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Abstract
We work out details of the extrinsic geometry for two Hilbert schemes of some contem-
porary interest: the Hilbert scheme Hilb2

P
2 of two points on P

2 and the dense open set
parametrizing non-planar clusters in the punctual Hilbert scheme Hilb4

0(A
3) of clusters

of length four on A
3 with support at the origin. We find explicit equations in projective,

respectively affine, embeddings for these spaces. In particular, we answer a question of
Bernd Sturmfels who asked for a description of the latter space that is amenable to further
computations. While the explicit equations we find are controlled in a precise way by the
representation theory of SL3, our arguments also rely on computer algebra.

Keywords Binomial ideals · Sparse polynomials · Numerical algebraic geometry ·
Witness sets · Macaulay dual spaces
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1 Introduction

The Hilbert scheme Hilb2
P

2 of two points on the projective plane has a projective
embedding

Hilb2
P

2 ↪→ P
14 (1)
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szendroi@maths.ox.ac.uk

1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556, USA
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defined as a composition of a natural map into Gr(2, 6) followed by the Plücker embedding
(for details, see Section 2.1). On the other hand, the Hilbert scheme Hilb4(A3) of 4 points
on affine 3-space has a distinguished affine open subset Hilb4(A3)np of non-planar clusters,
which has an affine embedding

Hilb4(A3)np ↪→ A
15,

whose image is the cone over the same Grassmannian (see Section 3.1). This latter Hilbert
scheme has a natural closed subset, the space Hilb4

0(A
3)np of non-planar, punctual clusters,

where punctual means that the scheme-theoretic support of the subscheme parametrized is
at a single point (chosen to be the origin; see Section 3.2 for details). We thus obtain an
affine embedding

Hilb4
0(A

3)np ↪→ A
15. (2)

The connection between these Hilbert schemes goes back to Tikhomirov’s [18, Theorem 3]:
the affine cone over Hilb2

P
2 ⊂ P

14 is the singular locus of Hilb4
0(A

3)np.
Our aim in this paper is twofold: we give explicit equations to describe the images of

the embeddings (1) and (2), and we recover this relationship between the spaces. We begin
in Section 2.2 by identifying various spaces of interest as PGL3-orbit closures in Gr(2, 6).
Their defining polynomials arise from the representation theory of SL3 (see Section 2.3). We
use computer algebra to derive specific polynomials, as well as to check various properties
of the resulting systems of equations, in particular that they define reduced ideals. We also
provide a more synthetic way to derive the equations in Section 2.4.

Our main result is Theorem 6 in Section 3.2. Section 3.3 presents an explicit calculation
to illuminate, and yet again reprove, some of the main results. The explicit polynomials
defining the embeddings (1) and (2) are listed in the Appendix.

2 The Hilbert Scheme of Two Points on the Projective Plane

2.1 Basics on the Hilbert Scheme of Two Points on the Projective Plane

Let U be a 3-dimensional vector space. In this section, we recall some well-known facts
about the Hilbert scheme Hilb2

P(U) of two points on the projective plane P(U). We refer
to [1, Sections 2 and 3] for more details and further references.

Let h : Hilb2
P(U) → Sym2

P(U) be the Hilbert–Chow morphism, H = h∗(O(1)) the
pullback of the natural generator of Pic(Sym2

P(U)). Let Δ ⊂ Sym2
P(U) be the diagonal

and B = h−1(Δ) the exceptional locus of h, a threefold ruled over Δ ∼= P(U). It is known
that

Pic(Hilb2
P(U)) ∼= Z[H ] ⊕ Z

[
B

2

]
.

Let L denote the line bundle O(2) on P(U). There is an associated rank two bundle L[2]
on Hilb2

P(U) whose fiber over a length 2 subscheme ζ ⊂ P(U) is H 0(ζ,L). Its space of
sections is

H 0
(

Hilb2
P(U),L[2]) ∼= H 0(P(U),L) = S2U∗

and it is globally generated. Its determinant

D = det(L[2]) = 2[H ] −
[

B

2

]
∈ Pic(Hilb2

P(U))

is very ample and yields a PGL(U)-equivariant chain of embeddings

ϕD : Hilb2
P(U) ↪→ Gr(4, S2U∗) = Gr(2, S2U) ↪→ P(∧2S2U) ∼= P

14.
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The image of ϕD is of degree

D4 = 16H 4 − 16H 3B + 6H 2B2 − HB3 + B4

16
= 21

which arises from the known intersection numbers [15] on the Hilbert scheme, namely

(H 4, H 3B, H 2B2, HB3, B4) = (3, 0, −8, −24, −48).

The embedding ϕD restricts to a PGL(U)-equivariant chain of embeddings

ϕD|B : B ↪→ Gr(2, S2U) ↪→ P(∧2S2U) ∼= P
14

of degree

(D|B)3 = D3B = 8H 3B − 6H 2B2 + 3HB3

2
− B4

8
= 18.

