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Abstract
In location theory, the 1-centdian function is a convex combination of the 1-median and the
1-center functions. We consider the uniform cost reverse 1-centdian problem on networks,
where edge lengths are reduced within a given budget such that the 1-centdian function at a
prespecified point on the network is minimized. We first prove that the problem on general
networks is NP-hard by reducing the set cover problem to it. Then, we focus on the special
case of the problem on tree networks. Based on the strategy that we reduce either one edge
or several edges simultaneously in each step to obtain an optimal solution, we develop a
combinatorial algorithm that solves the corresponding problem on trees in quadratic time.

Keywords Combinatorial optimization · Location problem · Reverse optimization ·
Centdian function

Mathematics Subject Classification (2010) 90B10 · 90B80 · 90C27

1 Introduction

Classical location theory aims to find the optimal location of one or several new facilities.
For the location problem concerning public services such as warehouses, supermarkets, etc.,
we use the median function. On the other hand, the center function is applied to model the
location problem regarding emergency services such as hospitals and fire stations. Location
problems on the plane and on networks have been intensively studied, for example, by Das
et al. [9], Drezner and Hamacher [10], Eiselt and Marianov [11], and Kariv and Hakimi [19,
20]. Halpern [16, 17] further considered a convex combination of the median and the center
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objective functions in his proposed locational model for the case where both public services
and emergency services are taken into account, for instance, the location of a school. He also
proposed a linear time algorithm for the problem on trees and a polynomial time algorithm
for the problem on general networks. Since then, the centdian location problem has become
an interesting topic in the field of locational analysis with numerous publications. A few
of them are Brito et al. [26] on the 2-facility centdian problem, Tamir et al. [29] on the
p-centdian problem on trees, Kang et al. [18] on the connected p-centdian problem on
blockgraphs, and many references therein.

As a counterpart to the classical location problem, the previous researchers proposed
two types of modern problems concerning adjusting the input data in order to change the
structure of the original problem with respect to a task (given by a decision maker). One of
them is the inverse location problem, which seeks to change the parameters at a minimum
total cost so as to make prespecified facilities optimal in the modified network. The inverse
location problem has been investigated due to their potential in real life applications and
in theory (see [2, 3, 23, 25, 27]). On the other hand, the reverse location problem aims to
modify parameters of a network subject to a given budget constraint such that the network is
improved (decided by a decision maker) as much as possible. In the scope of this paper, we
focus on the reverse location problem. Hence, we review the existing literature concerning
the reverse location problem to ease the readers in the following discussion.

The reverse location problem first appeared in the seminal works of Berman et al. [5, 6]
in terms of improving the minisum and minimax functions on a network by reducing the
edge lengths. The authors considered the reverse 1-median problem on trees with a linear
time algorithm and proved that the corresponding problem on networks is NP-hard. They
also proposed a heuristic approach for the problem on general networks. Additionally, the
authors proposed an iterative approach to the reverse 1-center problem on trees without
detailed analysis on the complexity and the correctness of the algorithm. They also proved
NP-hardness of the problem on general networks and proposed a heuristic approach as well.
Since then, the reverse location problem has garnered interest among researchers in the
location problem community. Reverse 1-center location problem on unweighted trees was
investigated by Zhang et al. [30, 31]. They proposed minimum cut approaches for tackling
the problem in O(n2 log n) time, where n is the number of vertices in the underlying tree.
Later, Nguyen [24] considered the uniform-cost reverse 1-center problem on weighted trees
and developed a quadratic algorithm for the problem. Meanwhile, concerning the reverse
1-median problem, Burkard et al. [7] proved further that the problem on networks is NP-
hard and the optimal solution cannot be approximated by a constant number. They also
devised a linear time algorithm to solve the corresponding problem on cycles. Also, Burkard
et al. [8] showed that both the reverse 2-median problem on trees and the reverse 1-median
problem on uni-cyclic graphs can each be reduced to an equivalent 2-median problem on
paths. This result helped to solve the two mentioned problems in O(n log n) time. For the
reverse version of the obnoxious location problem, that is, one or several servers are not
desirable in the network system, Alizadeh and Etemad [4] developed a linear time algorithm
to solve the problem under the rectilinear norm or the Hamming distance. Furthermore, the
reverse selective obnoxious center location problem on trees can be solved in quadratic time
generally and in linear time for the uniform cost situation (see Etemad and Alizadeh [12]).
Another type of network improving problem is the upgrading or downgrading problem. In
this case, there is no prespecified facility and one or several facilities are optimally located
after modifying the network. Interested reader can refer to Afrashteh et al. [1], Gassner [13,
14], and Sepasian [28] for algorithmic approaches related to the upgrading and downgrading
problems.
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From previous literature, we observe that the reverse 1-median and the reverse 1-center
problems have already been investigated with some efficient solution algorithms found.
However, the reverse 1-centdian problem has not been studied so far although the classical
1-centdian problem has been extensively studied. Due to the importance of the 1-centdian
function in modeling real life problems, the corresponding reverse 1-centdian problem is
promising in theory and in application as well. For example, let a network and a predeter-
mined vertex, designating the location of a supplier, be given. In the network, each vertex
plays the role of a demander and each edge represents the connection between two deman-
ders. The size of the population of a demander is the associated vertex weight and the travel
time between two demanders of the network is represented by the edge length. The effi-
ciency of the given supplier is measured by the 1-centdian function according to its special
purpose, serving as a public or emergency service like a school or a hospital. In order to
improve the efficiency of the supplier, a budget is provided. However, the supplier cannot be
moved to other locations due to security and cost reasons. Instead, we can shorten the travel
time between adjacent vertices of the network by improving the edge capacities or mod-
ernizing the related technologies and this incurs relevant cost. Hence, the question is how
to use the budget to improve the efficiency of the supplier in an optimal way. This real-life
situation is indeed modeled as a reverse 1-centdian problem on networks.

