to solve high-dimensional parametric problems [6, 37, 38, 41,
46].

One critical challenge faced by polynomial based approximation methods for high-
dimensional parametric problems is the so-called curse of dimensionality, i.e., convergence
rates that severely deteriorate with the parameter dimension. In recent work [3, 4, 11,
17, 18, 23–25, 28, 46, 48, 52], it has been demonstrated that the curse of dimensionality
can be effectively broken with dimension-independent convergence rates achieved under
certain sparsity assumptions on the countably infinite-dimensional parametrization of the
uncertain input. For instance, in [25] analytic regularity of the parametric solution with
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respect to the parameters was obtained for elliptic partial differential equations. This leads
to upper bounds for the coefficients of Taylor expansion of the parametric solution. Under
an �s-summability of the coefficients of the expansion that represent the random input, the
Taylor coefficients were demonstrated to also satisfy the �s-summability. Then a dimension-
independent convergence rate of a sparse Taylor approximation—truncation of a Taylor
expansion of the parametric solution into a suitable sparse index set—were achieved by
Stechkin’s lemma. This analysis has been extended to sparse Legendre polynomial approx-
imation [25], sparse polynomial interpolation [21], and sparse polynomial integration [44]
for elliptic problems as well as for certain parabolic and nonlinear problems [18, 23].

In this work, we consider affine parametric saddle point problems that cover a wide range
of applications, such as the Stokes equations for viscous incompressible flow, mixed formu-
lation of the Poisson equation for groundwater flow, and time-harmonic Maxwell equations
for electromagnetic wave propagation; see [8, 42] and the references therein. These appli-
cations require better understanding of the approximability and convergence of parametric
saddle point problems in a high- or infinite-dimensional parametric setting, which is the aim
and main contribution of this work based on the results for affine parametric elliptic PDEs
[4, 18, 19, 23, 25, 26]. In particular, our contributions are presented in several sections struc-
tured as follows: In Section 2, we formulate an abstract saddle point problem with affine
parametrization, and demonstrate the well-posedness of the parametric saddle point problem
through several specific examples. Moreover, we consider both globally and locally sup-
ported basis functions for the affine parametrization with suitable sparsity assumptions for
each of them. In Section 3, we consider a Taylor expansion of the solution of the parametric
saddle point problem with respect to the parameters and its sparse Taylor approximation.
In the case of globally supported basis functions, we prove the analytic regularity of the
parametric solution with respect to the parameters, and prove the �s-summability of the
Taylor coefficients. In the case of locally supported basis functions, we prove a weighted
�2-summability of the Taylor coefficients, based on which we obtain the �s-summability of
the Taylor coefficients. Based on the �s-summability, we prove dimension-independent con-
vergence rates of the sparse Taylor approximations, for both arbitrary sparse index set and
a downward closed sparse index set. In particular, our formulation of the saddle point prob-
lems is different from that presented in [23, Section 2.2], and leads to convergence results
for the two variables in our saddle point formulation of the three examples, e.g., velocity
and pressure in Stokes equations, which are different for the case of locally supported basis
functions. This is not considered in [23, Section 2.2]. The last section provides conclusions
and several ongoing and future research directions.

2 Affine Parametric Saddle Point Problems

2.1 An Abstract Saddle Point Formulation

Let V and Q denote two Hilbert spaces equipped with inner products (·, ·)V , (·, ·)Q and
induced norms ‖v‖V = (v, v)

1/2
V ∀v ∈ V , and ‖ · ‖2

Q = (q, q)
1/2
Q ∀q ∈ Q. Let V ′ and

Q′ denote the duals of V and Q, respectively. Let K denote a separable Banach space. We
present an abstract formulation of the parametric saddle point problem as: given parameter
κ ∈ K, and data f ∈ V ′ and g ∈ Q′, find (u, p) ∈ V × Q such that

{
a(u, v; κ) + b(v, p) = f (v) ∀v ∈ V,

b(u, q) = g(q) ∀q ∈ Q,
(1)
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where the linear forms f (v) and g(q) represent the duality pairing 〈f, v〉V ′×V and
〈g, q〉Q′×Q for simplicity, a(·, ·; κ) : V × V → R is a parametric bilinear form, and
b(·, ·) : V × Q → R is a bilinear form. Moreover, we make the following assumptions on
the bilinear forms. First, let V0 denote the kernel of the bilinear form b in V , i.e.,

V0 := {v ∈ V : b(v, q) = 0 ∀q ∈ Q}.

Assumption 2.1 Suppose the bilinear forms a(·, ·; κ) and b(·, ·) are uniformly continuous,
i.e., there exist constants γ > 0 independent of κ and δ > 0 such that

a(w, v; κ) ≤ γ ‖w‖V‖v‖V ∀w, v ∈ V,

b(v, q) ≤ δ‖v‖V‖q‖Q ∀v ∈ V, q ∈ Q.
(2)

Moreover, we assume that a(·, ·; κ) is uniformly coercive in V0, i.e., there exists a constant
α > 0 independent of κ such that

a(v, v; κ) ≥ α‖v‖2
V ∀v ∈ V0. (3)

Furthermore, we assume that b(·, ·) satisfies the inf-sup (compatibility) condition, i.e., there
exists a constant β > 0 such that

inf
q∈Q sup

v∈V
b(v, q)

‖v‖V‖q‖Q ≥ β.

The classical results of existence, uniqueness, and a-priori estimates for the parametric
saddle point problem (1) are stated in the following theorem.

Theorem 2.1 [42, Theorem 16.4] Under Assumption 2.1, for every κ ∈ K, there exists a
unique solution (u, p) ∈ V × Q of the parametric saddle point problem (1), such that the
following a-priori estimates hold

‖u‖V ≤ Cu < ∞ and ‖p‖Q ≤ Cp < ∞, (4)

where for notational convenience, the constants Cu and Cp are short for

Cu = 1

α
‖f ‖V ′ + α + γ

αβ
‖g‖Q′ and Cp = α + γ

αβ
‖f ‖V ′ + γ (α + γ )

αβ2
‖g‖Q′ . (5)

Remark 2.1 We remark that the saddle point problem considered in [23, Section 2.2] has
the form: given parameter κ ∈ K, find u ∈ V such that

B(u, v; κ) = L(v; κ) ∀v ∈ V,

where the bilinear form B satisfies inf-sup condition, which is different from what we con-
sider in (1) to cover the examples in the next section. Moreover, we can obtain different
convergence rates for sparse polynomial approximations of u and p in (1), as shown in
Section 3.

2.2 Examples

Let D ⊂ R
d (d = 2, 3) be an open and bounded physical domain with Lipschitz continuous

boundary ∂D = Γ , which can be aligned to Dirichlet boundary Γ0 and Neumann boundary
Γ1 such that Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. Let L∞(D) denote a space of essentially
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bounded measurable functions, i.e.,

L∞(D) =
{
v : ess sup

x∈D

|v(x)| = ‖v‖L∞(D) < ∞
}

.

Let L2(D) denote a space of square integrable functions on D, i.e.,

L2(D) =
{
v :

∫
D

|v|2dx = ‖v‖2
L2(D)

< ∞
}

.

Let ∇, ∇·, ∇× denote the gradient, divergence, and curl operators. We use the definition of
the following Hilbert spaces by convention [8]

H 1(D) :=
{
v ∈ L2(D) : |∇v| ∈ L2(D)

}
,

H(div; D) :=
{
v ∈ (L2(D))d : ∇ · v ∈ L2(D)

}
,

H(curl; D) :=
{
v ∈ (L2(D))d : ∇ × v ∈ (L2(D))d

}
,

with corresponding norms

‖v‖2
H 1(D)

:= ‖v‖2
L2(D)

+ ‖∇v‖2
L2(D)

,

‖v‖2
H(div;D) := ‖v‖2

(L2(D))d
+ ‖∇ · v‖2

L2(D)
,

‖v‖2
H(curl;D) := ‖v‖2

(L2(D))d
+ ‖∇ × v‖2

L2(D)
.