2.2 Pencils of Conics and Orbit Structure

Consider the space Gr(2, S2U) parametrizing pencils of conics on U∗. The decomposition
of this space into PGL(U)-orbits is classical, see e.g. [14]. There are eight types with normal
forms as in the following table, yielding a decomposition of the Grassmannian Gr(2, S2U)

into PGL(U)-orbits Oi (and sometimes O′
i) of dimension i.

O3 〈x2, xy〉
O4 〈x2, y2〉
O′

4 〈xy, xz〉
O5 〈x2, y2 + xz〉
O6 〈x2, yz〉
O′

6 〈x2 + yz, xz〉
O7 〈x2 + y2, xz〉
O8 〈x2 + y2, x2 + z2〉

Let Yi , Y ′
i denote the closure of Oi , O′

i in Gr(2, S2U). Clearly, Y8 = Gr(2, S2U). The
Hasse diagram, where Oi is connected to Oj if the latter is open in Yi \Oi , is the following:

8

7

6 6

5

4 4

3
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Proposition 1 1. Y6 ⊂ Gr(2, S2U) is birational to a P
4-bundle over P2.

2. Y5 ⊂ Gr(2, S2U) is birational to a quadric bundle over P
2 and is a non-normal

projective variety with singular locus equal to Y4.
3. Y ′

4 � P(U) × P(U∗) which is embedded in P14 via the linear seriesO(2, 1).
4. The chain of embeddings

Y3 ⊂ Y4 ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P
14

is isomorphic to the chain

B ⊂ Hilb2
P(U) ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P

14

discussed in the previous section.

Proof First, note that the variety Y6 parametrizes pencils of conics containing a double line.
We thus have a birational model Ỹ6 → Y6 parametrizing pairs (P, �) of a pencil P of conics
on U∗ and a line � ⊂ P(U∗) such that �2 belongs to P . For the bundle E = S2U/O(−2)

over P(U), we see that Ỹ6 = P(E), a P
4-bundle over P2.

Next, Y5 parametrizes pencils generated by a double line and a conic tangent to this
line. Consider the birational model Ỹ5 → Y5 defined as the preimage of Y5 in Ỹ6. Let
Q = U/O(−1) which is a bundle over P(U). Note that there is a natural morphism
E → S2Q and hence a natural rank three quadratic form S2E → S2(S2Q) → det(Q)2.
Then, Ỹ5 ⊂ Ỹ6 = P(E) is the corresponding quadric bundle over P(U). The morphism
Ỹ5 → Y5 is birational and is a double cover over Y4. Thus, Y5 is not normal along Y4
and, since the latter is the complement of the open orbit in Y5, it has to be the singular
locus.

The variety Y ′
4 parametrizes pencils of reducible conics containing a fixed line �. Such

a pencil is of the form �L where L is a hyperplane of U . Hence, we have an isomorphism
Y ′

4
∼= P(U)×P(U∗). The restriction of the tautological bundle of Gr(2, S2U) is the product

of the rank one tautological bundle on P(U) with the rank two tautological bundle on the
dual P(U∗). Its determinant is O(2, 1) showing that the degree of Y ′

4 is (2h + h′)4 = 24.
In this description, we see that Y3 ⊂ Y ′

4 = P(U) × P(U∗) is the incidence quadric, the
full flag variety of U . Its degree is (h + h′)(2h + h′)3 = 18.

To conclude, consider the variety Y4 parametrizing pencils generated by two double
lines and their degeneracies. Its dense open subset O4 is isomorphic to Sym2

P(U) − Δ

where Δ denotes the diagonal. For dimension reasons, its closure Y4 must be Hilb2
P(U) ⊂

Gr(2, S2U). Finally, note that the diagonal in Hilb2
P(U) = Y4 is P(TP(U)) ∼= F ∼= Y3 as

claimed which completes the proof.

2.3 Explicit Equations

Consider the group SL(U) ∼= SL3(C). Denote by Sa,b the representation of SL(U) with
highest weight (a − b)ω1 + bω2, where ω1 and ω2 are the fundamental weights and a ≥
b ≥ 0. Clearly, S0,0 = C is the trivial module, S1,0 = U is the three-dimensional “vector”
representation, and S1,1 = U∗ is its dual. Consider the SL(U)-module W = ∧2S2U∗ =
S3,2 of dimension 15. Its second symmetric square splits into irreducibles as

S2W ∼= S6,4 ⊕ S4,3 ⊕ S4,0 ⊕ S3,1 ⊕ S2,2 (3)

of dimension 120 = 60 + 24 + 15 + 15 + 6. This decomposition can be easily checked
computationally, e.g., via the SchurRings [16] package in Macaulay2 [9].
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Consider the 14-dimensional projective space PW ∗ = P(∧2S2U) ∼= P
14 with coordinate

ring S∗(W). Regard elements of S2W as quadrics on PW ∗. Using the decomposition (3)
above, define ideals of the ring S∗(W) generated by spaces of quadrics as follows:

I8 = 〈S3,1〉 � S∗(W),

I5 = 〈S3,1, S2,2〉 � S∗(W),

I4 = 〈S3,1, S2,2, S4,3〉 � S∗(W),

I3 = 〈S3,1, S2,2, S4,3, S4,0〉 � S∗(W).