We focus in this paper the algorithmic approach to the reverse 1-centdian problem on
networks and organize the paper as follows. Section 2 introduces fundamental concepts
of the reverse 1-centdian problem on networks. We also derive NP-hardness result for the
problem in this section. In Section 3, we study the problem on tree networks and developed
a novel O(n2) algorithm for the problem on a tree with n vertices.

2 ProblemDefinition and Complexity

We first introduce some basic concepts concerning the 1-centdian location problem on a
network (or graph). Let an undirected connected graph G = (V ,E,w, �) be given with V

(|V | = n) and E being respectively the vertex set and the edge set. Furthermore, the function
w : V → R+ maps each vertex v to a positive vertex weight, say w(v). Also, the function
� : E → R+ maps each edge e to a positive edge length, say �(e). Each edge of the graph
can be considered as a continuous interval containing points of the graph. The distance
d�(a, b) between two points a and b is the length of the shortest path P(a, b) connecting
them with respect to �. The 1-centdian function at a point ρ, according to Halpern [16, 17],
can be presented as a convex combination of the 1-median and the 1-center function at the
same point, that is,

λ
∑

v∈V

w(v)d�(v, ρ) + (1 − λ) max
v∈V

{w(v)d�(v, ρ)},

where λ ∈ (0, 1). In this work, readers are assumed to be familiar with the 1-median func-
tion

∑
v∈V w(v)d�(v, ρ) and the 1-center function maxv∈V w(v)d�(v, ρ) on a network G.

Equivalently, the 1-centdian problem is to find a point ρ that minimizes

F(ρ) :=
∑

v∈V

w(v)d�(v, ρ) + α max
v∈V

w(v)d�(v, ρ)

for α := (1 − λ)/λ. Hence, from here onwards, we regard the function F(ρ) as the 1-
centdian function.
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Assuming that we have found a desired position on a network G to locate a facility and
it can not be relocated due to security or logistics reasons. Then, the decision maker would
like to improve the efficiency of the network by reducing the objective function, say the 1-
centdian function, at the prespecified facility location as much as possible by reducing the
distances between servers and customers within a given budget. The corresponding model
is the so-called reverse 1-centdian problem on networks.

In order to formulate the model, let a prespecified point on G, where the server is located,
be given. One always assumes that the point, denoted by v∗, is a vertex as otherwise, we split
the edge that contains v∗ into two edges to induce a new graph. We can reduce the distances
from customers to v∗ by reducing the length of each edge e by x(e). The modified length of
e is written as �̃(e) := �(e) − x(e). Additionally, for each e ∈ E, the modified length �̃(e)

is restricted to a given bound, say �̃(e) ∈ [�(e), �(e)]. We set x̄(e) := �(e) − �(e) to be the
largest possible modification of e in E. In real life situation, the distance between vertices
are always positive, this implies that the length of each edge is also positive, that is, �(e) > 0
or x̄(e) < �(e) for all e ∈ E. We denote by c(e) the (positive) cost to modify an edge e

and it is proportional to the magnitude of modification. The total cost of modifying the edge
lengths is limited within a given budget B. Let d�̃ be the distance function with respect to
the new edge lengths �̃. Then, the reverse 1-centdian problem on G can be formulated as
follows.

min F̃ (v∗) :=
∑

v∈V

w(v)d�̃(v, v∗) + α max
v∈V

w(v)d�̃(v, v∗),

s.t. �̃(e) = �(e) − x(e), ∀e ∈ E,∑

e∈E

c(e)x(e) ≤ B,

0 ≤ x(e) ≤ x̄(e), ∀e ∈ E.

In this paper, we consider the uniform cost situation, that is, c(e) := C for all e ∈ E.
Moreover, one can always assume that c(e) := 1 for all e ∈ E as otherwise, we can reduce
to this case with the new budget B ′ := B/C. With our assumption, the budget constraint
is translated into

∑
e∈E x(e) ≤ B. Let us further make an assumption that

∑
e∈E x̄(e) > B

since otherwise we can get a trivial optimal solution x(e) := x̄(e) for all e ∈ E.
We first consider the complexity of the problem on general networks.

Theorem 1 The reverse 1-centdian problem is NP-hard even on unweighted networks.