Moreover, for functions with vanishing values on Γ0, we define

H 1
0 (D) :=

{
v ∈ H 1(D) : v = 0 on Γ0

}
,

H0(div; D) := {v ∈ H(div;D) : v · n = 0 on Γ0} ,

H0(curl; D) := {v ∈ H(curl; D) : v × n = 0 on Γ0} ,

where n is the unit normal vector along the boundary. In what follows, we present several
classical problems in (mixed) variational formulations. These formulations are preferred
due to several reasons [8]: the presence of a physical constraint, physical importance of the
variables appearing in the formulations, better accommodation of finite dimensional approx-
imation and/or available data. For the simplicity of presentation, we assume homogeneous
Dirichlet and/or Neumann boundary conditions for all the examples.

2.2.1 Stokes Flow

We consider a flow of a viscous incompressible fluid with low velocity in a domain D,
which can be described by Stokes equations in the variational form as: given parameter
κ ∈ L∞(D), data f ∈ (L2(D))d , find (u, p) ∈ (H 1

0 (D))d × L2(D) such that⎧⎪⎨
⎪⎩

∫
D

2κε(u) : ε(v)dx −
∫

D

(∇ · v) pdx =
∫

D

f · vdx ∀v ∈ (H 1
0 (D))d,∫

D

(∇ · u) qdx = 0 ∀q ∈ L2(D),
(6)

where u is the velocity, p is the pressure, κ > 0 is the shear viscosity, f ∈ R
d is the body

force, and ε(u) ∈ R
d×d is the strain rate tensor defined as

ε(u) := 1

2

(
∇u + ∇uT

)
.
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Note that for the weaker condition f ∈ (H−1(D))d , the formal expression
∫
D

f · v

represents the duality pairing 〈f , v〉V ′×V with V = (H 1
0 (D))d .

Problem (6) can be identified in the abstract saddle point formulation (1) in the spaces
K = L∞(D), V = (H 1

0 (D))d and Q = L2(D) with the bilinear forms

a(w, v; κ) :=
∫

D

2κε(w) : ε(v)dx ∀w, v ∈ V,

b(v, q) := −
∫

D

(∇ · v) qdx ∀v ∈ V,∀q ∈ Q.

Then Assumption 2.1 is satisfied with the constants

γ = 2γ2 ess sup
x∈D

κ(x), δ = 1, α = 2γ1 ess inf
x∈D

κ(x), and β = 1√
1 + Cp

, (7)

where the constants γ1, γ2 are determined by the Korn’s inequality [34], i.e.,

γ1‖v‖2
V ≤

∫
D

ε(v) : ε(v)dx ≤ γ2‖v‖2
V ∀v ∈ V,

and Cp is determined by the Poincaré’s inequality [42], i.e.,∫
D

|v|2dx ≤ Cp

∫
D

|∇ · v|2dx, ∀v ∈ V .

Thus the inf-sup constant β is obtained as: for any q ∈ Q, by taking ∇ · v = q,

sup
v∈V

b(v, q)

‖v‖V‖q‖Q ≥ ‖q‖2
Q

‖v‖V‖q‖Q = ‖∇ · v‖L2(D)

‖v‖H 1(D)

≥ 1√
1 + Cp

=: β.

Therefore, Theorem 2.1 holds for the Stokes problem (6) with these constants.

2.2.2 Diffusion

Diffusion equations are widely used in modelling various physical phenomena. In many
applications it is the flux rather than the state that is of interesting. For instance in
thermo-diffusion problems heat flux may be more important than the temperature field. For
such consideration, we present the diffusion problem in the variational formulation: given
parameter κ ∈L∞(D) and data f ∈L2(D), find (u, p) ∈ H0(div; D) × L2(D) such that⎧⎪⎨

⎪⎩

∫
D

κu · vdx +
∫

D

(∇ · v)pdx = 0 ∀v ∈ H0(div; D),∫
D

(∇ · u)qdx = −
∫

D

f qdx ∀q ∈ L2(D),
(8)

where p is the state, e.g., temperature field, the auxiliary variable u = κ−1∇p represents
the flux, κ > 0 is the (inverse) diffusion coefficient, f is a source term.

By defining the bilinear forms

a(w, v; κ) :=
∫

D

κu · vdx ∀w, v ∈ V,

b(v, q) :=
∫

D

(∇ · v)qdx ∀v ∈ V, ∀q ∈ Q,

in the Hilbert spaces V = H0(div; D) and Q = L2(D), we can identify the diffusion
problem (8) in the abstract saddle point formulation (1) with K = L∞(D). Assumption 2.1
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is satisfied with the following constants

γ = ess sup
x∈D

κ(x), δ = 1, α = ess inf
x∈D

κ(x), and β = 1√
1 + Cp

,

where β is obtained the same as in the Stokes problem. Note that the bilinear form a(·, ·; κ)

is coercive in V0, in which ∇ · v vanishes, even it is not coercive in V .

2.2.3 Time Harmonic Maxwell System

The foundation of classical electromagnetism, optics, and electric circuits can be described
by Maxwell equations. The time harmonic Maxwell system is considered when the propaga-
tion of electromagnetic waves at a given frequency is studied or when the Fourier transform
in time is used. In the mixed variational formulation, the Maxwell system can be stated as:
given parameter κ ∈ L∞(D), and data f ∈ (L2(D))d , find (u, p) ∈ H0(curl; D) × H 1

0 (D)

such that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
D

κ(∇ × u) · (∇ × v)dx −ω2
∫

D

εu · vdx +
∫

D

∇p · vdx

=
∫

D

f · vdx ∀v ∈ H0(curl; D),∫
D

∇q · udx = 0 ∀q ∈ H 1
0 (D),

where u is the electric field vector, p is the auxiliary variable, ω is a frequency, f = iωj

with current source field vector j , κ > 0 denotes the (inverse) magnetic permeability, ε > 0
denotes the electric permittivity. Here we only consider κ as a varying parameter and fix ε

for simplicity.
By defining the bilinear forms

a(w, v; κ) :=
∫

D

κ(∇ × u) · (∇ × v)dx − ω2
∫

D

εu · vdx ∀w, v ∈ V,

b(v, q) :=
∫

D

∇p · vdx ∀v ∈ V, ∀q ∈ Q,

in the Hilbert spaces V = H0(curl; D) and Q = H 1
0 (D), we can express the time har-

monic Maxwell system as in the abstract saddle point formulation (1) with K = L∞(D).
Moreover, we can verify Assumption 2.1 with the following constants

γ = ess sup
x∈D

κ(x), δ = 1, and β = 1√
1 + Cp

,

and

α = 1

1 + Cf

(
ess inf
x∈D

κ(x) − ω2Cf ess sup
x∈D

ε(x)

)
.

We consider the case that α > 0 in this work. It is straightforward to verify γ and δ. To
verify β, for any q ∈ Q, by taking v = ∇q, we have

sup
v∈V

b(v, q)

‖v‖V‖q‖Q ≥
‖∇q‖2

(L2(D))d

‖∇q‖(L2(D))d ‖q‖H 1
0 (D)

= ‖∇q‖(L2(D))d

‖q‖H 1
0 (D)

≥ 1√
1 + Cp

=: β,
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noting that ∇ × ∇q = 0, ∀q ∈ Q, in the first inequality. To verify α, by Friedrichs’s
inequality [8], there exists a constant Cf such that∫

D

|v|2dx ≤ Cf

∫
D

|∇ × v|2dx ∀v ∈ V .