(4)

These ideals are generated by 15, 21, 45 and 60 quadrics, respectively. The first ideal I8
consists of quadrics parametrized by S3,1 = ∧2S2U itself and it is well known that its
vanishing locus is the Grassmannian:

V(I8) = Gr(2, S2U) ⊂ P(∧2S2U).

Proposition 2 For i = 3, 4, 5 we have, using the notations of the previous section,

V(Ii) ∼= Yi ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P
14.

In particular, the ideals of the orbit closures Y3, Y4, Y5 ⊂ Gr(2, S2U) discussed before are
generated by quadrics.

Proof Our proof uses computational methods, with some details omitted.
Fix a basis {vi} of U∗. The key to finding explicit equations is to derive an explicit form

of the decomposition (3) yielding basis elements for each of the modules on the right hand
side in terms of the obvious basis of the left hand side S2W ∼= S2

(∧2S2U∗) consisting of
symmetric pairs of elements of the form [(vi ⊗ vj ) ∧ (vk ⊗ vl)]. This can be done using
SLA [6] in GAP [17]. We obtain explicit generators of these four ideals, which are listed in
the Appendix. As expected, the 15-dimensional space S3,1 has a basis whose elements can
readily be identified with the quadratic Plücker relations defining V(I8) = Gr(2, 6) ⊂ P

14.
Given the explicit polynomial generators, the dimension and degree of the remaining

ideals can be computed using Macaulay2 [9], namely:

We next claim that each of these ideals defines an irreducible and reduced subscheme in
P

14.
We first verify that each top-dimensional component in each scheme is irreducible of

multiplicity 1. To that end, certifiable witness point sets can be computed in numerical
algebraic geometry using Bertini [2] and alphaCertified [12] via well-constrained
subsystems [8]. Each witness point set consists of degree-many points along a complimen-
tary dimensional linear space, which are nonsingular with respect to the resulting system.
Certifiable monodromy loops following [10] yield that all of the witness points for each
system are smoothly connected, showing that each of the top-dimensional components is
irreducible of multiplicity 1 with respect to the corresponding ideal.

In each case, showing that the scheme is irreducible and reduced is now equivalent to
showing that the top-dimensional irreducible component has the same Hilbert series as
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the entire scheme; this precludes the existence of embedded components. This was veri-
fied using [5] with certified numerical Hilbert function computations [11]. In fact, this also
showed that each scheme is arithmetically Cohen–Macaulay via [5].

The ideals I5 ⊂ I4 ⊂ I3 thus define SL(3)-invariant irreducible reduced subschemes
of V(I8) = Gr(2, 6) ⊂ P

14 of dimensions 5, 4, 3 respectively. As there is only one five-
dimensional orbit closure in Gr(2, 6) by our results in the previous section, we must have
V(I5) = Y5 ⊂ P

14, and then necessarily V(I4) = Y4 ⊃ V(I3) = Y3 as claimed.

Remark 1 The 45 quadrics defining Y4 ∼= Hilb2
P

2 ⊂ Gr(2, 6) were also determined, using
a different method, in [3, Sect. 2]. That paper also studied the corresponding tropicalization.

Remark 2 In the language of the previous section, the quadrics in S3,1 and S4,0 define a four-
dimensional variety of degree 24 inside of Gr(2, S2U) which is Y ′

4
∼= P

2 × P
2 embedded

by O(2, 1) as above.

2.4 A Different Way to Derive Equations for Orbit Closures

We explain here an alternative, synthetic way to re-derive the quadratic equations of the
orbit closures obtained above by a computer-based calculation. In this section, we will use
the language of GL(U)-modules to respect the full symmetry of the problem. By a slight
abuse of notation, we will use ψ(−) as shorthand for the quadratic form associated to a
symmetric bilinear form ψ(−, −).

The Equations of Y5 The equations of Y5 ⊂ P
14 are the Plücker equations together with

another irreducible module of quadratic equations that is GL(U)-isomorphic to S2U∗ ⊗
det(U∗)2. Those equations have a simple description in terms of the discriminant of ternary
quadratic forms (or symmetric tensors), which is a GL(U)-equivariant map

δ : S3(S2U) → det(U)2.

Polarizing yields a morphism

Δ : S2(S2U) → S2U∗ ⊗ det(U)2.

Using the same trick for U∗ and twisting by det(U) appropriately yields another GL(U)-
equivariant map

Δ∗ : S2(S2U∗ ⊗ det(U)2) → S2U ⊗ det(U)2.