Proof We start with an instance of the Set Cover Problem (SC) given below:

Given: A finite set E = {1, 2, . . . , n}, a collection E1, . . . , Em of subsets of E whose
union is E, and a number k ≤ m.

Question: Does there exist k subsets in {E1, . . . , Em} such that their union is exactly the
ground set E?

The (SC) problem is NP-complete (see Garey and Johnson [15]).
The decision version of the reverse 1-centdian problem on networks (RCPN) is stated as

follows:

Given: An instance of the unweighted network G = (V ,E,w, �), that is, w(v) = 1 for
all v ∈ V , with a prespecified vertex v∗, modification bounds x̄(e) for all e in E, a budget
B, and a value M .
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Question: Does there exist an edge length modification such that the total cost is limited
within B and the 1-centdian function at v∗ that is at most M?

We prove that (RCPN) is NP-hard by reducing an instance of (SC) to someone in poly-
nomial time and prove that the answer to (SC) is ‘yes’ if and only if the answer to (RCPN)
is ‘yes’. Given an instance of (SC), we construct an instance of (RCPN) as follows.

– The vertex set is V := {v∗} ∪ {ui : i = 1, . . . , m} ∪ {vj : j = 1, . . . , n} and the edge
set is E := E1 ∪ E2, where E1 := {(v∗, ui) : i = 1, . . . , m} and E2 := {(ui, vj ) : i =
1, . . . , m, j = 1, . . . , n and j ∈ Ei}.

– The weight of each vertex is V is 1. The lenghs are defined as �(e) := 2 if e ∈ E1
and �(e) := 1 if e ∈ E2. Modification bounds are x̄(e) = 1 if e ∈ E1 and x̄(e) = 0 if
e ∈ E2.

– We set B := k and M := 2m + 2n − k + 2.
– Furthermore, we choose α = 1, that is, the objective function can be written as

F(v∗) =
∑

v∈V

d�(v, v∗) + max
v∈V

d�(v, v∗).

If the answer to (SC) is ‘yes’, we obtain a collection of subsets Ei1 , Ei2 , . . . , Eik such
that

⋃k
j=1 Eij = E. We set x(v∗, uij ) := x̄(v∗, uij ) = 1 for j = 1, . . . , k and other edge

lengths are not modified. By elementary computations, the total cost is k and the 1-centdian
function at v∗ with respect to the modified graph is 2m + 2n − k + 2. Hence, the answer to
(RCPN) is ‘yes’.

Conversely, we assume that there exists a modification of the edge lengths within a bud-
get k such that the objective function at v∗ is at most 2m + 2n − k + 2. As

∑
e∈E1

x̄(e) =
m > k, we can also assume that the modification cost is exactly k, that is,

∑
e∈E1

x(e) = k,
because otherwise, we can reduce the edge lengths further without increasing the objective
function at v∗. Based on the structure of the graph G, we obtain that

∑

v∈V1

d�̃(v, v∗) =
∑

v∈V1

d�(v, v∗) −
∑

e∈E1

x(e) = 2m − k

and d�̃(v, v∗) ≥ 2 for all v ∈ V2. Therefore, we obtain
∑

v∈V

d�̃(v, v∗) =
∑

v∈V1

d�̃(v, v∗) +
∑

v∈V2

d�̃(v, v∗) ≥ 2m − k + 2n

and

max
v∈V

d�̃(v, v∗) ≥ 2.

This implies that the 1-centdian objective value is always at least 2m + 2n − k + 2. By the
hypothesis, the objective function is exactly 2m + 2n − k + 2 and thus d�̃(v, v∗) = 2 for
all v ∈ V2. Let us denote by I := {i ∈ {1, . . . , m} : x(v∗, ui) = 1}. Then, we get |I| ≤ k,
d�̃(uj , v

∗) = 1 if j ∈ I , and d�̃(uj , v
∗) > 1 otherwise. As d�̃(v, v∗) = 2 for all v ∈ V2, the

shortest path from a vertex v ∈ V2 to v∗ must contain a vertex ui for some i ∈ I . Hence, it
implies that ∪i∈IEi = E. In other words, the answer to (SC) is ‘yes’.

By Theorem 1, we can hardly find an algorithm that solves the (RCPN) problem in
polynomial time unless P = NP. It is interesting to further consider special cases of the
problem with polynomial time solution algorithms. In the next section, we study the reverse
1-centdian location problem on tree networks.
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3 Reverse 1-Centdian Problem on Trees

In this section, we focus on the reverse 1-centdian problem on a tree (RCPT), say T =
(V ,E,w, �). In the given tree, the path P(v, v∗) connecting a vertex v and the prespecified
vertex v∗ is unique for each v in V . We can write d�̃(v, v∗) := d�(v, v∗) − ∑

e∈P(v,v∗) x(e)

and hence the 1-centdian function is a decreasing function on the modification of edge
lengths. Based on this fact, we deliver a trivial but useful result that helps to understand the
structure of an optimal solution of the (RCPT) problem.

Proposition 1 The budget constraint holds with equality for every optimal solution of the
(RCPT) problem.