Therefore, we have

a(v, v; κ) ≥ ess inf
x∈D

κ(x)

∫
D

|∇ × v|2dx − ω2ess sup
x∈D

ε(x)

∫
D

|v|2dx

≥
(

ess inf
x∈D

κ(x) − ω2Cf ess sup
x∈D

ε(x)

)∫
D

|∇ × v|2dx

≥ 1

1 + Cf

(
ess inf
x∈D

κ(x) − ω2Cf ess sup
x∈D

ε(x)

)
‖v‖2

V ∀v ∈ V .

2.3 Affine Parametrization

In this section, we present an affine parametrization for the parameter κ . We first present
a common structure of the bilinear form a(·, ·; κ) in (1) appearing in many saddle point
problems such as the Stokes equations, mixed formulation of the Poisson equation, and
time-harmonic Maxwell’s equations, that is affine with respect to the parameter κ ∈ K, i.e.,
it can be written as

a(w, v; κ) = a0(w, v) + a1(w, v; κ) ∀w, v ∈ V, (9)

where a1(w, v; κ) depends linearly on κ such that for any κ ∈ K there hold

a1(v, v; κ) ≥ c1 ess inf
x∈D

|κ(x)| ‖v‖2
V ∀v ∈ V0,

a1(w, v; κ) ≤ C1 ess sup
x∈D

|κ(x)| ‖w‖V‖v‖V ∀w, v ∈ V, (10)

a1(w, v; κ) ≤ 1

2
(a1(w,w; |κ|) + a1(v, v; |κ|)) ∀w, v ∈ V,

for constants c1, C1 > 0 independent of κ , e.g., related to the Poincaré’s or Friedrichs’s
constant in Stokes equations or time-harmonic Maxwell’s equations. We shall consider this
affine structure (9) with the properties (10) in what follows.

To parametrize κ , we consider a countably infinite-dimensional parameter space

U = [−1, 1]N.

We denote the element of the parameter space as y = (yj )j≥1 ∈ U and equip the parameter
space with the probability measure

dμ(y) =
⊗
j≥1

dλ(yj )

2
,

where dλ is the Lebesgue measure in [−1, 1]. To this end, we consider an affine
parametrization for the representation and approximation of the parameter κ that is widely
used in the literature [1, 2, 19, 22–25, 32, 47].

Assumption 2.2 The variation of the parameter κ in K can be represented by the parameter
y ∈ U through the affine expansion

κ(x, y) = κ0(x) +
∑
j≥1

yjκj (x) ∀(x, y) ∈ D × U and κj ∈ K, ∀j ≥ 0. (11)
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Moreover, we assume there exist constants 0 < θ < Θ < ∞ such that

θ < κmin := inf
(x,y)∈D×U

κ(x, y) ≤ sup
(x,y)∈D×U

κ(x, y) =: κmax <
Θ

2
,

and such that the coercivity and continuity conditions (3) and (2) are satisfied for the bilinear
form a(·, ·; κ) at any κ ∈ [θ, Θ].

The sequence (κj )j≥0 could either be directly prescribed knowledge of the physical sys-
tem or given by an affine representation or approximation of the random field κ . We present
two specific examples, where we distinguish the parametrization in two classes representing
globally and locally supported basis (κj )j≥1, respectively.

1. Globally supported basis. One classical example comes from Karhunen–Loève expan-
sion of a random field with finite second order moment, given by [45]

κ(x, y) = κ0(x) +
∞∑

j=1

yj

√
λjψj (x), (12)

where κ0 is the mean of the random field, (λj , ψj )j≥1 are the eigenpairs of the covari-
ance of the random field. Here, we can identify κj = √

λjψj , j ≥ 1, in the affine
assumption (11).

2. Locally supported basis. Piecewise polynomials or wavelets can be employed to model
or approximate the parameter field κ . A particular case is the weighted piecewise
constant basis representation

κ(x, y) = κ0 +
J∑

j=1

yjwjχj (x), (13)

where wj is the weight and χj is the characteristic function in the subdomain/element
Dj , j = 1, . . . , J , where D = ∪J

j=1Dj and Di ∩ Dj = ∅ for i �= j . In this example,
we can identify κj = wjχj , j = 1, . . . , J .

Assumption 2.2 guarantees the well-posedness of the parametric saddle point problem
(1). To study the convergence property of certain approximation of its solution or related
quantity of interest, we make the following assumptions to cover the globally and locally
supported basis representations as considered in [25] and [4], respectively.

Assumption 2.3 For the parametrization (11) under Assumption 2.2, assume for some s ∈
(0, 1) there holds (‖κj‖K)j≥1 ∈ �s(N), i.e.,

∑
j≥1

‖κj‖s
K < ∞. (14)

Remark 2.2 As discussed in [4], for the Karhunen–Loève expansion (12), the �s-
summability condition (14) is satisfied when supj≥1 ‖ψj‖K ≤ C for some C < ∞, and
(
√

λj )j≥1 ∈ �s(N). However, it is not satisfied for any s ∈ (0, 1) in the case of the locally
supported representation (13) when |wj | � j−1, i.e., (|wj |)j≥1 �∈ �1(N), as J → ∞. To
accommodate such a case, we make the following assumption.
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Assumption 2.4 For the parametrization (11) under Assumption 2.2, assume there exists a
sequence ρ = (ρj )j≥1 with ρj > 1, such that∑

j≥1

ρj |κj (x)| ≤ κ0(x) − ε ∀x ∈ D, (15)

for some θ < ε < κmin, and such that (ρ−1
j )j≥1 ∈ �t (N) for some t ∈ (0, ∞).

Remark 2.3 We can see that Assumption 2.4 is satisfied for the locally supported rep-
resentation (13) for J → ∞, as in [4]. For instance, we can take ρ−1

j ∼ |wj | and

ρj |wj | ≤ κmin − ε as |wj | → 0, such that ρj > 1 and (15) holds, then (ρ−1
j )j≥1 ∈ �t (N)

whenever (|wj |)j≥1 ∈ �t (N) for any t ∈ (0, ∞).

3 Sparse Polynomial Approximations

Let F denote a multi-index set with finitely supported multi-index ν = (νj )j≥1, i.e., ν ∈ F
if and only if |ν| = ∑

j≥1 νj < ∞. For any ν ∈ F , we define the multi-factorial ν!, multi-
monomial yν for y ∈ U , and partial derivative ∂νψ(y) for a differentiable parametric map
ψ(y) as

ν! :=
∏
j≥1

νj !, yν :=
∏
j≥1

y
νj

j , ∂νψ(y) := ∂ |ν|ψ(y)

∂ν1y1∂ν2y2 · · · ,

where we use the convention 0! := 1, 00 := 1, and ∂0ψ(y)/∂0yj = ψ(y). For such a
differentiable map ψ , we consider the Taylor power series

TFψ(y) :=
∑
ν∈F

t
ψ
ν yν, (16)

with Taylor coefficients t
ψ
ν defined as

t
ψ
ν := 1

ν!∂
νψ(0), ν ∈ F .

Let (�N)N≥1 ⊂ F denote a sequence of index sets with N indices that exhaust F , i.e., any
finite set � ⊂ F is contained in all �N for N ≥ N0 with N0 sufficiently large. We define
the truncation of the power series (16) in �N as

T�N
ψ(y) :=

∑
ν∈�N

t
ψ
ν (y)yν,

which we call sparse Taylor approximation. We are interested in two questions: (1) if the
sparse Taylor approximation for the solution of the parametric saddle point problem (1) is
convergent; (2) if so, how fast it converges with respect to N . To answer these questions, we
carry out two types of analyses corresponding to Assumptions 2.3 and 2.4, respectively. The
first type is to obtain the analytic regularity property of the parametric solution in a complex
domain covering the parameter space. This analyticity leads to upper bounds for the Taylor
coefficients (tuν , t

p
ν ) at each ν ∈ F by Cauchy’s integral formula, which implies a �s(F)-

summability of the coefficients. The second type is to derive a weighted �2(F)-summability
of the Taylor coefficient based on the affine structure of the parametrization; then the �s(F)-
summability of the Taylor coefficients is obtained by using Hölder’s inequality. Due to the
�s(F)-summability, a best N -term dimension-independent convergence rate of a suitable
Taylor approximation is achieved using Stechkin’s lemma. These analyses are based on the
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results in [25] and [4] for studying parametric elliptic PDEs, which we extend to dealing
with the parametric saddle point problem (1) under Assumptions 2.3 and 2.4, respectively.