In order to describe the equations of Y5 ⊂ Gr(2, S2U), since it is the unique irreducible
GL(U)-component of S2(∧2S2U∗) isomorphic to S2U∗ ⊗ det(U∗)2, it suffices to exhibit a
nonzero morphism

Ψ : S2(∧2S2U) → S2U ⊗ det(U)2

from the dual of the former to the dual of the latter. For q1, q2, q3, q4 belonging to S2U , we
claim that the following formula defines such a morphism:

Ψ (q1 ∧ q2, q3 ∧ q4) = Δ∗(Δ(q1, q3),Δ(q2, q4)) − Δ∗(Δ(q1, q4),Δ(q2, q3)).

Since this is nonzero (see below) and has all the required properties, it expresses in a com-
pact form all the equations of Y5 apart from the Plücker relations. In the following statement,
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we use the same notations Ψ and Δ for the quadratic forms associated to the symmetric
bilinear forms defined by these symbols.

Proposition 3 The subvariety Y5 ⊂ Gr(2, S2U) of the Grassmannian Gr(2, S2U) is
defined by

Ψ (q1 ∧ q2) = Δ∗(Δ(q1),Δ(q2)) − Δ∗(Δ(q1, q2)) = 0

for q1, q2 ∈ S2U .

As a sanity check, let us evaluate Ψ on the representatives of the PGL3-orbits of
G(2, S2U). For this we normalize Δ by letting Δ(u2, v2) = (u ∧ v)2.

– For O5, we let q1 = x2 and q2 = y2 +xz. Hence, Δ(q1) = 0 and Δ(q1, q2) = (x ∧y)2

has rank one, so that Ψ (q1 ∧ q2) = −Δ∗(Δ(q1, q2)) = 0.
– For O6, we let q1 = x2 and q2 = yz. Hence, Δ(q1) = 0 and writing 4q2 = (y + z)2

− (y − z)2, we get Δ(q1, q2) = (x ∧ y)(x ∧ z). Since this has rank two, Ψ (q1 ∧ q2) =
−Δ∗(Δ(q1, q2)) �= 0.

– For O′
4, we let q1 = xy, q2 = xz, u = x ∧ y, and v = x ∧ z. Then, 2Δ(q1) =

−u2, 2Δ(q2) = −v2, and 2Δ(q1, q2) = −uv. Therefore, Δ∗(Δ(q1),Δ(q2)) =
Δ∗(u2, v2)/4 = (u ∧ v)2/4 together with Δ∗(Δ(q1, q2)) = Δ∗(uv)/4 = −(u ∧ v)2/8
yields Ψ (q1 ∧ q2) = 3(v ∧ w)2/8 �= 0.

The Other Quadratic Equations Consider the remaining modules of equations defining
Y4, Y3 ⊂ P

14. These irreducible modules are generated by highest weight vectors. We can
write down explicit quadratic polynomials on the Grassmannian in terms of those highest
weight vectors as follows.

The 15-dimensional module is the irreducible GL(U)-module S4(∧2U∗), whose highest
weights vectors are the tensors of the form (e ∧ f )4 for e, f ∈ U∗. We want to associate
to such a vector a quadratic polynomial P on the cone of tensors of the form q1 ∧ q2 for
q1, q2 ∈ S2U . In other words, we need to find a polynomial in e, f , q1, q2, which has
degree four in e and f , degree two in q1 and q2, invariant under the action of GL(U), and
compatible with the skew-symmetry conditions. By the Fundamental Theorems of Invariant
Theory, such an invariant polynomial has to be expressed in terms of contractions of q1 and
q2 by e and f . A straightforward computation shows that up to scalar, there is only one
possibility, namely

P(q1 ∧ q2) = (
q1(e)q2(f ) − q2(e)q1(f )

)2

+4
(
q1(e, f )q2(f ) − q2(e, f )q1(f )

)(
q1(e, f )q2(e) − q2(e, f )q1(e)

)
.

One can easily test this polynomial on representatives of the orbits in Gr(2, S2U) and check
that it vanishes identically only on the orbit O3 = Y3.

The second, 24-dimensional module is the GL(U)-submodule of S3U∗ ⊗∧2U∗ ⊗∧3U∗
whose highest weights vectors are the tensors of the form e3(e ∧f )(e ∧f ∧g) for e, f, g ∈
U∗. Again, we need to associate to such a vector a quadratic polynomial Q on the cone of
tensors of the form q1 ∧ q2 for q1, q2 ∈ S2U . Thus, we need to find a polynomial in e, f ,
g, q1, and q2 which has degree five in e, degree two in f , degree one in g, degree two in
q1 and q2, invariant under the action of GL(U), and compatible with the skew-symmetry
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conditions. Another straightforward computation shows that up to scalar, there is only one
possibility, namely

Q(q1 ∧ q2) =
(
q1(e, g)q2(e) − q2(e, g)q1(e)

)(
q1(e)q2(f ) − q2(e)q1(f )

)

+
(
q1(e, f )q2(e) − q2(e, f )q1(e)

)

×
(
q1(f, g)q2(e) − q2(f, g)q1(e) + q1(e, g)q2(e, f ) − q2(e, g)q1(e, f )

)
.