By Proposition 1, we can restate the budget constraint as
∑

e∈E x(e) = B and denote by

F :=
{

(x(e))e∈E :
∑

e∈E

x(e) = B and 0 ≤ x(e) ≤ x̄(e) for all e ∈ E

}
,

the set of feasible solutions to the (RCPT) problem. The 1-centdian objective function is
said to be improved by R for (x(e))e∈E ∈ F if R := F(v∗) − F̃ (v∗), where F̃ (v∗) is the
1-centdian function at v∗ with respect to the modification (x(e))e∈E . As the aim of (RCPT)
is to minimize the 1-centdian function F̃ (v∗), it is equivalent to finding a feasible solution
(x(e))e∈E ∈ F which maximizes the improvement of the objective function.

3.1 Problemwith a Sufficiently Small Budget B := ε

From here onwards, we root the tree T at the prespecified vertex v∗. An edge e := (u, v),
written in this ordering, means that u is a parent of v or v is a child of u. Observe that the
(length) reduction of an edge e = (u, v) can be shifted to an edge along the path P(u, v∗) if
there exists an edge e′ ∈ P(u, v∗) with x̄(e′) > 0. This shift helps to reduce the 1-centdian
value at v∗ even further without increasing the cost. An edge e = (u, v) with x̄(e) > 0
is, by definition, a candidate edge if no edge e′ ∈ P(u, v∗) exists such that x̄(e′) > 0. In
particular, if e = (v∗, v) and x̄(e) > 0, then e is a candidate edge. Also, we denote by C the
set of candidate edges and focus on the edges in C when considering edges to be reduced.

Let us denote by T the maximal subtree of T with v∗ in T and without any can-
didate edge. Let μ1 := maxv∈V (T ) w(v)d�(v, v∗) be the maximum weighted distance
from vertices in T to the vertex v∗. If μ1 = maxv∈V w(v)d�(v, v∗), the 1-center part
maxv∈V w(v)d�̃(v, v∗) cannot be reduced any further. Then, the (RCPT) problem reduces
to an equivalent reverse 1-median problem on the same tree and can be solved in linear
time by Berman et al. [5]. Therefore, we can assume that μ1 < maxv∈V w(v)d�(v, v∗) with
respect to the current subtree T and the tree T . This condition can be checked efficiently as
finding μ1 and maxv∈V w(v)d�(v, v∗) can be done in linear time by a breadth first search
(BFS) approach.

Now we aim to find which edges in C should be reduced to attain the maximum improve-
ment for a sufficiently small fixed cost ε. For each candidate edge e := (u, v) ∈ C, we
denote by Te the subtree rooted at v and W(Te) the total weight of vertices in Te. As the
1-centdian value is dependent on both the 1-median function

∑
u∈V w(u)d�̃(u, v∗) and the

1-center function maxu∈V w(u)d�̃(u, v∗), we now analyze the reduction of these functions
with respect to edge length modification.
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If we reduce a single edge e in C by ε, it is easy to verify that the 1-median function is
reduced by W(Te)ε. We set emax := arg maxe:=(u,v)∈C W(Te), that is, a specific candidate
edge for which the corresponding tree has the largest total vertex weights. Then, reducing
emax by ε yields the maximum reduction of the 1-median function, that is, by W(Temax)ε.

For the 1-center function, we set

ve := arg min

{
w(v) : v ∈ Te and w(v)d�(v

∗, v) = max
u∈V (Te)

w(u)d�(v
∗, u)

}
,

and call it an associated vertex in Te. Note that, for a sufficiently small reduction of e, an
associated vertex ve satisfies w(ve)d�̃(ve, v

∗) = maxu∈V (Te) w(u)d�̃(u, v∗).
In Fig. 1, for a candidate edge e = (v∗, v1), both v3 and v4 have maximum weighted

distance to v∗, namely 24. As w(v3) < w(v4), we set ve := v3.
Let us abbreviate

M :=
⋃

e∈C

{
ve : w(ve)d�(v

∗, ve) = max
u∈V

w(u)d�(v
∗, u)

}

the set of all associated vertices ve such that the 1-center value of T is attained at these
vertices. Furthermore, let C(M) := {e ∈ C : ve ∈ M} be the set of candidate edges
with corresponding vertices in M. In order to reduce the 1-center function, it is required
to simultaneously reduce all the edges in C(M). Therefore, we now analyze how much the
1-centdian function improves when all the edges in C(M) (and no other edges) are reduced
according to some modification satisfying a natural constraint. We will see that this analysis
leads essentially to our main result.

Suppose e1, e2, . . . , ek are all the edges in C(M). By definition, vei
= arg maxu∈V w(u)

d�(u, v∗) for all i = 1, . . . , k. Suppose ei is reduced by x(ei) for each i = 1, . . . , k given
a sufficiently small budget ε. To achieve maximum improvement, we may assume that∑k

j=1 x(ej ) = ε. More importantly, we suppose our edge length modification satisfies the
following natural special condition:

x(e1)w(ve1) = x(e2)w(ve2) = · · · = x(ek)w(vek
). (1)

Fig. 1 The associated vertex in T(v∗,v1) (in red)
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We denote by P := ∏k
j=1 w(vej

), w′(vei
) := ∏k

j=1,j 
=i w(vej
), and S := ∑k

i=1 w′(vei
).