3.1 �s -Summability by Analytic Regularity

Let z = (zj )j≥1 denote a sequence of complex numbers with zj ∈ C, j ≥ 1, i.e., z ∈ C
N.

Let U denote a polydisc defined as

U :=
{
z ∈ C

N : |zj | ≤ 1 for every j ≥ 1
}

.

Then we can extend the parametrization of κ in (11) from U = [−1, 1]N to U , i.e.,

κ(x, z) = κ0(x) +
∑
j≥1

zj κj (x) ∀(x, z) ∈ D × U ,

for which, under Assumption 2.2, we have

κmin ≤ �(κ(x, z)) ≤ |κ(x, z)| ≤ 2κmax.

For two constants r and R such that

0 < θ < r < κmin < 2κmax < R < Θ < ∞,

where θ and Θ are given in Assumption 2.2, we define the complex set

AR
r =

{
z ∈ C

N : r ≤ |κ(x, z)| ≤ R for every x ∈ D
}

.

By the equivalence of Babuška Theorem and Brezzi Theorem for saddle point problems
[51], and the extension of the Babuška theorem to complex function space [23, Theo-
rem 2.2], Theorem 2.1 holds for z ∈ AR

r under Assumptions 2.1 and 2.2 in complex function
spaces V and Q, i.e., there exists a unique solution (u(z), p(z)) ∈ V × Q ∀z ∈ AR

r ,
which satisfies the a-priori estimates in (4). In fact, Theorem 2.1 holds for z ∈ AR

r̃
for any

r̃ ≥ θ due to Assumption 2.2 on the coercivity condition of the sesquilinear form a(·, ·; κ).
Moreover, we observe that U ∈ AR

r by definition so that Theorem 2.1 also holds for z ∈ U .

Lemma 3.1 Let (u, p) and (ũ, p̃) denote the solutions of the parametric saddle point
problem (1) at κ ∈ AR

r and κ̃ ∈ AR
r , respectively, then we have

‖u − ũ‖V ≤ 1

α
C1Cu‖κ − κ̃‖K and ‖p − p̃‖Q ≤ α + γ

α + β
C1Cu‖κ − κ̃‖K, (17)

where the constants α, β and γ are given in Theorem 2.1, C1 and Cu are given in (10)
and (5).

Proof By subtracting (1) at κ from it at κ̃ , we have{
a(u − ũ, v; κ) + b(v, p − p̃) = −a(ũ, v; κ − κ̃) ∀v ∈ V,

b(u − ũ, q) = 0 ∀q ∈ Q.

By Theorem 2.1, the following a-priori estimates hold

‖u − ũ‖V ≤ 1

α
‖a‖V ′ and ‖p − p̃‖Q ≤ α + γ

α + β
‖a‖V ′ , (18)

where we denote a(v) = −a(ũ; v; κ − κ̃) ∀v ∈ V . By the affine dependence of a(·, ·; κ) on
κ as in (9) and the bound (10) and (4), we have

‖a‖V ′ ≤ C1‖ũ‖V‖κ − κ̃‖K ≤ C1Cu‖κ − κ̃‖K.
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Thus, we conclude by inserting this bound in (18).

Lemma 3.2 For every z ∈ AR
r , the complex derivative (∂zj

u(z), ∂zj
p(z)) with respect to zj

for each j ≥ 1 is well-defined for the solution (u(z), p(z)) of the parametric saddle point
problem (1), which is given by: find (∂zj

u(z), ∂zj
p(z)) ∈ V × Q such that{

a(∂zj
u, v; κ) + b(v, ∂zj

p) = −a(u, v; κj ) ∀v ∈ V,

b(∂zj
u, q) = 0 ∀q ∈ Q.

Note that we use a(u, v; κj ) = ∫
D

κj (∇ × u) · (∇ × v)dx by slight abuse of notation for
the time harmonic Maxwell system, which is bounded.

Proof For any z ∈ AR
r and j ≥ 1, for h ∈ C \ {0} sufficiently small such that |h|‖κj‖K ≤

ε < r , we have

r − ε ≤ �(κ(x, z + hej )) ≤ |κ(x, z + hej )| ≤ R + ε ∀x ∈ D,

where ej is the Kronecker sequence with 1 at index j and 0 at other indices, so that (u(z +
hej ), p(z + hej )) ∈ V × Q is a well-defined solution of (1) at κ(z + hej ). Therefore, we
have that the following difference quotients satisfy

uh(z) := u(z + hej ) − u(z)

h
∈ V and ph(z) := p(z + hej ) − p(z)

h
∈ Q.

Subtracting problem (1) at κ(z + hej ) from its evaluation at κ(z) and dividing by h, we
obtain that (uh(z), ph(z)) is a unique solution of the following problem:{

a(uh(z), v; κ(z)) + b(v, ph(z)) = −a(u(z + hej ), v; κj ) ∀v ∈ V,

b(uh(z), q) = 0 ∀q ∈ Q.
(19)

Let ah(v) = −a(u(z + hej ), v; κj ). By Assumption 2.1, we have

|ah(v) − a0(v)| ≤ γ ‖u(z + hej ) − u(z)‖V‖v‖V .

By the stability estimates (17) in Lemma 3.1, we have

‖u(z + hej ) − u(z)‖V ≤ 1

α
C1Cu‖κj‖K|h|,

which converges to zero as |h| → 0, so that ah → a0 in V ′ as |h| → 0. Consequently,
(uh, ph) converges to (u0, p0) in V × Q by Theorem 2.1, which is the unique solution of
(19) for h = 0. Therefore, (∂zj

u, ∂zj
p) = (u0, p0) by the uniqueness.

To study the convergence rate of the Taylor approximation, we need to bound the Taylor
coefficients under Assumption 2.3, for which we employ the Cauchy integral formula in a
suitable complex domain. We call a sequence ρ = (ρj )j≥1 is r-admissible

if
∑
j≥1

ρj |κj (x)| ≤ κ0(x) − r and ρj > 1 for every j ≥ 1. (20)

By this definition, if ρ is r-admissible, Theorem 2.1 holds in a larger polydisc

Uρ :=
{
z ∈ C

N : |zj | ≤ ρj for every j ≥ 1
}

.

This is because Uρ ⊂ AR
r , as it can be readily shown that

|κ(x, z)| ≥ κ0(x) −
∑
j≥1

ρj |κj (x)| ≥ r
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and
|κ(x, z)| ≤ κ0(x) +

∑
j≥1

ρj |κj (x)| ≤ 2κ0(x) − r < R.

Lemma 3.3 Under Assumptions 2.1 and 2.2, for a sequence ρ satisfying (20), for the Taylor
coefficients tuν and t

p
ν defined in (16) we have the following bounds

‖tuν ‖V ≤ Cuρ
−ν and ‖tpν ‖Q ≤ Cpρ−ν ∀ν ∈ F , (21)

where Cu and Cp are given in (5), ρ−0 = 1 by convention for any ρ > 0.

We follow the proof in [25, Lemma 2.4] for elliptic problems and adjust it for the saddle
point problem (1) here.