Again, one can easily test this polynomial on representatives of the orbits in Gr(2, S2U) and
check that it vanishes identically only on O3 and O4. We deduce

Proposition 4 The subvarieties Y3 ⊂ Y4 ⊂ Gr(2, S2U) of the Grassmannian Gr(2, S2U)

are defined by the sets of equations

Ψ (q1 ∧ q2) = Q(q1 ∧ q2) = 0

and
Ψ (q1 ∧ q2) = P(q1 ∧ q2) = Q(q1 ∧ q2) = 0

for q1, q2 ∈ S2U , respectively.

3 The Punctual Hilbert Scheme of Four Points onA
3

3.1 Non-planar Clusters of Length Four on Affine Three-space

Recall the fixed three-dimensional vector space U from the previous section. In this section,
we will think of its dual T = U∗ as a copy of affine 3-space A

3 with ring of functions
C[T ] = Sym•U .

Let Hilbm(T ) ∼= Hilbm(A3) denote the Hilbert scheme of m points on affine three-space.
The additive structure on T yields a center-of-mass morphism c : Hilbm(T ) → T . As is true
in all dimensions, Hilbm(T ) is a nonsingular variety for m ≤ 3. It is also known [13] that
Hilb4(T ) is an irreducible and reduced variety of dimension 12, singular along the locus of
length-four subschemes of T given by the squares [m2

p] ∈ Hilb4(T ) of maximal ideals of

points p ∈ T . It has a dense affine open subset Hilb4(T )np containing all its singularities
defined by the condition that the clusters parametrized by its points are non-planar, i.e., not
scheme-theoretically contained in a plane.

Although the following was already proved in [7], we present a variant of the proof suited
to the present narrative.

Theorem 5 There is an SL(U)-equivariant isomorphism

Hilb4(T )np ∼= T × CGr(2, S2U),

where CGr(2, S2U) ⊂ ∧2S2U is the affine cone over the Grassmannian Gr(2, S2U) ⊂
P(∧2S2U) ∼= P

14.

Proof If Iξ � C[T ] = Spec Sym•U is the ideal corresponding to a point ξ ∈ Hilb4(T )np,
then the map C⊕ U → C[T ]/Iξ is an isomorphism of vector spaces. The resulting algebra
structure on the vector space C ⊕ U is encoded by two symmetric bilinear maps:

a : U ⊗ U → C and m : U ⊗ U → U .
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Requiring the product on C ⊕ U to be associative leads to the following equations for any
x, y, z ∈ U :

a(x,m(y, z)) = a(y, m(x, z)), (5)

m(x,m(y, z)) + a(y, z)x = m(y, m(x, z)) + a(x, z)y. (6)

Using the highest weight notation for SL3-modules introduced in the previous section,
first observe that m is a tensor in S2U∗ ⊗ U ∼= U∗ ⊕ S3,2 and the projection to T = U∗
is the center of mass map c. Using a translation by the evident action of U∗ on the whole
setup, it suffices to restrict to the case where the center of mass of the ideal Iξ is at the origin
in T so that m ∈ S3,2.

Equation (6) shows that a(y, z)x−a(x, z)y is determined by m, x, y, and z which implies
that a is uniquely determined by m and depends quadratically on it. As confirmed by [16],
there exists a unique SL(U)-equivariant map up to scale, namely

Θ : S2(S3,2) → S2U∗.

Fixing the correct normalization, (6) implies that a = Θ(m). Now, for any x, y, z ∈ U , we
can rewrite (5)–(6) in the following form:

Θ(m)(x,m(y, z)) = Θ(m)(y, m(x, z)), (7)

m(x, m(y, z)) + Θ(m)(y, z)x = m(y, m(x, z)) + Θ(m)(x, z)y. (8)

These equations are families of cubic and quadratic equations on m ∈ S3,2. We claim that

(a) the quadratic equation (8) on m are equivalent to the Plücker equations on ∧2S2U ;
(b) the cubic equation (7) are implied by the quadratic ones.

In order to prove (a), recall the SL3-decomposition

S2S3,2 ∼= S6,4 ⊕ S4,3 ⊕ S4,0 ⊕ S3,1 ⊕ S2,2 (9)

already used above in (3). Equation (8) asks for the vanishing of a cubic tensor in x, y, and z,
skew-symmetric in x and y, and takes values in U , i.e., an element of the SL3-decomposition

Hom(∧2U ⊗ U, U) ∼= 2S1,1 ⊕ S3,1 ⊕ S2,2. (10)

Comparing (9) with (10), the common terms are the last two irreducible components; they
are the only ones imposing non-trivial conditions. The component S2,2 has already been
taken into account by letting a = Θ(m). The remaining conditions are the quadratic equa-
tions parametrized by S3,1. This means that we get the quadratic equations spanning the
ideal I8 � S∗(∧2S2U∗) from (4), parametrized by ∧2S2U , which are precisely the Plücker
equations.