By elementary computation, for each i = 1, . . . , k, we get x(ei) = w′(vei
)

S
ε, or in other

words

x(ei) = ε

w(vei
)
∑k

j=1
1

w(vej
)

. (2)

Now, our constraint immediately implies that

max
u∈V

w(u)d�̃(u, v∗) = max
u∈V

w(u)d�(u, v∗) − x(e1)w(ve1).

Hence, the corresponding improvement of the 1-centdian function can be written as

k∑

i=1

x(ei)W(Tei
)

︸ ︷︷ ︸
1-median

+α x(e1)w(ve1)︸ ︷︷ ︸
1-center

= 1

S

(
k∑

i=1

w′(vei
)W(Tei

) + αP

)
ε

= P

S

k∑

i=1

(
W(Tei

)

w(vei
)

+ α

)
ε

= 1
∑k

i=1
1

w(vei
)

(
k∑

i=1

W(Tei
)

w(vei
)

+ α

)
ε.

Let

ΔM :=
⎛

⎝
∑

e∈C(M)

W(Te)

w(ve)
+ α

⎞

⎠ /

⎛

⎝
∑

e∈C(M)

1

w(ve)

⎞

⎠ (3)

and we can interpret ΔM as the efficiency of reducing all edges in C(M) according to
(1). Moreover, we can trace back the reduction of the 1-centdian function based on the
modifications of the edges in C(M) and the efficiency ΔM. Indeed, by (2) we can write
ε := ∑

e′∈C(M)
1

w(ve′ ))
w(ve)x(e) for any edge e in the set C(M). The corresponding

reduction of the 1-centdian function is thus presented by

∑

e′∈C(M)

1

w(ve′)
ΔMw(ve)x(e) (4)

for any edge e ∈ C(M). Equations (3) and (4) can be calculated in O(|C(M)|) time. As
|C(M)| ≤ n, the corresponding computation costs linear time in the worst case scenario.

We are now ready for our main result of this section.

Proposition 2 Let a sufficiently small budget ε be given. If ΔM > W(Temax), we reduce
each edge in C(M) according to (2) to obtain the maximum reduction of the 1-centdian
function, namely ΔMε. Otherwise, if ΔM ≤ W(Temax), we reduce the edge emax to obtain
the maximum reduction of the 1-centdian function, namely W(Temax)ε.

Proof Suppose that ΔM > W(Temax) and the edges e1, e2, . . . , ek are reduced by
x(e1), x(e2), . . . , x(ek), where

∑k
i=1 x(ei) = ε. First, we prove that to yield the maxi-

mum reduction of the 1-centdian function, all edges in C(M) must be reduced or else it
is better off just by reducing the single edge emax. Indeed, assume not all edges in C(M)
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are reduced. Then the 1-center part maxv∈V wvd�̃(v
∗, v) in the 1-centdian function is not

reduced. Hence, the improvement is at most

k∑

i=1

x(ei)W(Tei
) ≤ W

(
Temax

) k∑

i=1

x(ei) ≤ W
(
Temax

)
ε.

Next, we prove that assuming we reduce exactly all edges in C(M), then the modifi-
cation satisfying condition (1) yields the maximum reduction to the 1-centdian function,
namely ΔMε according to our analysis before. Suppose e1, e2, . . . , ek are all the edges
in C(M) but condition (1) does not hold. Without loss of generality, w(ve1)x(e1) ≤
w(ve2)x(e2) ≤ · · · ≤ w(vek

)x(ek). Let i be the smallest index such that w(vei
)x(ei) <

w(vei+1)x(ei+1). Then, we consider x′(ei+1), . . . , x
′(ek) with x′(es) < x(es) for all s =

i + 1, . . . , k such that

w(ve1)x(e1) = w(ve2)x(e2) = · · · = w(vei
)x(ei) = w(vei+1)x

′(ei+1)

= w(vei+2)x
′(ei+2) = · · · = w(vek

)x′(ek).

We set ε1 := ∑i
r=1 x(er ) + ∑k

s=i+1 x′(es) and ε2 := ∑k
s=i+1[x(es) − x′(es)] = ε − ε1.

By the analysis before, the improvement of the 1-centdian function is

ΔMε1 +
k∑

s=i+1

W(Tes )[x(es) − x′(es)] ≤ ΔMε1 + W(Temax)ε2

< ΔM(ε1 + ε2) = ΔMε.

Finally, it remains to observe that if we reduce all edges in C(M) according to condition
(1) with budget ε1 and also some other edges e′

1, . . . , e
′
j that are not in C(M) with budget

ε2, then the improvement of the 1-centdian function is

ΔMε1 +
j∑

s=1

W(Te′
s
)x(e′

s) ≤ ΔMε1 + W(Temax)

j∑

s=1

x(e′
s)

< ΔM(ε1 + ε2) = ΔMε.