Proof For any ν ∈ F , let J = max{j ∈ N : νj �= 0}. For such J , let z0
J denote a truncated

complex sequence for any z ∈ U defined as

(z0
J )j = zj for 1 ≤ j ≤ J and (z0

J )j = 0 for j > J . (22)

Then for the solution (u, p) of (1) at z0
J , we have the a-priori estimates (4) by Theorem 2.1

under Assumptions 2.1 and 2.2. Given the sequence ρ, we define a new sequence ρ̃ as

ρ̃j = ρj + ε if j ≥ J and ρ̃j = ρj if j > J, ε := r − θ

2‖∑
1≤j≤J |κj |‖K ,

which implies Uρ̃ ⊂ AR
r̃

with r̃ = (r +θ)/2 > θ . As the coercivity condition (3) is satisfied
for any z ∈ AR

r̃
under Assumption 2.2, Theorem 2.1 and Lemma 3.2 hold. Therefore, u(z0

J )

is analytic with respect to each zj , 1 ≤ j ≤ J on the polydisc Uρ̃,J , which is an open
neighborhood of Uρ,J defined as

Uρ,J =
{
(z1, . . . , zJ ) ∈ C

J : |zj | ≤ ρj for every 1 ≤ j ≤ J
}

.

Therefore, by the Cauchy integral formula [33, Theorem 2.1.2], we have for u

u(z̃0
J ) = (2πi)−J

∫
|z1|=ρ1

· · ·
∫

|zJ |=ρJ

u(z0
J )

(z̃1 − z1) · · · (z̃J − zJ )
dz1 · · · dzJ .

By taking the derivative ∂ν on both sides and evaluating it at 0, we have

∂νu(0) = ν!(2πi)−J

∫
|z1|=ρ1

· · ·
∫

|zJ |=ρJ

u(z0
J )

z
ν1
1 · · · zνJ

J

dz1 · · · dzJ ,

so that
1

ν! ‖∂
νu(0)‖V ≤ sup

z0
J ∈Uρ

‖u(z0
J )‖V

∏
1≤j≤J

ρ
−νj

j ≤ Cuρ
−ν,

which is (21) for u. The same argument is applied to derive the bound for p.

Lemma 3.4 Under Assumption 2.3, there exists a r+θ
2 -admissible sequence ρ, i.e, it

satisfies (20) with r replaced by r+θ
2 , such that∑

ν∈F
‖tuν ‖s

V < ∞ and
∑
ν∈F

‖tpν ‖s
Q < ∞.

This result for the saddle point problems here can be proved following that in [25, Sec. 3]
for elliptic problems.
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Proof By Lemma 3.3, we only need to prove there exists a r+θ
2 -admissible sequence ρ such

that ∑
ν∈F

ρ−sν < ∞. (23)

This is done in a constructive way by specification of ρ. By Assumption 2.3, we have
(‖κj‖K)j≥1 ∈ �s(N) ⊂ �1(N), so that there exists a sufficiently large J such that

∑
j>J

‖κj‖K ≤ r − θ

12
.

Then we choose τ > 1 such that

(τ − 1)
∑
j≤J

‖κj‖K ≤ r − θ

4
.

For any ν ∈ F , we specify the sequence ρ as

ρj := τ, j ≤ J ; ρj := max

{
1,

(r − θ)νj

4‖κj‖K ∑
i>J νi

}
, j > J, (24)

with the convention that νj /(
∑

i>J νi) = 0 if
∑

i>J νi = 0. Then we have

∑
j≥1

ρj |κj (x)| ≤
∑
j≥1

|κj (x)| + r − θ

2
≤ κ0(x) − r + θ

2
,

where in the second inequality we have used Assumption 2.2, i.e., for any x ∈ D,

r < κ0(x) + inf
y∈U

∑
j≥1

yj κj (x) = κ0(x) −
∑
j≥1

|κj (x)|.

Therefore, ρ is r+θ
2 -admissible. By results in [25, Sec. 3], (23) holds for the choice (24).

3.2 �s -Summability byWeighted �2-Summability

The �s-summability of the Taylor coefficients is guaranteed by the �s-summability of
(‖κj‖K)j≥1 in Assumption 2.3 as shown in the last section. However, as indicated in
Remark 2.3, (‖κj‖K)j≥1 may not be �s-summable for any s ∈ (0, 1), as considered in [4]
for coercive elliptic PDEs. In this case, Assumption 2.4 may still hold, in particular for
locally supported (κj )j≥1, for which we prove the �s-summability of the Taylor coefficients
(‖tuν ‖V )ν∈F and the �t -summability of the Taylor coefficients (‖tpν ‖Q)ν∈F , where s = 2t

2+t

for t ∈ (0, ∞) given in Assumption 2.4.

Lemma 3.5 Under Assumption 2.4, we have
∑
ν∈F

‖tuν ‖s
V < ∞ and

∑
ν∈F

‖tpν ‖t
Q < ∞,

where s = 2t
2+t

∈ (0, 2) for t ∈ (0, ∞) given in Assumption 2.4.

The different summability results for u and p can be proved by following that in [4] for
elliptic problem with necessary adjustment to the saddle point problems here.
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Proof For a sequence ρ satisfying (15) in Assumption 2.4, we define the scaling function
Rρ(y) := (ρj yj )j≥1. By Assumption (15) we have for any x ∈ D

inf
y∈U

κ(x, Rρ(y)) = κ0(x) + inf
y∈U

∑
j≥1

ρjyj κj (x) ≥ κ0(x) −
∑
j≥1

ρj |κj (x)| ≥ ε > θ,

so that a(·, ·; κ) is coercive by Assumption 2.2. Under Assumption 2.1, there exists a unique
(u(Rρ(y)), p(Rρ(y))) ∈ V × Q for every y ∈ U such that{

a(u(Rρ(y)), v; κ(Rρ(y))) + b(v, p(Rρ(y))) = f (v) ∀v ∈ V,

b(u(Rρ(y)), q) = g(q) ∀q ∈ Q.
(25)

By the definition of the Taylor coefficients in (16), we have at ν = 0 that (tu0 , t
p

0 ) =
(u(0), p(0)), which satisfy the a-priori estimates (4) by Theorem 2.1, i.e.,

‖tu0 ‖V ≤ Cu and ‖tp0 ‖Q ≤ Cp .

For any other ν ∈ F , by taking the partial derivative ∂ν for (25), we obtain⎧⎪⎪⎨
⎪⎪⎩

a(ρν∂νu(Rρ(y)), v; κ(Rρ(y))) + b(v, ρν∂νp(Rρ(y)))

= −
∑

j∈supp ν

a1(νjρ
ν−ej ∂ν−ej u(Rρ(y)), v; ρjκj ) ∀v ∈ V,

b(ρν∂νu(Rρ(y)), q) = 0 ∀q ∈ Q,

where supp ν = {j ∈ N : νj �= 0}. Taking division by ν! on both sides, setting y = 0, we
have the saddle point problem for the Taylor coefficients (tuν , t

p
ν ) ∈ V × Q⎧⎨

⎩
a(ρν tuν , v; κ(Rρ(y))) + b(v, ρν t

p
ν )

= − ∑
j∈supp ν a1(ρ

ν−ej tuν−ej
, v; ρjκj ) ∀v ∈ V,

b(ρν tuν , q) = 0 ∀q ∈ Q.
(26)