We conclude that Hilb4(T )np is contained in T × CGr(2, S2U) which implies, by
a dimension count, that these two reduced schemes must be equal. Since the ideal of
CGr(2, S2U) is radical, we also deduce claim (b): the cubic relations (7) do not impose any
further conditions on m.

3.2 The Space of Non-planar Punctual Clusters

Let Hilbm
0 (T ) ⊂ Hilbm(T ) denote the punctual Hilbert scheme of m points, the sub-

scheme of the Hilbert scheme Hilbm(T ) given by the condition that the support of the
zero-dimensional subscheme being parametrized is at the origin 0 ∈ T . It carries a natural
projective scheme structure as the scheme-theoretic fiber of the Hilbert–Chow morphism
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Hilbm(T ) → Sm(T ) over m · 0 ∈ Sm(T ), but here we consider it in its reduced scheme
structure.

Clearly, Hilb2
0(T ) ∼= P(T ), and Hilb3

0(T ) and Hilb4
0(T ) are known to be irreducible but

singular projective varieties of dimensions 4 and 6 respectively. Descriptions of these spaces
as well as natural desingularizations are given in [18] from a sheaf-theoretic perspective. We
will describe the affine open set Hilbm

0 (T )np ⊂ Hilb4
0(T ) obtained by intersecting Hilb4

0(T )

with the set of non-planar clusters. Note that Hilbm
0 (A3)np is dense in Hilb4

0(A
3) and forms

an affine neighbourhood of its most interesting point [m2
0] ∈ Hilb4

0(A
3), the length-four

subscheme of A
3 given by the square of the maximal ideal of the origin 0 ∈ A

3. The
following is our main result.

Theorem 6 The reduced space Hilb4
0(T )np of non-planar, punctual clusters of length 4 on

T is SL(U)-equivariantly isomorphic to the cone CY5 ⊂ ∧2S2U ∼= A
15 over the projec-

tive variety Y5 ⊂ P(∧2S2U) described in Propositions 1–2. In particular, Hilb4
0(T )np is a

non-normal subvariety of A15 cut out by 21 explicitly computable quadrics and has a codi-
mension one singular locus isomorphic to the affine cone CHilb2(P2) ⊂ ∧2S2U with the
apex of the cone corresponding to the distinguished ideal [m2

0] ∈ Hilb4
0(T ).

Proof The classification of PGL(U)-orbits in Gr(2, U) explained in Section 2.2 above
shows that CY5 is the only six-dimensional SL(U)-stable subvariety of CGr(2, U).

Remark 3 The description of the singular locus of (a neighbourhood of [m2
0] in) Hilb4(T )0

is not a new result as it was also obtained in [18] using sheaf-theoretic methods. The
main advantage of our approach is that we can describe all these spaces by explicit affine
equations which may be useful in applications [4].

Remark 4 It is also possible to prove this result using the language used in [7] followed
by some computer calculations. In coordinates, we can represent a non-planar cluster of
length four using three four-by-four matrices ϕ1, ϕ2, and ϕ3 which describe the action of
the coordinate functions of T on the 4-dimensional vector space C ⊕ U . The conditions
for a triple (ϕi) to describe a cluster become explicit equations which reduce to the Plücker
relations. To describe a punctual cluster based at 0, the matrices ϕi should additionally be
nilpotent. It can be checked computationally that the reduced ideal of conditions arising
from tr ∧k ϕi = 0 for 1 ≤ k ≤ 4 are generated by the linear relations tr ϕi = 0 and the
quadratic conditions tr ∧2 ϕi = tr ∧2 (ϕi + ϕj ) = 0, the latter being the 6 extra quadrics of
I5 defining Y5 inside Gr(2, S2U) in Proposition 2 above.

Remark 5 The orbit decomposition of Gr(2, S2U) from Section 2.2 yields a decomposition
of CGr(2, S2U). It is easy to check that the various orbits correspond to different length
four subschemes in T as follows.

1. CO8 parametrizes four general points;
2. CO7 parametrizes two reduced general points p, q ∈ T and a degree two scheme at

−(p + q)/2;
3. CO6 parametrizes two degree two schemes supported on opposite general points;
4. CO ′

6 parametrizes one reduced point at p ∈ T and a degree three scheme supported on
−p/3;

5. CO5 parametrizes an open subset of Hilb4
0(T );
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6. CO4 parametrizes clusters with normal form xy = z, all other products being equal to
zero;

7. CO ′
4 parametrizes one reduced point p and a fat point in a plane at −p/3;

8. CO3 parametrizes clusters with normal form x2 = z, all other products being equal to
zero.

3.3 A Concrete Computation

Starting from a non-planar scheme with center of mass 0 corresponding to an ideal I�C[T ],
recall that we get an algebra structure on the vector space C ⊕ U which is partly encoded
by a symmetric bilinear multiplication map

m ∈ Hom(S2U, U) ∼= S2U∗ ⊗ ∧2U∗ ⊗ det(U).