Therefore, our proof of the first part is complete.
Now, suppose ΔM ≤ W(Temax). The preceding case analysis can be easily modified

to show that the maximum reduction of the 1-centdian function is W(Temax)ε. This can
be achieved by reducing the edge emax by ε, noting that C(M) 
= {emax} (see the next
remark).

Remark 1 If C(M) = {emax}, without relying on Proposition 2, it is obvious that reducing
emax by ε leads to the maximum reduction of the 1-centdian function, namely, (W(Temax) +
αw(vemax))ε. In this case, ΔM = W(Temax) + αw(vemax) > W(Temax) and thus the choice
of reduction is consistent with Proposition 2.

Remark 2 As the 1-center function is continuous on the edge lengths, we can choose ε to
be sufficiently small such that C, M, and C(M) do not change in the perturbed tree.

3.2 A Greedy Iterative Approach

We previously discussed which edges should be reduced for the maximum improvement of
the 1-centdian function under a sufficiently small cost ε once C(M) is known. Obviously,
the set C(M) depends directly on the sets C and M. Throughout the reduction of edge
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lengths, the sets C and M may change. Hence, now we investigate the situations where one
of the sets C and M changes.

Case 1. Where the set C of Candidate Edges Changes Assuming that an edge e (which
is either emax or is in C(M)) is reduced by x̄(e), its updated value of x̄(e) is 0 and thus
e is not a candidate edge anymore. In this case, we apply a (BFS) approach to find a new
candidate edge(s) within the subtree Te to update C in O(|Te|) time. Other related data must
be updated accordingly as described below.

Part 1. If ΔM ≤ W(Temax), we reduce the edge e := emax and the 1-center func-
tion maxv∈V w(v)d�̃(v, v∗) is not reduced. If there is a vertex v in Temax ∩ M, we set
M := M\{v} and C(M) := C(M)\{emax}. Otherwise, these sets M and C(M) do not
change. Moreover, we update emax, the subtree T , and the value μ1 according to the new
candidate set C. To summarize, we have to update C, M, C(M), T , μ1, emax, and ΔM
accordingly. The complexity of this part is O(|Temax | + |C(M)|) due to the (BFS) approach
and the complexity of computing ΔM. As both |Temax | and |C(M)| are at most n, the
complexity of this part is linear.

We study an instance in Fig. 2 with α = 1 and C = {(v1, v2), (v1, v4)}. Furthermore,
T = {v∗, v1} with μ1 = 2. We can compute emax = {(v1, v4)} with W(Temax) = 13. As
M = {v3, v5} and C(M) = C, we obtain ΔM = 23/3 < W(Temax). Thus, we reduce
emax = {(v1, v4)}. Assuming that x̄(v1, v2) = x̄(v1, v4) = x̄(v4, v5) = x̄(v4, v6) = 1, after
reducing (v1, v4) by 1, we update C = {(v1, v2), (v4, v5), (v4, v6)}, M = {v3}, C(M) =
{(v1, v2)}, T = {v∗, v1, v4}, μ1 = 15, emax = (v4, v5), and ΔM = 5.

Part 2. If ΔM > W(Temax), we reduce all edges in C(M) according to (2). Suppose there
is an edge e ∈ C(M) with x(e) = x̄(e). In this situation, both the 1-median and the 1-
center parts are reduced. Thus, we have to update the set C, M and C(M) by applying the
(BFS) approach on the subtree Te. Also, we update the subtree T and the corresponding
value μ1 as some edges can not be further reduced. To summarize, we have to update C, M,
C(M), T , μ1, emax, and ΔM. The complexity of this part is O(|Te| + |C(M)|) or linear
time because both |Te| and |C(M)| are at most n.

For example, we consider Fig. 3 with α = 1 and C = {(v1, v2), (v1, v4)}. We can
compute emax = {(v1, v4)} with W(Temax) = 6. As M = {v3, v5} and C(M) = C,

Fig. 2 An instance to illustrate Part 1 of Case 1
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Fig. 3 An instance to illustrate Part 2 of Case 1

we obtain ΔM = 20/3 > W(Temax). Thus, we reduce edges in C(M). For x̄(v1, v2) =
x̄(v1, v4) = x̄(v4, v5) = x̄(v4, v6) = 1, we simultaneously reduce (v1, v2) and (v1, v4) by
1 and 1/2. As x(v1, v2) = x̄(v1, v2), we update C = {(v1, v4), (v2, v3)}, M = {v3, v5},
C(M) = {(v1, v4), (v2, v3)}, emax = (v1, v4), and ΔM = 14/3.

Case 2. Where the Set M of Associated Vertices Changes As the set M is related to
the 1-center function, we assume in this case that all edges in C(M) are reduced and we
consider an edge e in the set.

Part 1 We investigate when the vertex ve can change from one to another inside a subtree
Te. From the analysis in Nguyen [24], we know that ve shifts to v if v is not in P(ve, v

∗) and
w(v) < w(ve) while the modification of e is xv(e) satisfying w(ve)(d�(v

∗, ve) − xv(e)) =
w(v)(d�(v

∗, v) − xv(e)), that is,

xv(e) := w(ve)d�(v
∗, ve) − w(v)d�(v

∗, v)

w(ve) − w(v)
.