Therefore, tuν ∈ V0 by the second equation. We shall show that (ρν tuν , ρν t
p
ν ) ∈ V × Q

is a bounded solution of (26) for any ν ∈ F . First it is so for ν = 0. Then by induction
we assume that (ρμtuμ, ρμt

p
μ) ∈ V × Q are bounded solutions of (26) (being ν replaced

by μ) for any μ � ν, i.e., μj ≤ νj ∀j ≥ 1, and μ �= ν, then by Theorem 2.1 we have
(ρν tuν , ρν t

p
ν ) ∈ V × Q is the unique solution of (26), such that

ρν‖tuν ‖V ≤ 1

α
sup

‖v‖V=1

∑
j∈supp ν

a1(ρ
ν−ej tuν−ej

, v; ρjκj ),

ρν‖tpν ‖Q ≤ α + γ

αβ
sup

‖v‖V=1

∑
j∈supp ν

a1(ρ
ν−ej tuν−ej

, v; ρjκj ),
(27)

where by (10) and |ν|0 = #{j ∈ N : νj > 0} < ∞ for any ν ∈ F we have

sup
‖v‖V=1

∑
j∈supp ν

a1(ρ
ν−ej tuν−ej

, v; ρjκj )

≤ C1|ν|0(‖κ0‖K − ε) max
j≥1

(ρν−ej ‖tuν−ej
‖V ) < ∞. (28)

Therefore, by taking the test functions as (v, q) = (ρν tuν , ρν t
p
ν ), we obtain

a(ρν tuν , ρν tuν ; κ0) = −
∑

j∈supp ν

a1(ρ
ν−ej tuν−ej

, ρν tuν ; ρjκj )

≤ 1

2

∑
j∈supp ν

a1(ρ
ν−ej tuν−ej

, ρν−ej tuν−ej
; ρj |κj |) + a1(ρ

ν tuν , ρν tuν ; ρj |κj |), (29)
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where for the inequality we used the assumption (10). Therefore, by (15), we have∑
j∈supp ν

a1(ρ
ν tuν , ρν tuν ; ρj |κj |) ≤ a1(ρ

ν tuν , ρν tuν ; κ0 − ε),

which, together with (29) leads to

a

(
ρν tuν , ρν tuν ; κ0 + ε

2

)
≤ 1

2

∑
j∈supp ν

a1

(
ρν−ej tuν−ej

, ρν−ej tuν−ej
; ρj |κj |

)
. (30)

By Assumption 2.2, we have

a(ρν tuν , ρν tuν ; θ) ≥ α‖ρν tuν ‖2
V ≥ 0,

so that by the affine structure (9) there holds

a

(
ρν tuν , ρν tuν ; κ0 + ε

2

)
= a(ρν tuν , ρν tuν ; θ) + a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)

≥ a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
. (31)

Hence, from (30) and (31) we obtain

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
≤ 1

2

∑
j∈supp ν

a1

(
ρν−ej tuν−ej

, ρν−ej tuν−ej
; ρj |κj |

)
.

Summing over |ν| = k for any k ≥ 1 for both sides, we have
∑
|ν|=k

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)

= 1

2

∑
|ν|=k

∑
j∈supp ν

a1

(
ρν−ej tuν−ej

, ρν−ej tuν−ej
; ρj |κj |

)

= 1

2

∑
|ν|=k−1

∑
j≥1

a1(ρ
ν tuν , ρν tuν ; ρj |κj |)

≤
∑

|ν|=k−1

a1

(
ρν tuν , ρν tuν ; κ0 − ε

2

)

≤ sup
x∈D

κ0(x) − ε

κ0(x) + ε − 2θ

∑
|ν|=k−1

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
,

where we used Assumption 2.4 in the first inequality. By denoting

σ = sup
x∈D

κ0(x) − ε

κ0(x) + ε − 2θ
< 1, since θ < ε,

we obtain ∑
|ν|=k

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
≤ σka1

(
tu0 , tu0 ; κ0 + ε

2
− θ

)
.

Summing over k ≥ 1, we have
∑
ν∈F

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
≤ 1

1 − σ
a1

(
tu0 , tu0 ; κ0 + ε

2
− θ

)
< ∞.
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By the coercivity condition (10) in V0, for any ν �= 0, as tuν ∈ V0 we have

a1

(
ρν tuν , ρν tuν ; κ0 + ε

2
− θ

)
≥ c1 inf

x∈D

(
κ0(x) + ε

2
− θ

)
(ρν‖tuν ‖V )2, (32)

where infx∈D κ0(x) > ε > θ by Assumption 2.4. Therefore, we obtain∑
ν∈F

(ρν‖tuν ‖V )2 < ∞. (33)

By Hölder’s inequality, we have∑
ν∈F

‖tuν ‖s
V =

∑
ν∈F

(ρν‖tuν ‖V )sρ−sν

≤
(∑

ν∈F
(ρν‖tuν ‖V )2

)s/2 (∑
ν∈F

ρ− 2s
2−s

ν

)(2−s)/2

,

where the first term is finite by (33). For the second term, with t = 2s
2−s

, i.e., s = 2t
2+t

, we
have ∑

ν∈F
ρ− 2s

2−s
ν =

∏
j≥1

( ∞∑
k=0

ρ−tk
j

)
=

∏
j≥1

(1 − ρ−t
j )−1.

As (ρ−1
j )j≥1 ∈ �t (N), there exists J ∈ N such that ρ−t

j < 1
2 for all j > J . Note that

g(x) := − log(1 − x) − 2x < 0 as g(0) = 0 and g′(x) = 1
1−x

− 2 < 0 for 0 < x < 1
2 ,

which implies (1 − ρ−t
j )−1 < exp(2ρ−t

j ) for j > J , so that

∏
j≥1

(1 − ρ−t
j )−1 < exp

⎛
⎝2

∑
j>J

ρ−t
j

⎞
⎠ ∏

j≤J

(1 − ρ−t
j )−1,

which is finite as (ρ−1
j )j≥1 ∈ �t (N). Therefore, (‖tuν ‖V )ν∈F ∈ �s(F).

By (33), there exists a constant C2 > 0 such that

sup
ν∈F

‖tuν ‖V ≤ C2ρ
−ν . (34)

Therefore, by (27) and (28), we have

‖tpν ‖Q ≤ C3ρ
−ν |ν|0 ≤ C3ρ

−ν
∏
j≥1

(1 + νj ), (35)

where

C3 = C1C2
α + γ

αβ
(‖κ0‖K − ε) < ∞,

and we used the fact |ν|0 ≤ ∏
j≥1(1 + νj ) for any ν ∈ F in the second inequality. Hence,

we have

∑
ν∈F

‖tpν ‖t
Q ≤ (C3)

t
∑
ν∈F

∏
j≥1

ρ
−tνj

j (1 + νj )
t = (C3)

t
∏
j≥1

∞∑
k=0

ρ−tk
j (1 + k)t , (36)

where for each j ≥ 0 we have
∞∑

k=0

ρ−tk
j (1 + k)t = 1 + ρ−t

j

∑
k=0

ρ−tk
j (2 + k)t .
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As (ρ−1
j )j≥1 ∈ �t (N), there exists J > 0 such that ρ−1

j < 1
4 for any j > J . Moreover, for

any t > 0, there exist c1 > 0 and 1 < c2 < 2 such that (2 + k)t ≤ c1c
k
2 for k ≥ 0, so that

∞∑
k=0

ρ−tk
j (2 + k)t ≤ c1

∞∑
k=0

(ρ−1
j c2)

k = c1(1 − ρ−1
j c2)

−1 ≤ 2c1.

As ρj > 1, there exists Cj < ∞ for each j ≥ 1 such that

∞∑
k=0

ρ−tk
j (1 + k)t ≤ Cj .

Therefore, we have

∏
j≥1

∞∑
k=0

ρ−tk
j (1 + k)t ≤

∏
j≤J

Cj

∏
j>J

(1 + 2c1ρ
−t
j ) ≤ exp

⎛
⎝2c1

∑
j>J

ρ−t
j

⎞
⎠ ∏

j≤J

Cj , (37)

which is finite when (ρ−1
j )j≥1 ∈ �t (N). Note that in the second inequality, we used 1+x ≤

ex for x ≥ 0. Hence (‖tpν ‖Q)ν∈F ∈ �t (F) from (36).