Apply to m the morphism

Γ : S2U∗ ⊗ ∧2U∗ → ∧2(S2U∗)
a2 ⊗ b ∧ c �→ ab ∧ ac.

Then, the discussion above shows that Γ (m) ∈ ∧2(S2U∗)⊗det(U) must be a decomposable
tensor.

To see this in a concrete example, fix a basis {x, y, z} of U and consider the reduced
scheme

ζ = {(−1, 0, 0), (0,−1, 0), (0, 0, −1), (1, 1, 1)} ⊂ T .

In the ring C[x, y, z]/Iζ , we have

x2 = 1

2
(1 − x + y + z), y2 = 1

2
(1 + x − y + z), z2 = 1

2
(1 − x + y − z),

xy = yz = zx = 1

4
(1 + x + y + z).

The tensor m is obtained by keeping the degree one part of the right hand side in these
equations. In terms of the dual basis {e, f, g} of U∗, note that the basis of S2U∗ dual to the
basis {x2, y2, z2, yz, xz, xy} of S2U is {e2, f 2, g2, 2fg, 2eg, 2ef }. So, as a tensor,

4m = 2e2 ⊗ (−x + y + z) + 2f 2 ⊗ (x − y + z) + 2g2 ⊗ (x + y − z)

+2(fg + ge + ef ) ⊗ (x + y + z)

= (e2 + f 2 + g2 + (e + f + g)2) ⊗ (x + y + z) − 4(e2 ⊗ x + f 2 ⊗ y + g2 ⊗ z).

Note that up, to a common factor, x identifies with f ∧ g, y with g ∧ e and z with e ∧ f .
Substituting these expressions and applying Γ , we get, after letting h = e + f + g,

4Γ (m) = ef ∧ eg + eg ∧ e2 + e2 ∧ ef + f 2 ∧ fg + fg ∧ f e + f e ∧ f 2

+gf ∧ g2 + g2 ∧ ge + ge ∧ gf

+hf ∧ hg + hg ∧ he + he ∧ hf − 4(ef ∧ eg + fg ∧ f e + ge ∧ gf )

= hf ∧ hg + hg ∧ he + he ∧ hf − (ef ∧ eg + fg ∧ f e + ge ∧ gf )

+he ∧ (ef − eg) + hf ∧ (fg − ef ) + hg ∧ (eg − fg),

and the final result of our computation is

4Γ (m) = (he − hf + eg − fg) ∧ (hf − hg + ef − eg).
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This is, as expected, a decomposable tensor. Note that since the GL3-orbit of our scheme
is open in the subvariety of Hilb4(T ) parametrizing schemes with center of mass at the
origin, this yields another proof of Theorem 5.

Moreover, observe that we can rewrite he − hf + eg − fg = e2 − f 2 + 2eg − 2fg =
(e + g)2 − (f + g)2, and similarly hf − hg + ef − eg = (e + f )2 − (f + g)2, so that

4Γ (m) = (e + f )2 ∧ (f + g)2 + (f + g)2 ∧ (g + e)2 + (g + e)2 ∧ (e + f )2.

This leads to a down-to-earth interpretation of the map

π : Hilb4(T )np �→ CGr(2, S2U)

from Theorem 5 on the open set of reduced subschemes.

Proposition 7 Consider a finite subscheme ζ ⊂ T consisting of four non-coplanar reduced
points pi ∈ T for i = 1, . . . , 4 with center of mass p0. The squares of the six vectors
pij = pi + pj − 2p0 ∈ T are three tensors p2

12 = p2
34, p2

13 = p2
24 and p2

14 = p2
23 in

S2T = S2U∗ and

π(ζ ) =
(
p2

12 ∧ p2
13 + p2

13 ∧ p2
14 + p2

14 ∧ p2
12

)
⊗ ω−1,

where the twist ω ∈ det(U∗) is given by

ω = p1 ∧ p2 ∧ p3 − p2 ∧ p3 ∧ p4 + p3 ∧ p4 ∧ p1 − p4 ∧ p1 ∧ p2.

Note that ω is invariant under a common translation of the four points and is non-zero
exactly when ζ ⊂ T is non-planar. Moreover, permuting the four points multiplies ω by the
sign of the permutation but π(ζ ) itself remains invariant. Thus, it only depends on ζ and not
on the order of the four points.

Proof of Proposition 7 The expression for π(ζ ) depends equivariantly on ζ and yields the
correct expression when

ζ = (−e, −f, −g, e + f + g).

Since the orbit of ζ in Hilb4(T )np is dense, this expression must be correct everywhere.

Appendix: Explicit Polynomials

The following set of Macaulay2 commands generates the ideals I8, I5, I4 and I3 in (4).
As proved in the main body of the paper, the ideal I4 defines the projective image of the
embedding (1), whereas I5 defines the affine image of the embedding (2).