For each vertex v ∈ V (Te) such that v is either in P(ve, v
∗) or w(v) ≥ w(ve), we set

xv(e) := +∞. Then, we denote by xC(e) := minv∈V (Te){xv(e)} the minimum modification
of e such that ve changes. Furthermore, if we modify e by xC(e), then we update M :=
(M\{ve}) ∪ {v} for a vertex v satisfying

v := arg min

{
w(v′) : v′ ∈ Te and w(v′)d�̃(v

′, v∗) = max
v′′∈V

w(v′′)d�̃(v
′′, v∗)

}

and xv(e) = xC(e). To compute xC(e) for e in C(M), we have to compute xv(e) for all
v ∈ Te in constant time. Hence, the complexity for computing xC(e) is O(|Te|) = O(n)

time.
For example, say we reduce the edge (v1, v2) in Fig. 4, then xv3((v1, v2)) = 2 and

xv4((v1, v2)) = 6. Thus, we derive xC((v1, v2)) = 2. If we reduce the length of (v1, v2) by
2, the corresponding set M = {v3}.

Part 2 We investigate the cases where new vertices in T \ ⋃
e∈C(M) Te are added to M.

Let μ2 := max{wved�(ve, v
∗) : e ∈ C\C(M)} and μ := max{μ1, μ2}, where we know

μ1 := max{wvd�(v, v∗) : v ∈ T } in the previous section. We observe that μ is not reduced
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Fig. 4 An instance to illustrate Part 1 of Case 2

for the reduction of edges in C(M). In the case where we reduce all edges of C(M), if an
edge e ∈ C(M) is reduced by xM(e) satisfying w(ve)(d(v∗, ve) − xM(e)) = μ, that is,

xM(e) := w(ve)d(v∗, ve) − μ

w(ve)
,

then we get into one of the following two situations. If μ1 < μ2, there exists one or several
new vertices ve for e ∈ C\C(M) that are added into M and the corresponding edges are
added to C(M). If μ1 ≥ μ2, there exist a vertex u in T with u := arg maxv∈V w(v)d�̃(v, v∗)
in the modified tree T . As the 1-center part cannot be reduced any further from here on, the
(RCPT) problem reduces to the reverse 1-median problem on the modified tree.

We consider Fig. 5 to illustrate this part for the case μ1 < μ2. For C =
{(v1, v2), (v1, v4)}, we know that (v1, v2) in M. We obtain μ = μ2 = 18 and xM(e) := 1.
If we reduce (v1, v2) by 1, then M := {v3, v4}.

In Fig. 6, we get μ1 > μ2. If we reduce (v1, v2) by 4, then

w(v1)d(v1, v
∗) = max

v∈V
w(v)d�̃(v, v∗).

The 1-center part in the 1-centdian function can not be improved any further.
We have already analyzed the two cases regarding the change of C or M. Therefore, an

edge e should be reduced by the minimum of the mentioned amounts in Case 1 and Case 2
as well as adapting to the budget constraint. Precisely, assuming we reduce the edges in
C(M) according to (1) subject to the budget constraint, that is,

∑
e∈C(M) x(e) ≤ B, then

by (2), x(e) ≤ 1
w(e)

∑
e′∈C(M)

1
w(v

e′ )
B must hold for each e ∈ C(M). The following result

states the minimum reduction of an edge e according to Proposition 2 such that the set C or
M changes and the budget constraint holds.

Fig. 5 An instance to illustrate Part 2 of Case 2 with μ1 < μ2
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Fig. 6 An instance to illustrate
Part 2 of Case 2 with μ1 ≥ μ2

Proposition 3 If ΔM ≤ W(Temax), the minimum reduction of the edge emax such that the
set C changes or the budget is fully used is

δ(emax) := min {x̄(emax), B} . (5)

Otherwise, if ΔM > W(Temax), the minimum reduction of an edge e in C(M) such that the
set C orM changes or the budget is fully used, is

δ(e) := min

{
x̄(e), xC(e), xM(e),

1

w(ve)
∑

e′∈C(M)
1

w(ve′ )
B

}
. (6)

Proof Based on Proposition 2, we focus on reducing emax if ΔM ≤ W(Temax). As maximum
possible reduction of the edge emax is x̄(emax) and is bounded by the budget, we get the
desired result. Otherwise, if ΔM > W(Temax), we reduce all edges in C(M). Then, we get
the result due to the analysis in Part 2 of Case 1 and the whole Case 2.

By Proposition 3, we can identify the minimum reduction of an edge such that C or M
changes. If ΔM ≤ W(Temax), reducing the edge emax by x(emax) = δ(emax) yields the
reduction of the 1-centdian function by W(Temax)δ(emax). Otherwise, we can compute the
minimum reduction of the 1-centdian function such that C or M changes based on (4) and
Proposition 3.

Proposition 4 If we reduce all edges in C(M), then the minimum reduction of the
1-centdian function which leads to the change of C orM is

κ :=
∑

e′∈C(M)

1

w(ve′)
ΔM min

e∈C(M)
{w(ve)δ(e)}. (7)

Proof By the formula for the reduction of the 1-centdian function given by (4) and the
minimum reduction of an edge in C(M) that leads to the change of C or M given by
Proposition 3, we can trivially identify the minimum reduction of the 1-centdian function
as in (7).