Remark 3.1 We remark that the weighted �2-summability for (‖tuν ‖V )ν∈F in Lemma 3.5 is a
result of the coercivity property (32) (where the �2-norm shows up) of a1(·, ·; κ) : V×V →
R. However, the weighted �2-summability cannot be shown for (‖tpν ‖Q)ν∈F , where t

p
ν only

appears in b(·, ·) : V × Q → R that holds the inf-sup condition. Instead, by this condition,
we can bound the Taylor coefficient t

p
ν as in (35) by (28).

3.3 Dimension-independent Convergence

As a consequence of the summability obtained in the Sections 3.1 and 3.2, we obtain the
following convergence results.

Theorem 3.1 Under Assumptions 2.1 and 2.2, there exist two sequences of index sets
(�u

N)N≥1 and (�
p
N)N≥1 with indices ν ∈ F corresponding to the N largest Taylor

coefficients ‖tuν ‖V and ‖tpν ‖Q, respectively, such that

supy∈U ‖u(y) − T�u
N
u(y)‖V ≤ ‖(‖tuν ‖V )ν∈F‖�s (F)N

−r(s),

supy∈U ‖p(y) − T�
p
N
p(y)‖Q ≤ ‖(‖tpν ‖Q)ν∈F‖�s (F)N

−r(s),
(38)

under Assumption 2.3, and

supy∈U ‖u(y) − T�u
N
u(y)‖V ≤ ‖(‖tuν ‖V )ν∈F‖�s (F)N

−r(s),

supy∈U ‖p(y) − T�
p
N
p(y)‖Q ≤ ‖(‖tpν ‖Q)ν∈F‖�t (F)N

−r(t),
(39)

under Assumption 2.4, where the dimension-independent convergence rate r is given by

r(s) = 1

s
− 1, s < 1. (40)

The convergence results are due to the application of Stechkin’s Lemma
[24, Lemma 5.5], as also used in [25] for elliptic problems, which we briefly present below
for the saddle point problems.
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Proof At first, by Lemmas 3.4 and 3.5 for Assumption 2.3 and Assumption 2.4, respec-
tively, for any s < 1, we have

sup
y∈U

∥∥∥∥∥
∑
ν∈F

yν tuν

∥∥∥∥∥
V

≤ sup
y∈U

∑
ν∈F

|yν | ‖tuν ‖V ≤
∑
ν∈F

‖tuν ‖V ≤
∑
ν∈F

‖tuν ‖s
V < ∞,

which implies that the Taylor power series TFu defined in (16) is uniformly convergent.
Secondly, for any y ∈ U and ε > 0, by Lemma 3.1, there exists J1 > 0 such that for any
J ≥ J1

B1 := ‖u(y) − u(y0
J )‖V ≤ 1

α
C1Cu‖κ(y) − κ(y0

J )‖K <
ε

2
,

under Assumptions 2.3 or 2.4, where y0
J is defined in the same way as in (22). Moreover,

for any J ≥ J1, by the analytic regularity of u(y0
J ) in the complex domain Uρ as indicated

in Lemma 3.2, there exists K > 0 such that for any � = {ν ∈ F : νj > K for j ≤
J and νj = 0 for j > J } there holds

B2 := ‖u(y0
J ) − T�u(y0

J )‖V <
ε

2
.

By the definition of � we have T�u(y0
J ) = T�u(y). Hence, we have

‖u(y) − T�u(y)‖V ≤ B1 + B2 < ε,

which implies that the Taylor power series TFu(y) converges to u(y) for every y ∈ U .
Consequently,

sup
y∈U

‖u(y) − T�u
N
u(y)‖V = sup

y∈U

∥∥∥∥∥∥
∑

ν �∈�u
N

yν tuν

∥∥∥∥∥∥
V

≤
∑

ν �∈�u
N

‖tuν ‖V ,

which concludes for the error of the Taylor approximation of u by using Stechkin’s Lemma
[24, Lemma 5.5], i.e., for a non-increasing arrangement of (‖tuν ‖V )ν∈F , there holds

∑
ν �∈�u

N

‖tuν ‖V ≤
(∑

ν∈F
‖tuν ‖s

V

)1/s

N−r(s),

with r(s) defined in (40). The same result holds for the error of the Taylor approximation
of p by using the same argument.

Remark 3.2 We remark that the convergence results (38) and (39) are obtained under dif-
ferent assumptions, and cannot be implied by one another. In fact, it is clear that (39) cannot
be implied by (38) as explained in Remark 2.2. On the other hand, (38) cannot be implied
by (39) as shown in the following simple example: let κ0 = 1 and κj = j−2 for j ≥ 1, then
by (38) we have the convergence rate N−r for any r < 1 arbitrarily close to 1. However, by
(39), for which there exists (ρ−1

j )j≥1 ∈ �t (N) with t > 1 satisfying (15), we can only obtain

a convergence rate of N−r for r = 1
s

− 1 = 1
t

− 1
2 < 1

2 for supy∈U ‖u(y) − T�u
N
u(y)‖V ,

and r = 1
t

− 1 < 0, i.e., non-convergent, for supy∈U ‖p(y) − T�
p
N
p(y)‖Q.

Theorem 3.1 states the existence of such index sets �u
N ⊂ F and �

p
N ⊂ F that lead

to the dimension-independent convergence rates. However, there is no particular structure
of these index sets. To guide more practical algorithm development, we consider a partic-
ular structure of these index sets, namely, downward closed set � ⊂ F , also known as
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admissible set or monotone set [19, 21, 26, 30], which satisfies

if ν ∈ � then μ ∈ � ∀μ � ν,

where we recall that μ � ν means μj ≤ νj for all j ≥ 1.
We say that a sequence (θν)ν∈F is monotonically decreasing

if μ � ν then θν ≤ θμ.

Lemma 3.6 Let (θν)ν∈F be a monotonically decreasing sequence of positive real numbers
in �s(F) with s < 1, then there exists a sequence of downward closed and nested index sets
(�N)N≥1 ⊂ F such that

∑
ν �∈�N

θν ≤ ‖(θν)ν∈F‖�s (F)N
−r(s), r(s) = 1

s
− 1. (41)

Proof By Stechkin’s Lemma as in the proof of Theorem 3.1, there exists a sequence of
index sets (�N)N≥1 ⊂ F such that (41) holds. It is left to show that (�N)N≥1 can be
taken as downward closed and nested. This is achieved by an induction argument. First, for
N = 1, we take �1 = {ν(1)} with ν(1) = 0, then (41) holds. Suppose (41) holds for some
N > 1 with downward closed and nested index set �N , then we look for the next index
ν(N + 1) ∈ F such that �N+1 := �N ∪ {ν(N + 1)} is downward closed and (41) holds in
�N+1. Let N (�N) denote the admissible forward neighbor set defined as

N (�N) = {ν ∈ F \ �N : ν − ej ∈ �N for every j ∈ N such that νj �= 0},
where we recall the Kronecker sequence ej = (δij )i≥1. Then we take

ν(N + 1) = argmax
μ∈N (�N )

θμ.

By the definition of the admissible forward neighbor set N (�N), we have �N+1 :=
�N ∪ {ν} is downward closed for any ν ∈ N (�N). Moreover, the sequence (θν)ν∈F is
monotonically decreasing, which implies θν(N+1) ≤ θν(N) since ν(N) � ν(N + 1) for
every N ≥ 1, which satisfies the Stechkin’s Lemma for decreasing sequence to hold (41) in
�N+1. This concludes.