S=QQ[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o];

I8=ideal(a*j-b*g+c*f, a*k-b*h+d*f, a*l-b*i+e*f, a*m-c*h+d*g,a*n-c*i+e*g,
a*o-d*i+e*h, b*m-c*k+d*j, b*n-c*l+e*j, b*o-d*l+e*k, c*o-d*n +e*m,f*m-g*k+h*j,
f*n-g*l+i*j, f*o-h*l+i*k, g*o-h*n+i*m, j*o-k*n+l*m);

I5=I8+ideal(2*d*o-e*n-2*f*o-2*h*l+i*i-2*j*l+3*k*k, 2*a*i-2*a*k-2*b*h+2*b*j-c*e+d*d
+3*f*f, c*n-2*d*m-2*f*m-2*g*i-2*g*k+3*h*h+j*j, a*n-2*b*m-c*k+d*h+d*j-e*g+f*h-f*j,
2*a*o-b*n-c*l+d*i+d*k-e*h+f*i-f*k, c*o-e*m-f*n-2*g*l+h*i+h*k-i*j+j*k);
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I4=I5+ideal(a*d+a*f-b*c, a*e-b*d+b*f, g*n-h*m-j*m, c*m-g*h +g*j, e*o-i*l+k*l,
i*o+k*o-l*n, 3*a*i+a*k-b*h-3*b*j-2*d*f, 2*a*k+b*h-3*b*j-3*c*e+3*d*d-d*f-6*f*f,
2*a*l+b*i-3*b*k-e*f, 2*a*m+c*h-d*g-3*f*g, a*n+2*b*m-c*i+c*k+3*d*h-d*j-2*e*g-6*f*h,
2*b*o+d*l-e*k-3*f*l, 2*a*o+3*b*n+d*i+3*d*k-e*h-3*e*j-6*f*i -6*f*k,
2*b*m-3*c*i+c*k+6*d*h-d*j-3*e*g-6*f*h+3*f*j, b*n-c*l+3*d*k -2*e*j-3*f*i,
3*c*n-9*d*m+5*f*m+12*g*i-2*g*k-6*h*h-7*h*j+3*j*j, c*o+2*d*n+e*m-3*h*i+3*j*k,
3*d*m-f*m-3*g*i+g*k+2*h*j, 2*d*o+e*n-h*l-i*i-i*k+j*l+2*k*k,
3*d*n+3*e*m-f*n-2*g*l-6*h*i+6*h*k-i*j+3*j*k, 3*e*n-2*f*o-h*l-3*i*i+i*k-3*j*l+6*k*k,
2*g*o+h*n-i*m-3*k*m, 3*h*o+j*o-k*n-2*l*m, 3*a*h-a*j-2*b*g-c*f);

I3=I4+ideal(4*a*g-c*c, 4*b*l-e*e, 4*m*o-n*n, 2*a*h+a*j+b*g-c*d, a*l+b*i+2*b*k-d*e,
a*m+c*j-d*g+2*f*g, b*o+d*l-e*i+2*f*l, g*o-i*m-j*n+2*k*m, 2*h*o-i*n-j*o+l*m,
2*a*i+4*a*k+4*b*h+2*b*j-c*e-2*d*d, c*n-2*d*m+4*f*m-2*g*i+4*g *k-2*j*j,
2*d*o-e*n+4*f*o+4*h*l-2*i*i-2*j*l, a*n+b*m+2*c*k-2*d*h+d*j -e*g+4*f*h+2*f*j,

a*o+b*n+c*l-d*i+2*d*k-2*e*h+2*f*i+4*f*k, c*o-e*m+2*f*n+g*l-2*h*i+4*h*k-i*j-2*j*k);

Acknowledgements The authors would like to thank Bernd Sturmfels for asking the question that lead to
this work, Heather Harrington for introducing some of the collaborators to each other, and Willem de Graaf,
Jack Huizinga, Miles Reid, Tim Ryan, and Anna Seigal for helpful advice and correspondence. J.D.H. and
B.Sz. acknowledge support from NSF grant CCF-1812746 and EPSRC grant EP/R045038/1 respectively.

Declarations

Conflict of Interests The authors have no relevant financial or non-financial interests to disclose.

References

1. Arcara, D., Bertram, A., Coskun, I., Huizenga, J.: The minimal model program for the Hilbert scheme
of points on P

2 and Bridgeland stability. Adv. Math. 235, 580–626 (2013)
2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic

geometry. https://bertini.nd.edu (2013)
3. Brodsky, S., Sturmfels, B.: Tropical quadrics through three points. Linear Algebra Appl. 435, 1778–1785

(2011)
4. Cid-Ruiz, Y., Homs, R., Sturmfels, B.: Primary ideals and their differential equations. Found. Comput.

Math. 21, 1363–1399 (2021)
5. Daleo, N.S., Hauenstein, J.D.: Numerically deciding the arithmetically Cohen–Macaulayness of a

projective scheme. J. Symb. Comput. 72, 128–146 (2016)
6. de Graaf, W.: SLA: computing with simple Lie algebras. a GAP package
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