Based on (7), we can trace back the reduction of each edge e in C(M) by (2).
In the next page, we present a combinatorial algorithm for the (RCPT) problem. The idea

of the algorithm is to reduce the length of the edge emax or all edges in C(M) according to
Proposition 3 and update necessary information in each iteration according to the analysis
in Case 1 and Case 2. We repeat the iterations until the given budget is fully used. By
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Proposition 2, we know that the 1-centdian value is reduced as much as possible. Hence, we
finally get the maximum reduction of the objective function after completing Algorithm 1.

Now, we analyze the complexity of the algorithm. We start with considering the number
of iterations in the worst case scenario. For Case 1, after an edge is modified by its upper
bound, it is not considered in future iterations. Therefore, there are at most O(n) iterations
such that Case 1 occurs. For Part 1 of Case 2, we know that ve for e ∈ C(M) can be
only shifted to its descendants inside the subtree Te. Therefore, there are also at most O(n)
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Fig. 7 An instance of the (RCPT) problem with α = 2

iterations such that this part of Case 2 happens. Part 2 of Case 2 happens if there exist one
or several edges in C\C(M). Furthermore, if there is an edge e in C\C(M) such that ve is
added into M in the current iteration, we later either reduce this edge by Case 1 or Part 1
of Case 2. In other words, we do not revisit the edge e again under Part 2 of Case 2 from
the current iteration onwards. Therefore, the number of iterations such that Part 2 of Case 2
happens at most equals the number of edges in the tree, and thus there are linearly many
such iterations. In the initialization step (lines 2–4), we can compute all related quantities in
linear time as discussed in Section 3.1. In each iteration, we complete the computation as in
Case 1 and Case 2 in linear time as discussed before. If the condition μ1 = θ (line 29) holds,
we apply the algorithm of Berman et al. [5] to solve the current instance in linear time.
Therefore, the complexity of the algorithm is O(n2), where n is the number of vertices in T .

Theorem 2 The reverse centdian problem on trees can be solved in O(n2) time, where n is
the number of vertices in the tree.

As an illustration of Algorithm 1, we provide the following example.

Example 1 Consider an instance of the reverse 1-centdian problem on a tree T in Fig. 7
with α = 2, x̄(v0, v1) = x̄(v0, v2) = 2 and x̄(e) = 1 otherwise. Under the given budget
B = 5, Algorithm 1 solves the corresponding problem in 5 iterations (see Table 1).

Table 1 Iterations of the (RCPT) by applying Algorithm 1

Iter. C M C(M) emax W(Temax ) ΔM Reduction R B

1 {(v0, v1), (v0, v2)} {v2} {(v0, v2)} (v0, v1) 28 43 x((v0, v2)) = 1
3

43
3

14
3

2 {(v0, v1), (v0, v2)} {v10} {(v0, v2)} (v0, v1) 28 31 x((v0, v2)) = 2
3 35 4

3 {(v0, v1), (v0, v2)} {v3, v10} {(v0, v1),

(v0, v2)} (v0, v1) 28 30
x((v0, v1)) = 1

2

x((v0, v2)) = 1
80 5

2

4
{(v0, v1), (v2, v5),

(v2, v6)} {v3, v10} {(v0, v1),

(v2, v5)} (v0, v1) 28 20 x((v0, v1)) = 3
2 122 1

5
{(v1, v3), (v1, v4),

(v2, v5), (v5, v6)} {v10} {(v2, v5)} (v1, v3) 18 16 x((v1, v3)) = 1 140 0
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Therefore, the maximum improvement of the 1-centdian function within the budget B is
R = 140.

4 Conclusions

This paper addressed the uniform cost reverse 1-centdian problem on networks, where the
1-centdian function is a convex combination of the 1-median and the 1-center functions. We
first proved that the problem is NP-hard by reducing it to the set cover problem. Specifically,
we investigated the problem on trees and developed a greedy-like algorithm that solves the
problem in quadratic time. To the best of our knowledge, this is the first work concerning the
reverse centdian problem. Hence, the reverse centdian problem on other types of networks
such as cycles, cactus, etc., is a promising research direction for the future. Another potential
direction is to apply prediction models (see [21, 22]) to location theory in order to construct
a focasting approach for the centdian problem on networks in both the classical and the
inverse/reverse versions.
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26. Pérez-Brito, D., Moreno-Pérez, J.A., Rodrı́guez-Martı́n, I.: The 2-facility centdian network problem.

Locat. Sci. 6, 369–381 (1998)
27. Pham, V.H., Nguyen, K.T., Le, T.T.: Inverse stable point problem on trees under an extension of Cheby-

shev norm and Bottleneck Hamming distance. Optim. Method Softw. https://doi.org/10.1080/10556788.
2020.1713778 (2020)

28. Sepasian, A.R.: Upgrading the 1-center problem with edge length variables on a tree. Discrete Optim.
29, 1–17 (2018)
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