Let (θν)ν∈F be a real sequence. Then the sequence (θ∗
ν )ν∈F with

θ∗
ν := max

ν�μ
θμ ∀ν ∈ F , (42)

is monotonically decreasing. If the sequence (θ∗
ν )ν∈F is �s(F)-summable, then we denote

a �s
m(F)-norm for (θν)ν∈F as

‖(θν)ν∈F‖�s
m(F) = ‖(θ∗

ν )ν∈F‖�s (F).

We provide the dimension-independent convergence rates for the case of downward
closed and nested index sets for saddle point problems, following that in [26] for elliptic
problems.

Theorem 3.2 Under Assumptions 2.1 and 2.2, there exist two sequences of downward
closed and nested index sets (�u

N)N≥1 and (�
p
N)N≥1 with indices ν ∈ F corresponding to
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the N largest Taylor coefficients ‖tuν ‖V and ‖tpν ‖Q, respectively, such that

sup
y∈U

‖u(y) − T�u
N
u(y)‖V ≤ ‖(‖tuν ‖V )ν∈F‖�s

m(F)N
−r(s),

sup
y∈U

‖p(y) − T�
p
N
p(y)‖Q ≤ ‖(‖tpν ‖Q)ν∈F‖�s

m(F)N
−r(s),

under Assumption 2.3, and

sup
y∈U

‖u(y) − T�u
N
u(y)‖V ≤ ‖(‖tuν ‖V )ν∈F‖�t

m(F)N
−r(t),

sup
y∈U

‖p(y) − T�
p
N
p(y)‖Q ≤ ‖(‖tpν ‖Q)ν∈F‖�t

m(F)N
−r(t),

under Assumption 2.4, where the dimension-independent convergence rate r is given by

r(s) = 1

s
− 1, s < 1.

Proof By Theorem 3.1 and Lemma 3.6, we only need to show that (‖tuν ‖∗
V )ν∈F

and (‖tpν ‖∗
Q)ν∈F , the associated monotone envelopes defined in (42) for (‖tuν ‖V )ν∈F

and (‖tpν ‖Q)ν∈F , respectively, are �s(F)-summable under Assumption 2.3, and �t (F)-
summable under Assumption 2.4. Under Assumption 2.3, by Lemma 3.3 we have

|tuν ‖∗
V ≤ Cuρ

−ν and ‖tpν ‖∗
Q ≤ Cpρ−ν ∀ν ∈ F ,

since (ρ−ν)ν∈F is monotonically decreasing by (20). Moreover, as shown in Lemma 3.4,
(ρ−ν)ν∈F is �s(F)-summable, which concludes. Under Assumption 2.4, we have by (34)
and (35) that

‖tuν ‖∗
V ≤ C2ρ

−ν and ‖tpν ‖∗
Q ≤ C3θ

∗
ν ∀ν ∈ F ,

since both (ρ−ν)ν∈F and (θ∗
ν )ν∈F are monotonically decreasing, where we denote

θν = ρ−ν
∏
j≥1

(1 + νj ) ν ∈ F .

The �t (F)-summability of (ρ−ν)ν∈F can be shown as in (36). For the �t (F)-summability of
(θ∗

ν )ν∈F , we proceed as follows. As (ρ−1
j )j≥1 ∈ �t (N), there exists a J such that ρ−1

j < 1/4
for all j > J , which implies

θν+ej

θν
= (1 + νj + 1)

(1 + νj )ρj

< 1 ∀j > J . (43)

Moreover, as ρj > 1 there exists K ∈ N such that (1 + k + 1)/(1 + k) < ρj for all j ≤ J

when k > K , so that
θν+ej

θν
= (1 + νj + 1)

(1 + νj )ρj

< 1 ∀j ≤ J and νj > K . (44)

By defining a sequence of functions (θ
(J,K)
j )j≥1 as

θ
(J,K)
j (k) =

{
maxk≤K ρ−k

j (1 + k) j ≤ J and k ≤ K,

ρ−k
j (1 + k) j > J or k > K,

and defining a new sequence (Θν)ν∈F as

Θν :=
∏
j≥1

θ
(J,K)
j (νj ) ∀ν ∈ F ,
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we have that (Θν)ν∈F is monotonically decreasing by (43) and (44). Moreover, the mono-
tone envelope of (θν)ν∈F satisfies θ∗

ν ≤ Θν for all ν ∈ F . Therefore, we only need to show
(Θν)ν∈F ∈ �t (F). By definition we have

∑
ν∈F

Θt
ν =

∑
ν∈F

∏
j≥1

(θ
(J,K)
j (νj ))

t =
∏

1≤j≤J

∞∑
k=0

(θ
(J,K)
j (k))t

∏
j>J

∞∑
k=0

(θ
(J,K)
j (k))t . (45)

Since ρj > 1, there exist a constant C
(K,J )
j < ∞ for each j ≥ 1 such that

∞∑
k=0

(
θ

(J,K)
j (k)

)t = K max
k≤K

ρ−tk
j (1 + k)t +

∞∑
k=K+1

ρ−tk
j (1 + k)t < C

(K,J )
j .

Therefore, the first term of (45) can be bounded as

∏
1≤j≤J

∞∑
k=0

(θ
(J,K)
j (k))t ≤

∏
1≤j≤J

C
(K,J )
j < ∞.

The second term of (45) can be bounded as in (37), i.e.,

∏
j>J

∞∑
k=0

(
θ

(J,K)
j (k)

)t =
∏
j>J

∞∑
k=0

ρ−tk
j (1 + k)t ≤ exp

⎛
⎝2c1

∑
j>J

ρ−1
j

⎞
⎠ ,

which is finite when (ρ−1
j )j≥1 ∈ �t (N). Hence, (Θν)ν∈F ∈ �t (F), which concludes.

Remark 3.3 Note that the same convergence rate is obtained in Theorem 3.2 for downward
closed and nested index sets as in Theorem 3.1 for more general index sets under Assump-
tion 2.3. While under Assumption 2.4, the convergence rates for the Taylor approximation
of u becomes different. Specifically, the convergence rate from N−r(s) is deteriorated to
N−r(t) with r(s) > r(t), as s = 2t

2+t
< t , for downward closed and nested index sets. This

deterioration is due to the bound (34), which may be crude and the convergence rate may
not be optimal.

4 Conclusions

We studied sparse polynomial approximations for parametric saddle point problems, which
covered such problems as Stokes, mixed formulation of the Poisson, and time-harmonic
Maxwell problems. We considered the setting of a random input parameter parametrized
by a countably infinite number of independent parameters as the coefficients of an affine
expansion on a series of basis functions. Both globally and locally supported basis functions
were considered, which led to different assumptions on the sparsity of the parametrization.
Based on the two different sparsity assumptions and the results in [4, 25] for affine paramet-
ric elliptic PDEs, we proved the �s-summability of the coefficients of the Taylor expansion
of the parametric solutions by different approaches—analytic regularity and weighted
�2-summability, respectively, for the saddle point problems. By the �s-summability we
obtained the dimension-independent algebraic convergence rates of the sparse polynomial
approximations, thus breaking the curse of dimensionality for high or infinite dimensional

172 P. Chen, O. Ghattas



parametric saddle point problems. Moreover, we considered sparse polynomial approxima-
tions of the parametric solutions on downward closed and nested multi-index sets, which
also have the dimension-independent convergence rates.

The analysis in this work can serve as a guideline for error estimates of model reduction
techniques such as reduced basis methods constructed by greedy algorithms [16]. Note that
we only considered uniformly distributed parameters in this work. We are interested in
studying more general distributions such as Gaussian or log-normal random fields for saddle
point problems, motivated by their recent analysis for elliptic PDEs [3, 11, 28]. Finally, we
mention a particular type of parametric saddle point problem—optimality systems arising
from stochastic PDE-constrained optimal control [12, 14, 35]. Application of the analysis
to such problems are interesting.
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